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ABSTRACT. In coordination games and speculative over-the-counter financial markets, solutions

depend on higher-order average expectations: agents’ expectations about what counterparties,

on average, expect their counterparties to think, etc. We offer a unified analysis of these objects

and their limits, for general information structures, priors, and networks of counterparty rela-

tionships. Our key device is an interaction structure combining the network and agents’ beliefs,

which we analyze using Markov methods. This device allows us to nest classical beauty contests

and network games within one model and unify their results. Two applications illustrate the tech-

niques: The first characterizes when slight optimism about counterparties’ average expectations

leads to contagion of optimism and extreme asset prices. The second describes the tyranny of the

least-informed: agents coordinating on the prior expectations of the one with the worst private

information, despite all having nearly common certainty, based on precise private signals, of the

ex post optimal action.

1. INTRODUCTION

Consider a situation in which each agent has strong incentives to match the behavior of oth-

ers. An outcome that agents coordinate on in such a setting has been called a convention in

philosophy and economics (see Lewis (1969), Young (1996), and Shin and Williamson (1996)).

In deciding how to coordinate, agents will take into account their beliefs about (i) the state of

the world, which determines the best action; and (ii) one another’s actions, and the beliefs that

guide those actions. Agents may differ from one another, and hence have an incentive to choose

differently, for three reasons: first, because they are asymmetrically informed; second, because

they interpret the same information differently—that is, they have different priors; and third,
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because they differ in whom they want to coordinate with. Which conventions emerge in such

an environment will depend on the information asymmetries, the heterogeneous prior beliefs,

and the network describing the coordination motives of agents. Our purpose is to characterize

this dependence.

We informally describe a simple model of this environment: a coordination game with linear

best responses. Nature draws an external state θ, and each agent i chooses a real-valued action

ai based on some private information. This occurs simultaneously. Agents’ payoffs capture two

motivations: First, they seek to coordinate with a basic random variable y(θ)—a random vari-

able, common to everyone, that depends only on the external state; second, they seek to take

actions that are close to the actions that others take—the various a j for j 6= i . The disutilities

they experience are proportional to the squares of the differences between ai and these various

targets; this feature induces best responses linear in an agent’s expectations of y and others’

actions. A network of weights captures the coordination concerns of the agents—that is, which

others each agent cares most about coordinating with.

If just the coordination motive were present, with no desire to match the basic random vari-

able, there would be a continuum of equilibria. Indeed, for any action, there would be an

equilibrium with everyone choosing that action. The choice of action would be an arbitrary

convention. We will be interested in the case where the convention is not arbitrary, because

agents put some weight on the accuracy motive—matching the basic random variable—while

still being strongly motivated to choose actions close to others’ actions. In this case, it turns out

there is a unique equilibrium. When the weight on others’ actions is high, it can be shown that

agents essentially choose a common action. We call this action—the common action played in

the limit—the convention. If there were common knowledge of the external state θ, the con-

vention would be equal to y(θ), the value everyone seeks to match. But we are interested in

characterizing the convention when there is incomplete information about the state.

The convention will depend on higher-order expectations of the agents. Suppose Ann cares

mainly about coordinating with Bob, who cares mainly about coordinating with Charlie. (Recall

that the agents all care a little about matching their own expectations of the external variable.)

Then Ann’s expectation of Bob’s expectation of Charlie’s expectation of the external variable be-

comes relevant for Ann’s decision. In this scenario, each agent is seeking to coordinate with

only one other, but in the general model each seeks to match a (weighted) average of the ac-

tions of several others. By an elaboration of the above reasoning about Ann, Bob, and Charile,
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higher-order average expectations become relevant: Each agent cares about the average of his

neighbors’ expectations of the average of their neighbors’ expectations of the external variable,

and so on. Thus our analysis of coordination games leads naturally to a study of higher-order

average expectations. We will define the consensus expectation to be (essentially) the limit of

such higher-order average expectations as the order becomes large. The consensus expectation

will equal the convention that obtains in the linear best-response game described above, in the

limit as agents’ coordination concerns dominate. We will focus on this limit, though many of

the techniques we will develop can be extended to study the case where coordination motives

are not dominant.

We will report three kinds of substantive results about consensus expectations. To establish

these results, we introduce a key technical device: a Markov matrix on the union of agents’

signals, which we call an interaction structure, capturing both the network and agent’s beliefs.

A key observation is that consensus expectations are determined by the stationary distribution

corresponding to the Markov matrix. We now present the substantive results, and we discuss

the technique in more detail at the end of the Introduction.

Unifying and Generalizing Network and Asymmetric Information Results. The first results

unify and generalize facts known in the literatures on network games and on asymmetric infor-

mation:

(a) Suppose agents have the same information but may have heterogeneous beliefs about

θ—that is, different priors, which are commonly known. Then the consensus expectation is

simply a weighted average of agents’ heterogeneous prior expectations of the external random

variable. The weight on an agent’s expectation is his eigenvector centrality in the network. This

corresponds to the seminal result of Ballester, Calvó-Armengol, and Zenou (2006) on equilib-

rium actions in certain network games being weighted averages of individuals’ ideal points,

with someone’s weight determined by the extent to which others want to directly and indirectly

coordinate with him. The appearance of network centrality here—a statistic of individuals de-

fined from the matrix of coordination weights—is a consequence of the matrix algebra that

naturally appears when studying higher-order average expectations.1

(b) If there is asymmetric information, but agents have common prior beliefs, then the con-

sensus expectation is equal to the (common prior) ex ante expectation of the external state.

1For recent surveys of economic applications related to network centrality, see Jackson (2008, Section 2.2.4), Ace-
moglu, Ozdaglar, and Tahbaz-Salehi (2016b), Zenou (2016), and Golub and Sadler (2016).
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Thus consensus expectations are independent of the network structure, and also independent

of all features of the information structure except the common prior. This result turns out to be

a corollary of the result of Samet (1998a).

(c) Embedding both (a) and (b), if agents have both heterogeneous prior beliefs and asym-

metric information but a common prior on signals,2 then the consensus expectation is equal

to a weighted average of agents’ different ex ante expectations of the basic random variable.

Just as in (a), the weight on an agent’s expectation is his eigenvector centrality in the network.3

This goes beyond existing work on network games with incomplete information due to Calvó-

Armengol, Martí, and Prat (2015), de Martí and Zenou (2015), Bergemann, Heumann, and Mor-

ris (2015b) and Blume, Brock, Durlauf, and Jayaraman (2015): we will discuss these connections

in Section 6 when we have introduced the model and key results.

Contagion of Optimism. Our second category of results studies second-order optimism. We

assume that each agent, given any signal, assesses his average counterparty as more optimistic

than himself about the value of the basic random variable, unless the agent himself has a first-

order expectation that is already very high (close to the highest induced by any signal). Agents

whose expectations are high may be somewhat pessimistic: they may assess the average coun-

terparty as less optimistic than themselves.

We study when arbitrarily slight second-order optimism leads consensus expectations to

be very high—near highest possible expectation of y—via a contagion of optimism through

higher-order expectations. The proof is via a reduction to a Markov chain inequality. The key

subtlety in the analysis is: how much pessimism can be allowed without destroying the conta-

gion of optimism? We give a bound that answers this question, and describe a sense in which

this bound is tight (Section 7.4.2). Recent work of Han and Kyle (2017) discusses a different con-

tagion of optimism in a CARA-normal rational expectations model. We examine connections

with related models in Section 7.4.1.

Tyranny of the Least-Informed. Third, we consider a setting where agents start with hetero-

geneous priors about the external state but share a common interpretation of signals.4 That

is, agents observe signals of the external state. They agree on the probability of any particular

2That is, a common prior on how the signal random variables are distributed.
3This decomposition separates, in a suitable sense, the effects of the network and the beliefs. A companion paper,
Golub and Morris (2017), gives the necessary and sufficient condition on the information structure for this sort of
weighted average decomposition to be possible.
4An interpretation of a signal random variable is its conditional distribution given the state, in line with the termi-
nology of Kandel and Pearson (1995) and Acemoglu, Chernozhukov, and Yildiz (2016a).
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signal of a given agent conditional on any external state.5 However, their priors over external

states may differ, and thus their interim beliefs may not be compatible with a common prior.

Given common interpretation of signals, it makes sense to define notions of more and less pre-

cisely informed agents, because the distributions of signals given the external state (and thus

the levels of noise in them) are common knowledge.

We show that, in a suitable sense, the consensus expectation approximates the ex ante expec-

tation of the agent whose private information is least precise. This is true even if all agents have

very precise private signals about the state, as long as the least-informed has signals sufficiently

less precise than others. The quantitative details of how to define “sufficiently” are subtle, and

rely on a Markov chain connection that we discuss next.

The Interaction Structure and Markov Formalism. The techniques underlying the results dis-

cussed above are based on a Markov matrix description of higher-order average expectations.

While we defer most of the details until Section 4, when we have more notation, the basic idea is

simple. We define a Markov process whose state space is the union of all agents’ signals. Transi-

tion probabilities between any two states combine both the network weights and the subjective

probabilities of the agents. In particular, the transition probability from a signal t i of agent i

to a signal t j of agent j is defined as the product of (i) the network weight that i places on j

and (ii) the subjective probability that agent i , given signal t i , places on t j . We call the transi-

tion matrix of this Markov process the interaction structure, and it is our key technical device.

This formalism treats beliefs and network weights entirely symmetrically. This symmetric treat-

ment enables the analysis to be reduced to Markov chain results, which provide both a tool and

novel insights.6 Other work on network games with incomplete information—Calvó-Armengol,

Martí, and Prat (2015), de Martí and Zenou (2015), Bergemann, Heumann, and Morris (2015b)

and Blume, Brock, Durlauf, and Jayaraman (2015)—does not use this general device and must

develop more tailored techniques.

The essence of our approach is that the iteration of the Markov matrix associated with the

interaction structure enables a brief, explicit description of higher-order average expectations:

5In the environment we study for this application, the signals are conditionally independent given the state, so
that signals are correlated only through the state.
6The symmetric treatment follows Morris (1997). As discussed in detail in Section C.3, our approach echoes Samet
(1998a) in using a Markov process to represent incomplete information, although our Markov process is actually a
different one in significant ways.
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The nth-order average expectations can be obtained by suitably combining the n-step transi-

tion probabilities of the Markov process with the first-order expectations associated to various

signals.

To study consensus expectations, we consider the limit as n grows large. Under suitable con-

ditions, in this limit the Markov transition probability to any state—regardless of where the

process starts—becomes the stationary probability of that state. This can be used to show that

the stationary distribution of the Markov process determines the consensus expectation. Indeed,

the consensus expectation turns out to be a weighted average of first-order expectations given

various signals t i . The weight on a signal t i is its weight in the stationary distribution of the

Markov process.

Thus, our results on the consensus expectation are proved by studying the stationary dis-

tribution of the Markov process and deriving properties of it from more primitive assumptions

about the environment. For example, in the analysis of the contagion of optimism, the essential

idea is that when second-order optimism holds, probability mass in the Markov process flows

on average to signals associated with higher first-order expectations of the basic random vari-

able. It can be shown that, as a consequence, states with high first-order expectations have a

larger share of the stationary probability. By our description of the consensus expectation as a

weighted average of first-order expectations, with weights given by the stationary probabilities,

it follows that the consensus expectation is high.

Other results rely on different reasoning. The most technically involved arguments are the

ones associated with the tyranny of the least-informed. These arguments rely on perturbation

bounds for Markov chains, which are used to show that the priors of highly informed agents

cannot play a substantial role in the stationary distribution that determines the consensus ex-

pectation. Overall, our main methodological claim—illustrated by the various applications—is

that the structure of higher-order expectations is illuminated by the Markov formalism.

The remainder of the paper is organized as follows. Section 2 presents the environment, de-

fines higher-order average expectations and consensus expectations, and illustrates them with

some simple examples. Section 3 motivates higher-order average expectations and consensus

expectations by discussing a coordination game and an asset market where they are relevant.

Section 4 presents our key technical device, the interaction structure, and the correspondence
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between higher-order average expectations and statistics of a Markov process. Section 5 re-

lates the interaction structure to the underlying network. Section 6 relates consensus expecta-

tions to agents’ priors. Together these results unify and extend the known network games and

incomplete-information results. Section 7 focuses on higher-order optimism, while Section 8

reports our results on the tyranny of the least-informed. Section C is a discussion of relations to

the literature, subtleties, and extensions.

2. MODEL

2.1. The Information Structure.

2.1.1. States, Signals, and Expectations. There is a finite set Θ of states of the world. There is a

finite set N of agents. Associated to each agent i ∈ N is a finite set T i of signals (i.e., possible

signal realizations). and these sets of signals are disjoint across agents. Let T = ∏
i∈N T i be

the product of all the signal spaces, with a typical element being a tuple t = (t i )i∈N ; let T −i =∏
j∈N \{i } T j be the product of the signal spaces of all the others, viewed from i ’s perspective.

An agent’s signal fully determines all the information he has, including the information he has

about others’ signals. LetΩ=Θ×T be the set of all realizations.

For each i and signal t i , there is a belief πi (· | t i ) ∈∆(Θ×T −i )—that is, a probability distribu-

tion over Θ×T −i . This is the interim or conditional belief that agent i has when he gets signal

t i . We introduce some notation to refer to marginal distributions: πi (t j | t i ) denotes the prob-

ability this belief assigns to agent j ’s signal being t j .7 For states θ ∈ Θ, the notation πi (θ | t i )

has an analogous definition. We refer toπ = (πi (· | t i ))i∈N , t i∈T i as the information structure.8 In

situations where only interim beliefs matter, we will use the language of types. That is, we will

identify each signal with a corresponding (belief) type of the agent. If signal t i induces a certain

belief over Θ×T −i , we will say that type t i (of agent i ) has that belief. We will call T the type

space. On the other hand, when we wish to emphasize the ex ante stage and the literal process

of drawing signals, we will use the language of signals.

A random variable measurable with respect to i ’s information is a function xi : T i →R, i.e., an

element ofRT i
(this set being defined as the set of functions from signals in T i to real numbers).

Given a random variable z : Ω → R, let E i z ∈ RT i
give i ’s conditional expectation of z. It is

7That is, πi ({(θ̂, t̂−i ) : θ̂ ∈Θ, t̂ j = t j }).
8As always, uncertainty about how signals are generated can be built into this description of an information struc-
ture. Thus, following Harsanyi (1968), the information structure itself is taken to be common knowledge. For more
on this see Aumann (1976, p. 1237) and Brandenburger and Dekel (1993).
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defined by

(1) (E i z)(t i ) = ∑
(θ,t−i )∈Θ×T −i

πi (θ, t−i | t i ) z(θ, t i , t−i ).

The summation runs over all (θ, t−i ), and states are weighted using the probabilities assigned

by the interim belief πi (· | t i ). We will often abuse notation, as we have done here, by dropping

parentheses in referring to elements ofΩ in the arguments of beliefs and random variables.

2.1.2. Priors. The information structure was defined above in terms of agents’ interim beliefs,

i.e., their beliefs about external states and others’ signals conditional on their own signals. This

interim information is enough to define higher-order average expectations and to state our

main results. However, we are interested in the ex ante interpretation of our results: There is

a prior stage before agents observe their own signals, and thus where they face uncertainty as

to what signals they will observe.

We write (µi )i∈N for agents’ ex ante beliefs, with µi ∈ ∆(T i ). Combined with conditional be-

liefsπi (· | t i ) ∈∆(Θ×T −i ), there is a prior Pµ
i ∈∆(Ω) on the entire space of realizations, assigning

to any (θ, t ) ∈Ω a probability9

(2) Pµ
i

(θ, t ) =
∑

t i∈T i

µi (t i )πi (θ, t−i | t i ).

If one started from agent i ’s prior Pµ
i ∈ ∆(Ω), one would define conditional beliefs πi (· | t i ) ∈

∆(Θ×T −i ) by updating according to Bayes’ rule.

The probability measure Pµ
i

gives rise to an ex ante expectation operator,

Eµ
i
z = ∑

ω∈Ω
Pµ

i
(ω) z(ω) = ∑

t i∈T i

µi (t i ) E i z.

To emphasize when an ex ante perspective is being taken, we adopt the convention that ex ante

probabilities, expectations, etc. are in bold.

We will later be interested in what an agent’s ex ante beliefs would be if we had fixed his

conditional beliefs πi (· | t i ) ∈∆(Θ×T −i ) but endowed him with alternative prior beliefs. Priors

for i other than the true priors µi are denoted by λi ∈∆(T i ), and we use λi in place of µi in the

notations introduced above.

9Note that the probability under Pµ
i

of any subset ofΩ can be written as a sum of probabilities defined in equation
(2), and a similar statement holds for the interim probabilities πi (· | t i ).



EXPECTATIONS, NETWORKS, AND CONVENTIONS 9

2.2. The Network. For each pair of agents, i and j , there is a numberγi j ∈ [0,1], where
∑

j∈N γ
i j =

1, with the interpretation that agent i assigns “weight” γi j to agent j . A matrix Γ, whose rows

and columns are indexed by N and whose entries are γi j , records these weights and is called

the network. The fact that the weights of any agent add up to 1 corresponds to this matrix being

row-stochastic.

The network is to be contrasted with the information structure encoded in the interim beliefs

πi (· | t i ). One interpretation of the network weight γi j , which will be used when we discuss

coordination games, is that it measures how much agent i cares about the action of j . We

define Ni , the neighborhood of i, to be the set of j such that γi j > 0, and the elements of Ni are

i ’s neighbors. Note that j may be a neighbor of i without i being a neighbor of j .

We now define an important set of statistics arising from the network.

Definition 1. The eigenvector centrality weights of the agents are the entries of the unique row

vector e ∈∆(N ) satisfying eΓ= e—i.e., for each i ,

e i = ∑
j 6=i

e jγ j i .

Assuming that Γ is irreducible, the Perron–Frobenius Theorem states that the eigenvector cen-

trality weights are well-defined—that there is indeed a unique such vector e. Moreover, the

theorem says that all the eigenvector centrality weights are positive.

2.3. Higher-Order Average Expectations. We now define higher-order average expectations. A

basic random variable is a random variable measurable with respect to the external states, i.e.,

a function y :Θ→R, or an element of RΘ. Consider a random variable y ∈RΘ and define10

(3) xi (1; y) = E i y

for every i ∈ N . This is i ’s first-order expectation, given i ’s own signal, of y .

We can now define the key objects we will focus on: the iterated expectations, or higher-order

average expectations. For n ≥ 2, given (xi (n))i∈N , define

(4) xi (n +1; y,Γ) = ∑
j∈N

γi j E i x j (n; y,Γ).

10Here, abusing notation, we have identified y ∈ RΘ in the obvious way with a random variable z ∈ RΘ×T , namely,
with the random variable z for which z(θ, t ) = y(θ) for each (θ, t ) ∈ Θ×T . Equation (4) relies on a similar under-
standing.
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γ31 = 1 γ12 = 1

γ31 = 1

1

3 2

FIGURE 1. The network of Example 2.

This is i ’s subjective expectation of the average of the random variables corresponding to the

previous iteration of the process; the average is taken with respect to the network weights.

When we do not wish to emphasize the dependence on y and Γ, or when they are clear from

context, we omit these arguments.

Note that equation (4), despite the presence of an iteration, is defined in a static environ-

ment: Higher-order average expectations do not correspond to dynamic updating over time,

but rather to a hierarchy of beliefs when agents are simultaneously given different information.

For this reason, these will figure in the solution of a static game (see Section 3.1.1, and a contrast

with dynamics in Section 9).

2.4. Examples.

Example 1. If we have γi j = 1/|N | for all i , j , then every agent is weighting all others equally.

Such averages will turn out to be relevant for beauty contests with homogeneous weights: xi (n)

is a random agent’s expectation of a random agent’s expectation . . . of a random agent’s expec-

tation of y .

Example 2. Suppose the only nonzero entries of Γ are γi ,i+1 = 1, where indices are interpreted

modulo |N |, the number of agents. This corresponds to agents being arranged in a cycle, with

each paying attention to the one with the next index. Take, for example, |N | = 3 (see Figure 1).

Then

x1(3) = E 1E 2E 3 y.

We could continue this process, and then we would essentially look at (E 3E 1E 2)aE 3 y , where a

is some positive integer (possibly with E 2 or E 1E 2 appended to the front). Our study of higher-

order average expectations will allow us to study the limiting properties of this sequence.
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2.5. Joint Connectedness: A Maintained Technical Assumption. A key technical assumption—joint

connectedness of the information structure and network—will be convenient in formulating

statements about limits of higher-order average expectations. This assumption will be main-

tained unless we state otherwise.

Say that a signal t j (of an agent j ) is a neighbor of a signal t i (of agent i ) if agent j is a neighbor

of i (i.e., γi j > 0) and agent i , when he observes signal t i , considers signal t j possible (i.e.,

πi (t j | t i ) > 0). This defines a binary relation on the set of everybody’s signals, S = ⋃
i∈N T i .

We say the information structure and network are jointly connected if every nonempty, proper

subset S′ ( S contains some signal that is a neighbor of a signal not in S′. We will discuss the

content and significance of this assumption below in Section C.1.

2.6. Consensus Expectations: Definition and Existence. An object central to our general the-

oretical results and the applications will be a kind of limit of higher-order average expectations

as we consider many iterations.

Definition 2. For any information structure π, network Γ, and basic random variable y , the

consensus expectation c(y ;π,Γ) is defined to be any entry of the vector

(5) lim
β↑1

(
1−β)( ∞∑

n=1
βn−1xi (n; y)

)
,

for any i , if the limit exists (in the sense of pointwise convergence) and is equal to a constant

vector.

The vector in (5) is sometimes called an Abel average of the sequence
(
xi (n; y)

)∞
n=1 (see, e.g.,

Kozitsky, Shoikhet, and Zemánek, 2013). Proposition 1 in Section 4 below asserts that the con-

sensus expectation is well-defined under the maintained assumption of joint connectedness.

The consensus expectation is equal to any entry of the simple limit limn→∞ xi (n; y) if the

latter exists. It also coincides with the Cesàro limit, which is obtained by taking simple averages

over many values of n. We will discuss these issues further in Section 4.2.

3. WHY HIGHER-ORDER AVERAGE EXPECTATIONS AND CONSENSUS EXPECTATIONS MATTER

We now discuss two economic problems where higher-order average expectations arise. First,

we consider the network game with incomplete information discussed in the Introduction,

where equilibrium actions are weighted averages of higher-order average expectations. Second,

we describe a stylized asset market with fragmented markets, where asset prices reduce to the
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solution of the game, and are thus also weighted averages of higher-order average expectations.

In each of these two cases, we will (i) show how outcomes are characterized by higher-order av-

erage expectations; (ii) motivate the study of consensus expectations—a limit of higher-order

average expectations; and (iii) interpret our later results in the context of these applications.

3.1. Coordination. How will a group of agents coordinate their behavior when they have strong

incentives to take the same action as others but have different beliefs about what the best ac-

tion to take is? We consider a class of games with linear best responses where each agent wants

to set her action equal to a weighted average of (i) her expectation of a random variable and

(ii) the weighted average of actions taken by others. We show how the equilibrium is deter-

mined by higher-order average expectations and then focus on the limit as coordination con-

cerns dominate. There will be a particular single action taken in this limit by all agents after all

signals—“the convention.” We first describe the game.

3.1.1. The Game. We will consider an incomplete-information game where payoffs depend on

the states of the world, Θ. Beliefs and higher-order beliefs about Θ are described by the belief

functions introduced in Section 2.1.1.11 The strategic dependencies are encoded in a network

Γ. We also assume that γi i = 0 for all i .12

The game will also depend on y , a basic (i.e., θ-measurable) random variable with support in

the interval [0, M ].13

We will consider the “β-game" parameterized by β ∈ [0,1]. Each agent i chooses an action

ai ∈ [0, M ], and the best-response action of agent i after observing signal t i is given by

ai = (1−β)E i y +β∑
j 6=i

γi j E i a j ,

where other players’ actions are viewed as random variables that depend on their own signal

realizations. The best response can be derived from a quadratic loss function, where the ex post

utility of agent i under realized state θ ∈Θ, if action profile a = (
ai

)
i∈N ∈RN is played, is

ui
(
ai ,θ

)
=−(

1−β)(
ai − y(θ)

)2 −β∑
j 6=i

γi j
(
ai −a j

)2
.

11If we identify types with their (interim) beliefs, we can say that the beliefs are encoded in the type space.
12The assumption that the diagonal is 0 is the most natural one for this game. Analogous results hold without this
assumption and have game-theoretic interpretations. See Section C.2.
13We will focus on the case where agents care about the same basic random variable. But the analysis extends
readily to the case where agents care about different random variables, since their heterogeneous expectations of
random variables conditional on their signals can be interpreted as agent-specific random variables. See Section
C.5 for further discussion.
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A “meetings” interpretation of the weights γi j is that i has to commit to an action before

knowing which agent he will interact with, and i assesses that the probability of interacting

with j is γi j .

3.1.2. Solution of the Game for Any β < 1. To summarize the previous section, the environ-

ment in which the game is played is described by a tuple consisting of an external random

variable, a network, and a coordination weight: (y,Γ,β). A strategy of agent i in the incomplete-

information game, si : T i → R, specifies an action for each signal. Write si (t i ) for the action

chosen by agent i upon observing signal t i . Then agent i ’s best response to strategy profile

s = (
si

)
i∈N is given by

(6) BRi (s) = (1−β)E i y +β∑
j 6=i

γi j E i s j .

To establish (7), write R i (k) for the set of i ’s pure strategies surviving k rounds of iterated

deletion of strictly dominated strategies.14 The map BR(s) : [0, M ]S → [0, M ]S is a contraction

mapping (with Lipschitz constant β). Thus, the sets R i (k), which are produced by the repeated

application of this map to the set [0, M ], must converge to a single point satisfying s = BR(s),

which is an equilibrium of our game. A more detailed proof can be found in an Appendix,

Section A.1.

This analysis is the asymmetric version of the analysis in Morris and Shin (2002).

3.1.3. Conventions: Equilibrium for β= 1 and β ↑ 1.

Fact 1. If β < 1, the β-game in the environment given by (Γ,β, y) has a unique rationalizable

strategy profile, and it is given by15

(7) si
∗
(
y,Γ,β

)= (
1−β)( ∞∑

n=1
βn−1xi (n; y,Γ)

)
.

There is a sharp distinction between the game with β < 1 and the game with β = 1. In the

latter case, there is a continuum of equilibria, one for each a ∈ [0, M ]. In these equilibria, agents

14One reason to focus on rationalizability is that because we do not have a common prior, there is some incon-
sistency in using a solution concept (equilibrium) which builds in common prior beliefs about strategic behavior
(see Dekel, Fudenberg, and Levine, 2004).
15This game has a unique equilibrium (even with unbounded action spaces). This follows from the observation
that the game is best-response equivalent to a team decision problem, and uniqueness in the team decision prob-
lem is shown in Radner (1962). Ui (2009) gives a general statement of this result, expressed in the language of
Bayesian potential functions. Since this is a game with strategic complementarities, bounded action spaces imply
that the unique equilibrium is the unique action strategy profile surviving iterated deletion of strictly dominated
strategies (Milgrom and Roberts (1990)). Our proof of Fact 1 is established by explicitly calculating the iterated
elimination of dominated strategies.
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all choose the same action independent of their signals and thus of the state. To see why, recall

that every agent’s action must be equal to his (weighted) expectation of others’ actions. But

now consider the highest action ever played in some equilibrium (i.e., given some signal of

some agent). The agent i taking that highest action at some signal t i must be sure that that

highest action is being taken by every other agent j who observes a signal t j that i considers

possible when he observes signal t i . Now, however, the same logic applies to agent j observing

that signal t j . Continuing in this way, our joint connectedness assumption implies that the

highest action must be played by all agents for all signal realizations. This argument and result

appear in Shin and Williamson (1996), who label the resulting play—constant across agents and

signals—a convention, because each agent is always choosing the same action and is choosing

that action because others do.

To summarize: When β < 1, there is a unique equilibrium, with agents’ actions depending

on their higher-order expectations of y . When β = 1, there is a continuum of “conventional”

equilibria. What happens as β ↑ 1? The play is described by a limit of unique equilibria, which

turns out to be well-defined:

lim
β↑1

(
1−β)( ∞∑

n=1
βn−1xi (n)

)
.

By an application of the argument of the previous paragraph to the limiting payoffs, under joint

connectedness the limit must feature “conventional” play, not depending on one’s signal or

identity. The existence of the limit and a characterization of the action played in it will be for-

malized in the next section; the main result is Proposition 1. The limit can be seen as a selection

among the continuum of equilibria of the β = 1 game. It is telling us how conventional play is

determined when there is an arbitrarily small amount of dependence of the payoffs on some

basic random variable. The basic random variable can be interpreted as a “cue” that orients

players’ coordination.

Note that the statements made about the game before we started considering the β ↑ 1 limit

hold for any β ∈ [0,1]. From now on, we will focus on the β ↑ 1 limit, motivated by the interpre-

tation of it just given, as a refinement of the coordination game (as well as a parallel motivation

we are about to present, based on frequent trade of an asset).16

16Weinstein and Yildiz (2007a) have argued that, in a fixed linear best response game, very high-order beliefs have
only a small impact on rationalizable play; this constrasts with the better-known observation in Weinstein and
Yildiz (2007b) that very high-order beliefs can have an arbitrarily high impact in general games. We get sensitivity to
high level higher-order beliefs in linear best response games because are looking at β ↑ 1 limit and thus a sequence
of different games. Subtleties of such comparisons are also discussed in Morris (2002b).
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Our main results focus on β begin very close to, but not equal to, 1. Some of our results apply

to, or have implications for, the more general situation with β much smaller than 1, and we

discuss that case when appropriate.

3.1.4. Conventions with High Coordination Weights: Preview of Main Results. Our results in

Sections 6, 7, and 8 characterize that limit convention in some environments:

1. Under the common prior assumption, the convention is equal to the common ex ante

expectation of y . If agents share a common prior on signals, but not necessarily on states,

then the convention is equal to a weighted average of (different) ex ante expectations that

the agents hold of y , with each agent’s expectation weighted by his eigenvector centrality

in the interaction network Γ.

2. If all agents always have a small amount of second-order optimism (believing that their

average counterparty is a bit more optimistic than they are), the convention will equal

the highest interim expectation ever held by any agent.

3. If there is common interpretation of signals and one agent is sufficiently less informed

than all other agents, then the convention will equal the ex ante expectation of that least-

informed agent.

3.2. Asset Pricing. Keynes (1936, p. 156) famously likened investment to a “beauty contest”

whose outcome depends on higher-order beliefs:

. . . professional investment may be likened to those newspaper competitions

in which the competitors have to pick out the six prettiest faces from a hun-

dred photographs, the prize being awarded to the competitor whose choice most

nearly corresponds to the average preferences of the competitors as a whole; so

that each competitor has to pick, not those faces which he himself finds prettiest,

but those which he thinks likeliest to catch the fancy of the other competitors, all

of whom are looking at the problem from the same point of view. It is not a case

of choosing those which, to the best of one’s judgement, are really the prettiest,

nor even those which average opinion genuinely thinks the prettiest. We have

reached the third degree where we devote our intelligences to anticipating what

average opinion expects the average opinion to be. And there are some, I believe,

who practise the fourth, fifth and higher degrees.”
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Keynes is presumably not suggesting that the newspaper competition winner is completely in-

dependent of “prettiness” but rather that each competitor has an incentive to try to match the

average expectation of prettiness, and then some average expectation of such average expec-

tations, and so on. We will study an asset pricing model where asset prices will correspond to

solutions of the coordination game above and thus to the description of investment behavior

that Keynes gives.

3.2.1. Asset Market. Suppose that there are several populations or classes, indexed by the ele-

ments of N , and each of these consists of a continuum of infinitesimal traders. There is an asset

whose payoff will depend on the realization of a random variable y that is measurable with re-

spect toΘ and that takes values in [0, M ]. The beliefs and higher-order beliefs of traders in class

i about the state space Θ will be given by the belief function πi defined in the general model;

in particular, they share the same belief function. Each trader in class i will also observe the

same signal t i . Thus, they share the same interim beliefs. All traders are risk-neutral and there

is no discounting. A single unit of the asset will be traded among all classes of traders. There

is a network Γ, which will determine where traders resell their assets in a way we are about to

describe.

The trading game works as follows. Time is discrete. At each time t , one trader (say, in class

i ) enters owning the asset. With probability β, the state is realized and the owner of the asset

consumes the realization of the asset (with the interpretation that this corresponds to liquidity

needs). He then exits the game. If not (and so with probability 1−β), a class of traders j

is selected randomly (and exogenously). The asset owner believes that class j is selected with

probability γi j . The owner must then sell the asset in a market consisting of all traders of class

j who have not yet exited. There is Bertrand competition in market j , with each buyer (i.e.,

remaining trader in class j ) offering a price p and the seller (in class i ) deciding to whom to sell

the asset. We then enter period t +1 with the chosen buyer in class j holding the asset.

3.2.2. Equilibrium Asset Prices. We will consider symmetric Markov subgame perfect equilibria

of the asset trading game described in Section 3.2.1. By “symmetric Markov,” we mean that

each trader’s offer will depend only on the class to which he belongs and the class of the current

owner from whom he is buying.

The main result about this asset market is that there is a unique symmetric, Markov, subgame-

perfect equilibrium where, whenever the asset is sold in market j , the traders in market j with

signal t j offer a price equal to s(t j ), where s = s∗
(
β
)

as defined in (7), and owners sell to any
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trader in class j offering the highest price. In other words, traders always set prices equal to the

equilibrium of the linear best-response game of the previous section. To see why, note first that

a trader’s willingness to pay for the asset does not depend on whom he is buying the asset from.

Also, observe that in a symmetric equilibrium, traders must be setting prices equal to their will-

ingness to pay. Thus equilibrium asset prices must satisfy equation (7) i.e., the equilibrium

condition from the linear best-response game.

Our analysis does depend on the restriction to symmetric Markov strategies and equilibrium

rather than rationalizability as a solution concept.17 If we did not impose the Markov assump-

tion, there would be “bubble” equilibria, with the asset price growing exponentially. We also

used the assumption of equilibrium in our analysis, when we directly assumed that the prices

satisfy the equation (7), rather than (as we did in Section 3.1.2) arguing that this condition fol-

lows from some weaker solution concept. We used symmetry when we assumed that all mem-

bers of a given class price the asset the same way whenever they have the opportunity to buy.

3.2.3. Asset Pricing with High-Frequency Trading: Preview of Main Results. Taking the limitβ ↑ 1

now corresponds to requiring faster and faster trade while holding time preferences fixed. The

high-frequency limit price will be the same in every market for every signal. This price turns out

to be the consensus expectation. Our main results below have implications for the asset prices

which parallel the statements of 3.1.4 applied to the game.

3.2.4. Techniques and Related Models of Asset Pricing. In the special case where the network

is uniform, we can could have derived the same asset pricing formula in a standard dynamic

CARA-normal rational expectations model, with overlapping generations of agents, as studied

by Grundy and McNichols (1989) and many others. In each period, the market will shut down

with probability 1−β, and the current old agents will consume a terminal value of the asset.

If it does not shut down, the old will sell the asset to the young. In each period, the young

will inherit the distribution of signals about the terminal value of the old. The asset price will

equal the forward looking risk-adjusted iterated expectation of the value of the asset. If the vari-

ance of noise traders in the market increased without bound, there would be no learning in the

market and the expected risk-adjusted price would be equal to the iterated average expecta-

tion. Allen, Morris, and Shin (2006) show this for a finite truncation of this environment with

β = 1. The dynamic CARA-normal rational expectations model is studied under the common

17Recall footnote 14 on the comparison of rationalizability and equilibrium in this context.
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prior assumption. Banerjee and Kremer (2010) and Han and Kyle (2017) have studied the role

of heterogeneous prior beliefs in the static version of the model.

This asset market combines features that appear in many other asset pricing models, and we

now review some of the connections. Harrison and Kreps (1978) study an asset market where

an asset is re-traded in each period between different risk-neutral agents with heterogeneous

prior beliefs. They focus on the minimal price paths, in order to rule out bubbles based purely

on everyone’s expectation that prices will rise based on calendar time; we achieve a similar ef-

fect with our stationarity assumption. We allow asymmetric information but make exogenous

the agent to whom another agent must sell. Duffie and Manso (2007) study a random match-

ing model of trade, where traders are matched in pairs at each time period. They focus on

information percolation over time with a simple updating rule, while we focus on effects due

to higher-order beliefs; our matching technology is also more general. Malamud and Rostek

(2016) study markets with an exogenous network structure of access to multiple markets, but

endogenize agents’ choice of how much to trade in each market.

A key simplification in our model of trading is that each agent is infinitesimal, so any learning

about the asset value does not affect anyone’s expectations. Steiner and Stewart (2015) obtain

the same effect in a model of asymmetric information where agents do not condition on others’

information. They give a behavioral interpretation of this restriction via coarse perceptions.18

Our model and that of Steiner and Stewart (2015) both feature the same dependence of prices

only on public information among the agents; the limit where trading becomes frequent is crit-

ical to this.

4. THE INTERACTION STRUCTURE

4.1. Interaction Structure. One contribution of this paper is to show that the information struc-

ture and the network structure can be seen from a unified perspective—in studying higher-

order average expectations and, consequently, for our applications. In particular, we will define

an interaction structure—a square matrix indexed by the set S comprising the union of every-

one’s signals—that simultaneously captures beliefs and the network. This serves two purposes.

First, it highlights the symmetry between information and the network. Second, it facilitates

18One can also give their results an interpretation in terms of heterogeneous beliefs and asymmetric information.
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relating higher-order average expectations to a Markov matrix and its iteration, which is an im-

portant technique for us.19 Indeed, we will use a Markov process representation to deduce the

results that follow from results about Markov processes.

Let S =⋃
i∈N T i be the union of the (disjoint) sets of signals.20 Define x(n) : S →Rby [x(n)](t i ) =

[xi (n)](t i ). In words, this one function is a parsimonious way of keeping track of the higher-

order average expectations of all agents at stage n. A random variable y : Θ→ R that depends

on the external state is viewed as a vector indexed by Θ, i.e., y ∈RΘ. The first-order expectation

map y 7→ x(1) can then be viewed as a map RΘ→ RS . Using the standard bases for the domain

and codomain, we can represent this map via a matrix. Indeed, we can write x(1) = F y , where

F is a matrix with rows indexed by T i and columns indexed byΘ, and whose entries are

(8) F (t i ,θ) =πi (θ | t i ).

Even though the rows and columns of this matrix are not ordered, we can define matrix multi-

plication by stipulating that

(F y)(t i ) = ∑
θ∈Θ

F (t i ,θ)y(θ).

It is immediate to check that with this definition, (F y)(t i ) is indeed i ’s subjective expectation of

y when i receives signal t i .

Along the same lines, the formula of (4), xi (n+1; y) =∑
j∈N γ

i j E i x j (n; y), can be described in

matrix notation. Equation (4) defines a linear map RS → RS such that x(n) 7→ x(n +1). Taking

the standard basis for RS (as both the domain and codomain) we can write x(n + 1) = B x(n),

where B is a matrix with rows and columns indexed by S, and entries

(9) B(t i , t j ) = γi jπi (t j | t i ).

We call B the interaction structure. It captures the weights (arising from both the network and

agents’ beliefs) that matter for iterating agents’ expectations.

Combining the above, we find, for n ≥ 1, the short formula

(10) x(n) = B n−1F y,

19Samet (1998a) introduced and used a Markov process as a representation of an information structure. We con-
struct a related, but different, process: Ours simultaneously captures the network and agents’ beliefs and operates
on the union of signals instead of realizations. See Golub and Morris (2017) for the exact analogue of Samet’s
process.
20Recall that this object appeared in the definition of joint connectedness in Section 2.5. It should not be confused
with the product set T =∏

i∈N T i , whose elements are signal profiles.
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which describes the step-n higher-order average expectations. Thus, understanding their be-

havior boils down to studying powers of the linear operator B . One can check that:

Fact 2. The interaction structure B is row-stochastic.

To verify this, note that for each t i ∈ S we have∑
t j∈S

B(t i , t j ) = ∑
j∈N

∑
t j∈T j

γi jπi (t j | t i ) = ∑
j∈N

γi j
∑

t j∈T j

πi (t j | t i ) = 1.

The final equality for each t i follows because the distribution πi (· | t i ) is a probability distribu-

tion over T j and Γ is row-stochastic.

We will occasionally emphasize the dependence of the matrices we have defined on π =
(πi (· | t i ))t i∈T i ,i∈N , and the dependence of B on the network Γ, by writing Fπ and Bπ,Γ, and

similarly for derived objects.

The interaction structure B allows us to recover a matrix corresponding to one agent’s beliefs

about another. For any i and j , if we set γi j to 1 and all the other entries of Γ to 0, then B

restricts naturally to an operator B i j : RT j → RT i
sending T j -measurable random variables to

i ’s conditional beliefs about them. The entries of the matrix are B i j (t i , t j ) =πi (· | t i ).

Equation (10) entails a sharp separation between (i) agents’ first-order beliefs about Θ, on

the one hand, and (ii) the network and their beliefs about each other’s signals, on the other. The

former are encoded in F , and the latter in B .

4.2. The Consensus Expectation via the Interaction Structure. In Section 2.6, we defined the

consensus expectation. The formalism we have introduced will allow us to prove Proposition 1,

below, on its existence, and in the process also to relate it to properties of the matrix B .

Recalling Definition 2, the consensus expectation is the number in every entry of the follow-

ing vector:

(11) lim
β↑1

(
1−β) ∞∑

n=1
βn−1x(n; y)

The notation introduced in Section 4.1 above allows us to rewrite this as

(12) lim
β↑1

(
1−β)( ∞∑

n=0
βnB n

)
F y .

In this section, we use the formalism we have introduced to explain why this limit exists and

why it is a constant vector, as well as to characterize it. The following is our main result on this,

which shows that the consensus expectation (recall Definition 2 in Section 2.6) is well-defined.
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Proposition 1. The consensus expectation exists and

(13) c(y ;π,Γ) = ∑
t i∈S

p(t i )E i [y | t i ],

where p is the unique vector in p ∈ ∆(S) satisfying pB = p. All entries of p are positive, and it is

called the vector of agent-type weights.

Thus the consensus expectation of y is a weighted average of the expectations associated

with the various signals of each agent, encoded in F y ; the weight on the expectation of signal

t i of agent i , or simply type t i , is given by p(t i ).21 Note that, by definition, p is the stationary

distribution of B viewed as a Markov matrix.

A simple but important separation can be read off from the formula of Proposition 1. The

vector p, because it is uniquely defined by B (by the Perron–Frobenius Theorem), depends only

on the entries of B , which in turn depend only on the network weights γi j and on agents’ in-

terim marginals on one another’s signals, πi (t j | t i ). Thus, these features of the model jointly

determine the weights p(t i ). Beliefs about Θ enter only through E i [y | t i ]. This reflects the

separation noted at the end of Section 4.1. Thus, the interesting effects arising from higher-

order beliefs will be characterized by explaining how the information structure affects p; see,

for instance, Sections 7 and 8.

For our analysis, we have fixed a y throughout; however, note that if y were arbitrary, Propo-

sition 1 would hold with the same p for all y .

To see why Proposition 1 holds, first note that if

(14) lim
n→∞B nF y

exists, then this limit will equal (11). This is because (11) is the weighted mean of terms of the

form B nF y ; as β ↑ 1, most of the weight is assigned to the terms corresponding to large values

of n. To give intuition, here will assume that (14) exists, though our result is more general as

shown in the proof of Proposition 1 in Appendix A.2.22

21Recalling Section 2.1.1, we use the terminology of a type here for a signal to emphasize the interim perspective:
All that matters for higher-order expectations (and hence consensus expectations) are an agent’s interim beliefs
(including higher-order beliefs), and agents’ types fully capture these.
22Sometimes (11) will exist when (14) does not, because for large n, the vector B nF y cycles (approximately) among
several limit vectors. In this case, (11) takes an average of these vectors. We discuss these issues further in Appendix
D.1.
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Joint connectedness will imply that the matrix B is irreducible.23 Thus, by a standard fact

about such matrices, every row of B∞ is p, assuming this limit exists. Writing 1 for the function

(vector in RS) that takes a constant value of 1 on all of S, for any vector z ∈RS we have

(15) lim
β↑1

(
1−β) ∞∑

n=0
βnB n z = (pz)1,

where p is as defined in the statement of Proposition 1. In the analysis of (11), we set z = F y .

A variant of the standard Markov chain result shows that (15) holds more generally, even when

the limit of the x(n) in (10) does not exist.

Proposition 1 implies that higher-order average expectations converge in the sense of (11) to

a number which is independent of the agent and of his signal: the consensus expectation. Thus,

in the coordination game, agents’ actions in the β ↑ 1 limit, where coordination concerns dom-

inate, are equal to a nonrandom consensus.24 Of course, the consensus expectation depends,

in general, on all the interim beliefs (πi )i∈N and on the network Γ.

4.3. A Markov Process Interpretation of the Interaction Structure and the Consensus Expec-

tation. The interaction structure B is a row-stochastic or Markov matrix, and corresponds to

a Markov process that we construct, with S playing the role of the state space. We can imag-

ine a particle starting at some state t i ∈ S, and the probability of transitioning to t j ∈ S being

γi jπi (t j | t i ).

This process can be useful for understanding the behavior of higher-order average expecta-

tions. Fix a signal t i ∈ S and consider the Markov process started at this t i , with its (random)

location over time captured by the random variables W1 = t i ,W2,W3, . . .. If we define a func-

tion f : S → R such that f (t i ) = (F y)(t i ), then xi (n), the nth-order average expectation of y, is

the expected value of f (Wn). The vector of agent-type weights discussed in Section 4.2 is the

stationary distribution of the chain, and the consensus expectation of y is the expected value of

f (W ) where W is drawn according to the stationary distribution.

The process we have defined provides a physical analogy that is useful for intuition and also

suggests proof techniques—see Sections 7 and 8.

23The meaning of irreducibility in our context is discussed further in Section C.1.
24If there are public events, the consensus is nonrandom once public information is taken into account. See Sec-
tion C.1.2 for further discussion.
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5. THE CONSENSUS EXPECTATION AND THE NETWORK

One simple special case of Proposition 1 arises when |T i | = 1 for each i : There is complete in-

formation about each agent’s signal. In that case, B = Γ and so p = e, the eigenvector centrality

vector of the network Γ. (Recall Definition 1 in Section 2.2.) It follows from (13) that

c(y ;π,Γ) =∑
i

e i E i y,

where, abusing notation, E i y denotes the interim expectation of y induced by the one sig-

nal that agent i ever gets. This relates to network game results of Ballester, Calvó-Armengol,

and Zenou (2006), and especially to the limit with high coordination motives studied in Calvó-

Armengol, Martí, and Prat (2015), where play is determined by ideal points weighted by eigen-

vector centralities.

There is a much more general sense in which the eigenvector centralities of the agents figure

in the consensus expectation:

Proposition 2. There are strictly positive priors
(
λi

)
i∈N , with λi ∈∆(

T i
)
, such that, for all y,

(16) c(y ;π,Γ) =∑
i

e i Eλ
i
y,

where the e i are the eigenvector centralities of the agents.

The expression Eλ
i
y corresponds to an ex ante expectation of agent i , where the expectation

is taken according to a pseudoprior λi over i ’s signals that need not be related to agent i ’s actual

prior µi .

Recalling (13), we can see that this result asserts e iλi (t i ) = p(t i ), and indeed its content is

that agent i ’s agent-type weights sum to his eigenvector centrality, e i . This is formally stated in

the following lemma, which is what we use to prove Proposition 2, and which also relates to the

Markov interpretation of consensus expectations in Section 4.3.

Lemma 1. For each i , the agent-type weights associated with agent i ’s types add up to the eigen-

vector centrality of i :

∑
t i εT i

p(t i ) = e i .
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Proof. Let ι : S → N map any type t i to the agent i whose type it is. Check that V (n) := ι(W (n))

is a Markov process on N with transition matrix Γ.25 Now the stationary probabilities of the

process W are given by p, and the total stationary probability of the set T i ⊆ S under W is

therefore
∑

t i∈S p(t i ). By the coupling between V and W , this must be equal to the stationary

probability of i under V , which is e i . �

The proof of Proposition 2 is completed by making the definition λi (t i ) = p(t i )/e i , which is

legitimate because all the centralities e i are positive (see comments after Definition 1).

Generally, the pseduopriors λi will depend on both the information structure π and the net-

work Γ. We will be especially interested in when the λi depend only on beliefs. The next section

gives some conditions for this, and the issue is discussed more generally in Section C.3.

5.1. Interpreting the Interaction Structure as a Network. As we mentioned at the end of Sec-

tion 3.1.1, in the context of the interaction game, the weights γi j can be interpreted as i ’s sub-

jective probabilities of meeting or interacting with various others at the time he has to commit

to his action. In light of this interpretation, B(t i , t j ) = γi jπi (t j | t i ) can be seen as a subjective

probability assessed by agent i , when he has signal t i , that his partner in the game will have

signal t j : The first factor, γi j , is i ’s probability of meeting j , and πi (t j | t i ) is the probability,

conditional on that meeting, that j has signal t j . (An agent may be privately informed about

his weights or interaction probabilities. This kind of uncertainty relates to that studied by Gale-

otti, Goyal, Jackson, Vega-Redondo, and Yariv (2010); see our discussion in Section C.5.2.)

In this sense, the environment can be reduced, from the perspective of each player, purely to

incomplete information. Relatedly, we can reduce the analysis purely to networks. To this end,

we construct a new environment (whose objects are distinguished by hats) based on the prim-

itives of the original environment. In this environment the new set of agents, N̂ , is S, the set of

all signals. The network is Γ̂(t i , t j ) = γi jπi (t j | t i ); there is complete information about signals

(each agent has a singleton type t i , which is also his agent label); and the first-order beliefs of

the new agents replicate those of the corresponding types. Now, the higher-order average ex-

pectation vector of this new environment, x̂(n; y), is the samå
26 as x(n, y). All statements about

25The reasoning is as follows: The probability of the event {V (n +1) = j } conditional on {V (n) = i } is equal to γi j :
For any t i ∈ T i ⊆ S, we have ∑

t j ∈T j

B(t i , t j ) = ∑
t j ∈T j

γi jπi (t j | t i ) = γi j
∑

t j ∈T j

πi (t j | t i ) = γi j .

26Under the obvious bijection of indices.
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higher-order average expectations in the original game of incomplete information can be rein-

terpreted in this complete-information environment as network quantities. For instance, to get

the second-order average expectation of a type t i , we look at the corresponding agent in the

network, and take the average, across all his neighbors, of their neighbors’ first-order expecta-

tions.

To summarize: We have taken all uncertainty about others’ signals, and combined it with the

original network weights, to obtain the new network weights Γ̂. From this perspective, the game

of incomplete information of Section 3.1.1 is reduced to the network game studied by Ballester,

Calvó-Armengol, and Zenou (2006). This transformation is essentially the transformation of

the game of incomplete information into an agent normal form. (For a conceptually similar

reduction, see Morris (1997). The tensor products of de Martí and Zenou (2015) can also be

seen as instances of this in a specific setting of exchangeable information.)

6. UNIFYING AND GENERALIZING NETWORK AND ASYMMETRIC INFORMATION RESULTS

We now study conditions under which the agent-type weights take a particularly simple form.

Under these conditions, there are formulas for consensus expectations that decompose nicely

into different individuals’ prior expectations, weighted by those individuals’ centralities.

Recall that agents’ priors are given by the profile (µi )i∈N of distributions, with µi ∈∆(T i ).

Definition 3. There is a common prior over signals (CPS) if, for each signal profile t ∈ T and

each i , j ∈ N , we have

µi (t i )πi (t−i | t i ) =µ j (t j )π j (t− j | t j ).

CPS does not imply a common prior over the states Θ; agents may have inconsistent beliefs

about θ. A common prior on signals could arise if each agent first observed a signal drawn

according to the common prior but interpreted signals differently. However, CPS does imply

that there is a common prior over agents’ second-order and higher-order beliefs.

Now we can show that under CPS, the distributions λi in the representation c(y ;π,Γ) =∑
i e i Eλ

i
y of Proposition 2 are ex ante probability distributions on signals, i.e., λi =µi ; the pseu-

dopriors are the actual priors. Recall from Section 2.1.2 that bold expectation operators denote

ex ante expectations.
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Proposition 3. If there is a common prior over signals, then the consensus expectation is equal to

the eigenvector-centrality weighted average of the ex ante expectations of the agents:

c(y ;π,Γ) =∑
i

e i Eµ
i
y,

where µi is the prior over i ’s signals.

Proposition 3 shows that the consensus expectation is a weighted average of agents’ prior ex-

pectations, Eµ
i
y , weighted by agents’ network centralities, e i . We say in this case that there is a

separability between the network and the information structure: The network enters only into

the centralities, and the information structure determines Eµ
i
y . (See Section C.3 for further dis-

cussion of this property.) Under complete information about signals but heterogeneous priors

aboutΘ, this yields a reinterpretation of the DeGroot model, as we discuss further in Section 9.

In terms of the generality of the information structure, Proposition 3 goes beyond previous

related results that decomposed equilibrium actions into agent-specific quantities weighted

by agents’ centralities. Results in this category include Calvó-Armengol, Martí, and Prat (2015),

Bergemann, Heumann, and Morris (2015b) and Myatt and Wallace (2017) (which rely on Gauss-

ian signals), de Martí and Zenou (2015) (which relies on exchangeable signals), and Blume,

Brock, Durlauf, and Jayaraman (2015) (which does not characterize the contribution of higher-

order expectation terms). Formal details of each of these models differ in several ways from our

model, but in not imposing parametric or symmetry conditions, and in allowing heterogeneous

priors about states, our result on the decomposition at the β ↑ 1 limit is more general than the

others.

If each ex ante expectation is the same, in Proposition 3 it does not matter what the eigen-

vector centralities are, and we have:

Corollary 1. If there is a common prior over signals and Eµ
i
y = y for all i —that is, agents have a

common ex ante expectation of the external random variable—then the consensus expectation is

equal to the (common) ex ante expectation.

c(y ;π,Γ) = y .

Corollary 1 is closely related to Samet (1998a), which shows that if the common prior as-

sumption (over the whole space Ω) holds, then any sequence of expectations (A’s expectation

of B ’s expectation . . .) of the random variable is equal to the ex ante expectation of the random

variable y . Since limits of such iterated expectations determine the consensus expectation, it
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is also equal to y . Note, however, that the hypotheses of Corollary 1 are weaker than the full

common prior assumption, because they impose no restrictions on the joint distribution of θ

and signals.

Proposition 3 is also closely related to Samet (1998a) in the following sense: given a common

prior over signals, the highly iterated expectation of any random variable measurable with re-

spect to agent i ’s signal is equal to the common prior expectation of that random variable—that

is, the expectation of it with respect to the measure µi . Our results show that these prior expec-

tations are combined according to agents’ network centrality weights. Sections C.3 and C.4.2

elaborate further on these issues, as well as a converse to Samet’s result.

7. CONTAGION OF OPTIMISM

Consider a case in which agents are second-order optimistic: they are optimistic about the

expectations of those they interact with. That is, they believe that, on average, those others

have higher expectations than their own. In this circumstance, we will give conditions under

which consensus expectations are driven to extremes via a contagion of optimism. Sections

3.1.4 and 3.2.3 state the interpretation of this in the game and in the asset market, respectively.

7.1. Three Illustrative Cases. To motivate our results on this and to gain intuition, we first con-

sider some extreme cases. These illustrate how the Markov process representation of higher-

order expectations and its physical interpretation from Section 4.3 can yield striking results

about consensus expectations. Fix a random variable with minimum realization 0 and maxi-

mum realization 1. Say that agent i considers j over-optimistic if agent i ’s expectation of agent

j ’s expectation is always strictly greater than his own expectation (unless his own expectation

is 1, in which case he is sure that agent j ’s expectation is 1). Say that agent i thinks that agent

j is over-pessimistic if agent i ’s expectation of agent j ’s expectation is always strictly less than

his own expectation (unless his own expectation is 0, in which case he is sure that agent j ’s

expectation is 0).

Case I. First, suppose that each agent considers every other agent over-optimistic.27 In this case

the consensus expectation must be 1, independent of the network structure.

27This—and other examples we describe here—may involve violating the otherwise maintained joint connected-
ness assumption (irreducibility of B), but our main result in this section, Proposition 4, does not rely on the joint
connectedness of B .
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FIGURE 2. The example of Case II, with a counterclockwise network.

Case II. Second, suppose that for every agent i , there is an agent he considers over-optimistic

and another agent he considers over-pessimistic. Then there is a network structure under which

the consensus expectation is 1. We can simply look at the network structure in which each

agent puts all weight on agents he thinks are over-optimistic. Symmetrically, there is a network

structure in which the consensus expectation is 0. These results do not depend on agents’ ex

ante expectations—which might take any value between 0 and 1.

Figure 2 illustrates one example of this occurring. There are I agents, indexed by N = {1, . . . , I },

and their indices are interpreted modulo I . Each agent has many signal realizations, t i
k , with

indices k ∈ {1, . . . ,K }, with higher-k signals inducing more optimistic first-order beliefs about y .

Assume that the most extreme signals lead to expectations 1 and 0. Agent i , when he has signal

t i
k , is certain that agent i −1 has signal t i−1

k+1, the next more optimistic signal. He is also certain

that agent i +1 has signal t i+1
k−1, the next more pessimistic signal. If k is already extreme (that is,

k = 1 or K ) then we replace k +1 (respectively, k −1) by k in the above description.

Now the two networks considered are as follows. One has each agent assigning all weight to

the agent counterclockwise from him (i.e., to his left, as depicted in Figure 2). The other network

has each agent assigning all weight to the one clockwise from him (i.e., to his right). Then in the

counterclockwise network, the consensus expectation is 1, and in the clockwise network (not

shown), the consensus expectation is 0.
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Case III. For our final case, rather than assuming any agent is over-optimistic about any other,

assume instead that each agent’s expectation of the average expectation of others’ expecta-

tions is greater than his own expectation. As always, averages are taken with respect to net-

work weights, and “greater” is strict except in the case where an agent’s expectation is 1. This

constitutes a milder form of over-optimism. Note that it is not implied by the assumptions we

imposed in either of the above results: While the condition of Case III depends on the net-

work (as in Case II), it allows for the possibility that an agent is never over-optimistic about any

other particular agent (recalling that over-optimism is a condition uniform over one’s signals).

Rather, which agent someone is over-optimistic about may depend on his signal. But again, the

consensus expectation is 1.

Markov Process Intuitions. The results in each of the cases above can be established by using the

representation of higher-order average expectations via a Markov process, which we presented

in Section 4.3.

Let us begin by explaining Case I. If a particle makes transitions over the states S according to

the Markov process, then at each step it moves toward strictly more optimistic types of agents,

unless it is already at a most optimistic type. Similar arguments can be given for the other cases;

see the proof in Section 7.3 for the general argument.

The cases discussed so far involve the unsatisfactory assumption that some types are cer-

tain that they are the most optimistic. It will often be unreasonable for agents to hold such

extreme beliefs, or for the analyst to assume that they do. Thus, we wish to have a result that

is more quantitative and more robust. Also, the networks involved in Case II are extreme, not

allowing an agent to put even small amounts of weight on others whom he does not consider

over-optimistic (or over-pessimistic). Our general results will relax all these assumptions.

The basic idea behind that generalization is clear: it follows from the arguments above and

continuity. But the details are subtle. Indeed, what will be most interesting about the general

results we obtain is the nature of the conditions that are involved. How much second-order

pessimism can be permitted for the very optimistic agents without losing the contagion of op-

timism? By relating the situation of second-order optimism to a suitable Markov chain, we are

able to give a precise bound describing how strong second-order optimism (of “most” types)

must be relative to the pessimism about counterparties’ beliefs permitted for very optimistic

agents.
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7.2. A General Case. We now weaken our assumptions on the most optimistic types, and allow

for the possibility that when agents are maximally optimistic they assign only probability 1−ε,

for some ε > 0, to any given other being maximally optimistic. But now we assume that when

an agent is not maximally optimistic, there is a uniform lower bound, δ, on the degree of over-

optimism. With this weakening of our earlier assumptions, the above results remain true with

an error of order ε
δ

. Among other things, this allows us to use a network with γi j > 0 for all pairs

i , j in Case II above.

We state and prove a formal version of our claims in this general case, and then discuss how

the claims made about our illustrative cases follow. Critically, in addition to demonstrating the

continuity in beliefs we needed, this result gives quantitative bounds on how agents’ interim

over-optimism translates into the consensus outcome.

Proposition 4. Consider an arbitrary information structure π and an arbitrary network Γ (i.e.,

drop for this result the maintained assumption that B is irreducible). Suppose there exist f and

δ> 0, ε≥ 0 such that beliefs about neighbors are mildly optimistic in the following sense:

1. Every type whose first-order expectation of y is strictly below f expects the first-order ex-

pectation, averaged across his counterparties, to be at least δ above his own. That is, for

every t i such that (E i y)(t i ) < f , we have
∑

j γ
i j (E i E j y)(t i ) ≥ (E i y)(t i )+δ.

2. Every type whose first-order expectation of y is at least f expects the first-order expectation,

averaged across his counterparties, to be almost as large as his own, with a shortfall of at

most ε. That is, for every t i such that (E i y)(t i ) ≥ f , we have
∑

j γ
i j (E i E j y)(t i ) ≥ (E i y)(t i )−

ε.

Then the consensus expectation of y is at least f
1+ε/δ .

The proof of this result, via a suitable Markov chain inequality, is provided in Section 7.3

below.

An important feature of this result is that, fixing the constants δ and ε, its hypotheses do not

depend on the finite type space used to represent the environment. This allows the result to

extend readily to infinite signal spaces, by considering sequences of finite ones approximating

the infinite one.

We now return to Cases I–III, with expectations taking values in [0,1], and describe how to

obtain them formally as applications of this result. For Case I, where each agent considers every

other one over-optimistic, set f = 1. Because of finiteness of the type space, there is a δ so that

hypothesis (1) of Proposition 4 holds for all types whose first-order expectations of y are strictly
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below f . For this case, we can take ε = 0. Applying Proposition 4, we get that the consensus

expectation is 1. For the case of over-pessimism, we simply apply a change of variables from y

to 1− y and use the same result to find that the consensus expectation is 0.

For Case II, we constructed two networks. In one network, each agent places all weight on

some agent he considers over-optimistic. For this network, the hypotheses of Proposition 4 hold

for the same reasons discussed in the previous paragraph, and we conclude that the consensus

expectation is 1. In the other network, each agent places all weight on some agent he considers

over-pessimistic, and by symmetry the consensus expectation is 0.

Case III is a direct application of the proposition, with ε= 0.

7.3. Markov Chain for Second-Order Optimism. We now analyze the interaction structures

corresponding to second-order optimism and discuss how to establish our results using Markov

chain arguments.

Consider an arbitrary finite state space S with a Markov kernel, with B(s, s′) being the proba-

bility of transitioning from state s to s′, and fix a function f : S →R.

The purpose of this subsection is to present the following lemma: Assume that for all s such

that f (s) is below a certain value f , taking one step from s (according to the Markov kernel) to

reach a random state W2 yields a value f (W2) that is higher by at least δ, in expectation, than

f (s). Assume also that if, in contrast, s is chosen such that f (s) exceeds f , then the expected

value of f (W2) can decrease relative to f (s) by only a smaller amount, ε. Under these assump-

tions, we will show that if s is drawn from a stationary distribution of B , the expectation of f (s)

is not much below f . The lemma we now state makes this quantitative and precise.

We denote by W1,W2, . . . the stochastic process induced by the Markov chain. The symbol

PW1∼ν denotes the probability measure corresponding to this process when W1 is drawn ac-

cording to a distribution ν.28 The notation for expectations is analogous.

Lemma 2. Let B be a Markov chain as described above. Suppose there are real numbers δ,ε > 0

and f such that the following hold:

1. For every s such that f (s) < f , we have EW1=s[ f (W2)] ≥ f (s)+δ.

2. For every s such that f (s) ≥ f , we have EW1=s[ f (W2)] ≥ f (s)−ε.

28When ν is a point measure on s, we write W1 = s in the subscript as a shorthand.
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Fix an arbitrary starting state, and let p denote the ergodic distribution over states that is reached

starting from that state.29 Then p(s : f (s) ≥ f ) ≥ 1
1+ε/δ .

The proof, which appears in Section A, uses the fact that f (W2) and f (W1) have the same ex-

pectations under the ergodic distribution, and uses the hypotheses of the lemma in this equa-

tion to derive the desired inequality. With this result, we can establish all the conclusions about

the consensus expectation, as discussed after Proposition 4 above.

7.4. Discussion.

7.4.1. Related Results. The result also relates to Harrison and Kreps (1978), who consider the

case where risk-neutral agents have heterogeneous beliefs (but symmetric information) and

trade and re-trade an asset through time. The asset is always sold to the (endogenously) most

optimistic agent at the current history. The price is driven above the highest expectation of the

asset’s value held by any agent. Harrison and Kreps (1978) motivate their exercise as a model

of “speculation,” and our result has a similar interpretation. In both cases, which agent is most

optimistic can vary: in their case, the identity of the most optimistic is determined by the public

history of the performance of the asset, whereas for us it is because of asymmetric information.

A closely related paper is that of Izmalkov and Yildiz (2010). They make a primitive assump-

tion similar to our assumption about optimism: Beliefs are all distorted in the same direction.

They consider two-agent, two-action coordination games, and show that agents can be induced

to take any rationalizable action—including risk-dominated ones—if the degree of optimism is

high enough.30

Finally, Han and Kyle (2017) report a “contagious optimism” result in a CARA-normal asset

pricing model. They study a static CARA-normal pricing game in which an agent, in equilib-

rium, conditions on the information revealed by a counterparty’s trading. While our game is

designed to pick up higher-order average expectations, their result depends on different prop-

erties of higher-order expectations (certain kinds of hierarchies in which agents wrongly as-

sume common knowledge of the mean of an asset value). However, they similarly show that a

small amount of optimism can give rise to arbitrarily high asset prices. Another difference is

that their result is written for the two-agent case; any extension to many agents would require

that the network be uniform, because trade takes place in centralized markets. Because they

29Note that the chain need not have a unique ergodic distribution, but there is an ergodic distribution reached
from any initial state.
30This observation illustrates a more general point of Weinstein and Yildiz (2007b)that any rationalizable action
can be made uniquely rationalizable if a type is perturbed in the product topology.
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consider a world with normally distributed uncertainty, there is no upper bound on first-order

expectations, and this allows contagious optimism to drive prices up without bound.

7.4.2. Tightness. We now construct a chain to show the bound of Lemma 2 is tight. This shows

the sufficient condition for contagion of optimism is tight: in at least some cases, it gives exactly

the amount of second-order optimism needed to guarantee high consensus expectations.

Consider a chain with states t i
k for i ∈ {1,2} and k ∈ {0, . . . ,m} and . Let f (t i

k ) = k and define,

whenever j 6= i :

B(t i
k , t j

`
) =



δ if `= k +1 ≤ m

1−δ if `= k < m

ε if k = m,`= m −1

1−ε if k = m, s′ = m

0 otherwise.

All the other entries are 0.

If we view k as the “height” of the chain, it ascends a step with probability δ when k is in

the interval {0,1, . . . ,m −1}, and takes a step downward otherwise; if it is at height k = m, the

maximum, it moves with probability ε to height k = m − 1. Otherwise, it stands still. While

we have described B as a Markov process, it can be realized as an interaction structure. Our

notation suggests how to realize this chain as an interaction structure with two agents, each

having m +1 types.

It is easy to compute that this chain achieves the lower bound of Lemma 2, and this example

can easily be adjusted to be irreducible. (See Section A.4 in the Appendix for details.) Thus, it

really is necessary that ε (pessimism) be bounded as in the formula of the lemma relative to the

guaranteed “optimistic drift” δ.

8. TYRANNY OF THE LEAST-INFORMED

In Proposition 3, we gave a sufficient condition (common prior on signals) under which the

consensus expectation is the centrality-weighted average of agents’ prior expectations. In this

section, we will find conditions on the information structure under which the consensus expec-

tation is (almost) equal to one agent’s expectation. That is, rather than influence being shared

according to network centrality, it will all be allocated to one agent, in a way that will depend
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on the information structure. In particular, it will turn out to be the least informed agent who

accumulates influence.

To motivate these results, we can again consider some extreme cases. First, suppose that

one agent is completely ignorant and has no private information, while other agents know the

state perfectly. The agents other than the ignorant agent will have degenerate interim beliefs,

so nothing about their priors can matter for iterated expectations or the consensus. Thus, if

anyone’s ex ante beliefs play a role in determining consensus expectations, it must be those

of the least informed agent. It turns out that the consensus expectation is simply equal to the

ignorant agent’s prior expectation of y . A simple way to see this is to note that, because the ex

ante beliefs of the informed agents don’t matter, we may as well take them to be equal to the

prior of the ignorant agent; then the conclusion follows by Proposition 1 on the common prior.

By continuity, our result continues to hold if the ignorant agent has almost no information and

the other agents have almost perfect information.

Surprisingly, this conclusion remains true when the ignorant agent is only relatively ignorant,

and when his beliefs are not public as they were in the toy example. The ignorant agent may

possess very precise private information about the state. But if others have even more precise

(i.e., less noisy) private information, then their priors will still not matter, and only the relatively

ignorant agent’s priors will determine the consensus expectation.

We now present the statement and proof of the result, and then discuss it and compare it with

related results in Section 8.4.

8.1. Common Interpretation of Signals Framework. Fix a complete Γ, i.e., one such that γi j >
0 whenever i 6= j . We specialize to a framework that we call common interpretation of signals,

following the terminology of Kandel and Pearson (1995) and Acemoglu, Chernozhukov, and

Yildiz (2016a). There is a state θ ∈Θ that is drawn by nature. Each agent receives conditionally

independent signals about it according to a full-support distribution ηi (· | θ) ∈ ∆(T i ); these

distributions are common knowledge. However, the agents have different full-support priors,

ρi ∈∆(Θ), over the state space. Combined with the conditional distributions encoded in the ηi ,

these uniquely define a prior distribution overΘ×T . We denote by Eρ
i

the corresponding prior

expectation operator. These primitives also induce in each agent, via Bayes’ rule, an interim

belief function; for each t i ∈ T i , there is a distribution πi (· | t i ) over both the state and over

others’ signals.
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Definition 4. We say that ηi is at most ε-noisy if: for every θ ∈ Θ, there is exactly one signal t i
θ

satisfying ηi (t i
θ
| θ) ≥ 1−ε, and this t i

θ
also satisfies ηi (t i

θ
| θ′) ≤ ε for all θ′ 6= θ.

This condition requires that for any θ, there is exactly one signal t i that i receives with very

high probability conditional on θ being realized; moreover, no two different θ,θ′ can be associ-

ated with the same such signal.

Definition 5. We say that ηi is uniformly at least δ-noisy if, for every θ ∈ Θ and t i ∈ T i , the

inequality ηi (t i | θ) ≥ δ holds.

This condition says that each signal has at least δ probability of being observed under each

state, limiting the amount of information that can be inferred from any signal.

8.2. Sufficient Conditions for Tyranny of the Least-Informed. Before stating the main propo-

sition, we introduce some quantities that will figure in it. Let γmin = mini 6= j γi j be the smallest

off-diagonal entry of Γ, which is positive by assumption. Let ρi
min be the minimal probability

assigned to any θ ∈Θ by the prior ρi ∈∆(Θ) of agent i . Let ρmin = mini ρ
i
min be the minimum of

all of these, across agents. Finally, let ymax = maxθ∈Θ |y(θ)|.

Proposition 5. Suppose that for some δ ∈ (0,1) and ε ∈ (0,1/2),

1. η1 is uniformly at least δ-noisy

2. ηi for all i 6= 1 is at most ε-noisy.

Then

(17) |c(y ;Bπ,Fπ)−Eρ
1
[y]| ≤ 4|Θ||S|2

(γminρmin)2
· y · ε

δ
.

This bound is designed for cases where ε is much smaller than δ. It says that if agent 1’s

information is at least δ-noisy, while all others’ information is quite precise (at most ε-noisy),

then the difference between the consensus expectation of y and agent 1’s expectation of y is

small: The upper bound is linear in ε/δ. The constants depend on the sizes of the state space

and the signal space S, and on the minimum network and belief weights in the denominator.

We could formulate a version of Proposition 5 without requiring the rather strong assumption

of full support of the conditional distributions ηi (· | θ) that is implied by Proposition 5. This is

discussed below in Section 8.3.1, once we have a bit more notation.
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8.3. Key Steps in the Proof of Proposition 5. We will analyze the consensus expectation in the

situation of Proposition 5 by analyzing the interaction structure B and its stationary distribu-

tion, p. Indeed, the analysis here is intended as our main illustration of the value of reducing

informational questions to questions about the Markov chain corresponding to the interaction

structure.

The key insight in proving Proposition 5 is to construct an artificial signal structure η̂ in which

all agents except agent 1 are certain of what θ is. This is done by rounding the signal probabil-

ities ηi (t i | θ) for i 6= 1 to 0 or 1. Along with the priors (ρi )i∈N over θ that are part of the setup,

this induces an artificial information structure π̂ = (π̂i )i . We let B̂ = Bπ̂,Γ.

The proof then proceeds in three steps. First, we prove that p, the stationary distribution of

B , is well-approximated by that of B̂ , which is denoted by p̂. Second, we claim that π̂ can be

viewed as having a common prior (corresponding to agent 1’s prior beliefs). This is because only

agent 1 is uncertain under π̂ about θ, and so the ex ante beliefs of the others about θ can make

no difference; indeed, it can be shown that the other agents’ interim beliefs are compatible

with agent i ’s prior. Thus the consensus expectation of y under B̂ is equal to Eρ
1
[y]. Finally,

we combine these facts to derive the proposition. We carry out these steps below, deferring

technical details to Appendix A.5.

The key technique in this argument deserves some extra comment. In the first step, where

we approximate p by p̂, we apply a result of Cho and Meyer (2000) on perturbations of Markov

chains. This result, loosely speaking, says the following: As long as the changes in weights in

going from B̂ to B are small relative to the reciprocal of the maximum mean first passage time

(MMFPT31) of B̂ , then p is close to p̂. In our application, the change in the interaction struc-

ture (corresponding to interim beliefs about θ of the relatively informed agents i 6= 1 changing

from “slightly uncertain” to “fully certain”) is of order ε, and that is why ε appears in the nu-

merator of the bound in Proposition 5. In the situation of Proposition 5, the MMFPT is of order

1/δ, the inverse of the lower bound on the uninformed agent’s noise. (That is why δ appears in

the denominator in the bound of Proposition 5.) But the technique we have outlined applies

more broadly, in any setting where the size of the perturbation to the interaction structure can

31The MMFPT in the interaction structure B̂ is defined to be the maximum expected time it takes to get from one
state to another in the physical process of Section 4.3. It is a measure of the connectedness of B̂ as a network; in
belief terms, it is a measure of the maximum number of iterations required for there to be contagion of higher-
order beliefs between the two “farthest” states in S.
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be bounded relative to the MMFPT. This could be used to weaken the assumptions of Proposi-

tion 5, for example to cover cases where noise does not have full support or the network is not

complete—see Section 8.3.1 below.

We carry out the details of the proof in Section A.5.

8.3.1. The Case Where No Player Is at Least δ-Uncertain . Suppose we did not assume that player

1 is at least δ-uncertain, which entails the strong assumption that there is a lower bound on

the conditional probability of seeing any one of his signals, given any possible state. Then we

would define the uncertainty, δ, of player 1’s information as the minimum of ηi (t i | θ) over all

its nonzero values (as t i and θ range over all possibilities). Along the same lines, we might wish

to relax the assumption that Γ is complete, with every player putting weight on every other. We

now discuss how the general principles of our argument would go through and the nature of

the subtleties that would arise.

As mentioned in the sketch of the proof above, what really matters in the proof is MMFPTs

in B̂ . Assuming B̂ is irreducible, we can still bound these in terms of δ even with the weaker

assumptions just discussed. But—as an examination of our bounds on the MMFPT shows—the

bounds will involve path lengths in B̂ : the number of steps in B̂ that must be taken to link

any two states. Thus, rather than a bound on the MMFPT in B̂ of order δ−1, which is what

we use in our result, we might have a bound of order δ−5. The exponent will depend both

on the information structure and on Γ. In the end, this will translate into a difference on the

right-hand side of (17) in Proposition 5. Indeed, we conjecture that the ratio ε/δ would be

replaced by Cε/δκ for a numberκ that is increasing in the maximum path length in B̂ . Moreover,

this adjustment would be necessary: In the more general setting we are discussing here, it is

not possible to write a bound analogous to (17) that depends on ε and our generalized δ only

through ε/δ.

While a full exploration of these elaborations is beyond the scope of the present work, our

point is to say: (i) the MMFPT technique discussed here does cover less restrictive assumptions

on information than we made for our illustrative result; and (ii) the topology of connections

among types in the interaction structure B̂ will matter in interesting ways for more general re-

sults.

8.4. Interpretation and Discussion.
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Why Focus on the Least-Informed? The results of this section may seem paradoxical. In models

of coordination on a network motivated by organizational questions, a common result is that

agents have an incentive to focus on more informed agents, in the sense of paying more atten-

tion to them or putting more weight on their signals; see, for example, Calvó-Armengol, Martí,

and Prat (2015), Herskovic and Ramos (2015). Part of the reason for the difference in our result

is that asymmetric information gets washed out in our limit of higher-order expectations (recall

Proposition 1), rather than being learned or aggregated, and this makes the forces determining

influence different. In Myatt and Wallace (2017), the agents are choosing which signal sources

to listen to (of a commonly available set) in a coordination game; there publicness and clarity

also play a role, though in different ways.

The Least-Informed Become Effectively More Central. It is also interesting to compare the result

on the tyranny of the least-informed with the result of Proposition 3 in Section 6, where we

showed that, under a consistency condition on beliefs, it is an agent’s centrality that determines

his influence. However, as is seen in our simple benchmark example above, for sufficiently

well-informed agents, their priors cannot possibly matter, no matter how central they are in the

network. An implication of our result is that asymmetries of the kind present in that example

cannot be reconciled with common priors over beliefs/signals.

We can get some further intuition for our result by expressing it in the language of our ap-

plications. Suppose that agents are making investment decisions, but with strategic comple-

mentarities in those decisions. We might say that there is confidence in the economy if positive

expectations about others’ investment are driving agents to invest more. In other words, confi-

dence is founded on common perceptions of what is going on in the economy. Ignorant agents’

(prior) views will have a disproportionate role in determining confidence. Similarly, in asset

markets with frequent re-trading and random matching, assets will sometimes pass through

the hands of ignorant agents. Their views will form a focal point around which market expecta-

tions will form.

A Subtlety in the Meaning of “Informed.” To interpret and apply our results, it is important to

remember that “prior” really means “belief conditional on public information only.” (See Sec-

tion C.1.2, where we note that all our analysis is conditional on public information.) In view of

this, we call an agent “uninformed” if the beliefs of that agent are not sensitive to his private

information once we have conditioned on public information. This might not correspond to

other natural senses of “uninformed,” so the distinction is worth keeping in mind.
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Least-Informed versus Public. We note in closing that this result is very different from the famil-

iar case of coordinating on something public or “commonly understood” in a beauty contest.

The less informed agent’s information is not public or approximately public. Indeed, in our

example, individuals’ signals are conditionally independent given the state. A highly informed

player’s signal provides very good information about the external state, but no further informa-

tion about the signals of the others who are badly informed.

Moreover, in contrast to the standard case of coordinating on a public signal, our result does

not hinge on a qualitative matter of determining which information is public (something that,

actually, is held constant as we vary the noise rates). It is rather a quantitative matter of how

low the noise rate of the relatively informed players must be in order for it to “wash out” of the

(public) consensus expectation. As discussed in Section 8.3.1, this can depend in a subtle way

on priors and the information structure. In particular, it can happen that the noise of the more

informed players is vanishing compared to the noise of the less informed, and nevertheless the

structure of the smaller noise is decisive for the consensus expectation. How small the noise

must be in order not to matter depends, in general on the network, priors, and information

structure, through quantities that we have described.

9. CONCLUDING DISCUSSION

In Appendix C, we give some detailed discussions of important assumptions, as well as some

extensions. Here we briefly summarize some of the key points.

Joint Connectedness (Section C.1). The assumption of joint connectedness was a key main-

tained assumption in our results. In this section, we relate it to properties of the beliefs and

the network—in particular, the connectedness of the network and the absence of public events

(joint connectedness implies both properties but is not equivalent to their conjunction). We

also discuss what can be done without joint connectedness. This comes down to the standard

analysis of a Markov matrix where not all states are recurrent.

Heterogeneous Self-Weights (Section C.2). In the linear best-response game, we assumed that

all agents put a common weight β on others’ actions. If this assumption does not hold, we may

reduce to the case where it does hold by changing the network. In particular, we show how

the linear best-response game with weights
(
β1, . . . ,β|N |) and network Γ has the same solution

as the game with a common coordination weight β̂ (that depends on
(
β1, . . . ,β|N |)) and an al-

ternative network Γ̂. The diagonal entries of the matrix Γ̂ capture the variation in self-weights.
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This transformation permits the application of our main results to the case of heterogeneous

self-weights. We give interpretations in terms of both the financial market and the game.

Separability and Connection to Samet (1998a) (Section C.3). In Section 5, we showed that—fixing

the information structure and network—there are strictly positive pseudopriors
(
λi
π,Γ

)
i∈N

such

that c(y ;π,Γ) =∑
i e i Eλ

i
π,Γ y. At the same time, we made the observation—which here is explicit

in the subscripts ofλi —that those pseudopriors may depend on both the information structure

π and the network Γ. We say an information structure π satisfies separability if the pseudopri-

ors depend only on the information structure. Section 6 shows that a common prior on signals

is sufficient for separability. In contrast, the assumptions made for the results on contagion of

optimism and tyranny of the least-informed, are not, in general, consistent with separability.

In Golub and Morris (2017) we give a necessary and sufficient condition for separability, which

describes the boundary between these cases exactly; Section C.3 sketches the essential ideas.

Our results in both this paper and Golub and Morris (2017) relate closely to and build on

those of Samet (1998a). The similarity is that, as in his work, limiting properties of higher-order

expectations are shown to depend only on a summary statistic of the information structure (in

our case, the pseudoprior). Section C.3 discusses the difference in the results and techniques in

detail.

Ex Ante and Interim Interpretation (Section C.4). We take an ex ante perspective in our anal-

ysis: At an initial date, agents have prior beliefs—and no information—about a state of the

world. They then receive information and update their beliefs. We can interpret the results as

answering the question: How does the consensus expectation change after agents observe their

signals? Our results give conditions under which: (i) the beliefs do not change (under common

priors over signals); (ii) they change to the most optimistic conceivable beliefs (contagion of

optimism); (iii) they change to the beliefs of the least-informed (tyranny of the least-informed).

Though we take an ex ante view throughout, consensus expectations can be seen from a

purely interim perspective. Indeed, consensus expectations depend only on agents’ interim

beliefs (across all possible types)—i.e. on the belief functions π. We discuss how certain main

results would look if we were to stick to a purely interim interpretation. As in our discussion

of separability above, there is a close connection to the characterization of the common prior

assumption in purely interim terms given by Samet (1998a). We highlight both how our results
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can be related to his, and also where an ex ante perspective makes them distinct. While conta-

gion of optimism has purely interim interpretation, tyranny of the least-informed depends on

assumptions about priors and has no simple interim interpretation.

Agent-Specific Random Variables and Incomplete Information about the Network (Section C.5).

Our focus throughout the paper has been on agents’ higher-order expectations of a random

variable of common concern, y . But an equally interesting application considers a case where

agents have different preferred actions (which correspond to the different random variables

y i ) in the absence of coordination motives, and where one’s network neighbors also influence

one’s choice, with linear best responses assumed (Ballester, Calvó-Armengol, and Zenou, 2006;

Calvó-Armengol, Martí, and Prat, 2015; Bergemann, Heumann, and Morris, 2015b). This case

can be embedded readily into our formalism. Indeed, we can define our xi (n) almost iden-

tically to capture this case. This embodies an equivalence between different priors over the

external states and caring about different random variables—an equivalence which does not

extend to higher-order beliefs, as we explain. In discussing this connection, we highlight how

our results relate to Calvó-Armengol, Martí, and Prat (2015) and Bergemann, Heumann, and

Morris (2015a).

A related point is that there need not be common perceptions or complete information of

the network weights γi j . By allowing these to depend on individuals’ types, we can embed

incomplete information about the network into our framework.

Static Higher-Order Expectations, Dynamic Conditional Expectations, Behavioral Learning,

and the DeGroot Model. We have studied higher-order average expectations of a random vari-

able in this paper. These higher-order expectations may be interpreted as being computed at a

moment of time. We can call them “static higher-order expectations,” as they are properties of

the agents’ static beliefs and higher-order beliefs at that moment. All the iteration of computing

higher-order expectations occurs “in the agents’ minds” rather than in an interactive dynamic

process unfolding over time.

These static higher-order expectations can be contrasted with agents’ “dynamic conditional

expectations”: the beliefs formed via a dynamic process of updating expectations after observ-

ing other agents’ conditional expectations up to that point. In this section, we will use this

dichotomy to discuss connections with some important related literatures.

DeGroot (1974) suggested a behavioral model where, at each stage in a process, each of many

agents takes a weighted average of the beliefs or estimates of his neighbors. He interpreted this
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as a heuristic procedure according to which statisticians might average their own estimates or

beliefs with the estimates or beliefs of others whose opinions they respect, toward the goal of

reaching a reasonable consensus.32 In the DeGroot model, the vector of agents’ estimates at

stage n is x(n) = Γn x(0), where (as in our model) Γ is an exogenous, fixed stochastic matrix cor-

responding to the weights agents assign to various others. Under the classical interpretation,

the DeGroot model is a dynamic process, where agents start out with different estimates (per-

haps based on their private information) and then updating occurs according to a behavioral

rule. Economic foundations and implications of this process have been developed by DeMarzo,

Vayanos, and Zwiebel (2003), Golub and Jackson (2010), Molavi, Tahbaz-Salehi, and Jadbabaie

(2017), and others.

Mathematically, the complete-information special case of our static higher-order expecta-

tions model is isomorphic to the classic DeGroot model, in the sense that equation (10) for

updating the vector of static higher-order expectations,33 x(n) = Γn−1F y , looks very much like

a DeGroot rule of the form x(n) = Γn x(0). But it has a different interpretation. Our agents start

out with different priors, captured by F y . In the dynamic interpretation, x(2) corresponds to

taking the weighted average of neighbors’ first-period beliefs. In the static interpretation, x(2)

contains agents’ expectation of the average first-order expectations of others. In this static in-

terpretation, agents’ higher-order expectations are fully Bayesian but based on heterogeneous

priors and no asymmetric information, with weights (i.e., the network Γ) which are taken as

exogenous.

Indeed, the general incomplete-information version of our model can also be related to the

DeGroot model. If we draw a parallel where the types in our model correspond to DeGroot

agents, and x(1) is taken to be the profile of initial estimates, then the “DeGroot estimate” of a

given type at stage n is the nth-order iterated average expectation of that type in our model. In

this way, our model can be viewed as an alternative interpretation of DeGroot’s formulas.

Despite the formal similarity, substantively, the two interpretations differ very significantly in

how they answer a key question in the DeGroot model literature: How does the network Γ affect

the ultimate consensus? Recall that in the DeGroot model, the consensus is a weighted average

32This work grew out of studying aggregation procedures for statistical estimates. Lehrer and Wagner (1981)
worked on a related model, seeking normative foundations for agents’ weights in the consensus, based on the
problem of aggregating views in a network of peers. Friedkin and Johnsen (1999) studied versions of this model
in which each agent persistently weights a fixed opinion, which can be interpreted as a personal ideal point—see
Section C.5 for a version of this in our setting. See Golub and Sadler (2016), whose Section 3.5.1 we have partly
paraphrased here.
33Note that under complete information, B = Γ.
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of the agents’ initial opinions, with the weight of an agent equal to her eigenvector centrality.

(Thus, in DeGroot’s model, if high-centrality agents have high first-order expectations, the con-

sensus will also be high.) There is an analogous centrality formula in our setting: Proposition

1. Despite this, in our model, under the common prior assumption, there is no interesting de-

pendence of outcomes on Γ, even when the network gives some agents very large network cen-

trality: Higher-order average expectations will always converge to the common prior estimate,

independent of the network. It is only when agents have heterogeneous priors that the network

matters in our model. Thus, whereas in the dynamic learning DeGroot model, the updating

implies that centrality always matters, the additional structure present in our model says that

it matters (to our outcomes) only in specific circumstances, and not under the common prior

assumption.

There is another approach to DeGroot’s questions that is different from his own behavioral

model and from our interpretation of his equations sketched above. That approach is to study

standard Bayesian agents learning dynamically from each other’s beliefs, making Bayesian in-

ferences at each stage. In this case we get a very different updating process. Geanakoplos and

Polemarchakis (1982) considered this updating process under the common prior assumption.

Their finding—in a finite-state model—was that posteriors would converge and there would

be common certainty of posteriors in the limit. This model has been generalized in various

directions. For example, Parikh and Krasucki (1990) considered the case when one observes

posteriors of only some neighbors, while Nielsen et al. (1990) studied the partial revelation of

posteriors. Recently, Rosenberg, Solan, and Vieille (2009) and Mueller-Frank (2013) have ex-

plored such models further. Taken together, this literature provides a fairly rich understanding

of dynamically updating conditional expectations with common priors and asymmetric infor-

mation on a general unweighted graph. Note that it contrasts sharply with our analysis; in the

model we have studied in this paper, private information gets “washed out” rather than aggre-

gated as we take n to the infinite limit.
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APPENDIX A. OMITTED PROOFS

A.1. Proof of Fact 1. To establish (7), write R i (k) for the set of i ’s pure strategies surviving k

rounds of iterated deletion of strictly dominated strategies. By assumption, R i (k) =R i (0) =
[0, M ]T i

. Then using (6),

R i (1) =
{

si : (1−β)E i y ≤ si ≤ (1−β)E i y +βM1
}

=
{

si : (1−β)xi (1) ≤ si ≤ (1−β)xi (1)+βM1
}

For induction, we may assume that for some k ≥ 1, each R i (k) for i ∈ N has the form

R i (k) =
{

si : (1−β)

(
k∑

n=1
βn−1xi (n)

)
≤ si ≤ (1−β)

k∑
n=1

βn−1xi (n)+βk M1

}
.

We have already established the base case, k = 1. We will argue that then

R i (k +1) =
{

si : (1−β)

(
k+1∑
n=1

βn−1xi (n)

)
≤ si ≤ (1−β)

(
k+1∑
n=1

βn−1xi (n)

)
+βk+1M1

}
.

The reason is that if i conjectures a strategy profile s satisfying

(1−β)

(
k∑

n=1
βn−1xi (n)

)
≤ s j

for each j 6= i , then since best responses BRi (s) are nondecreasing in s, the minimum best re-

sponse si is obtained by applying BRi to the lower bound

(1−β)

(
k∑

n=1
βn−1xi (n)

)
,

which yields

(1−β)E i y +β∑
j 6=i

γi j E i (1−β)

(
k∑

n=1
βn−1x j (n)

)

= (1−β)

(
k+1∑
n=1

βn−1xi (n)

)
.

The argument for the upper bound is analogous. As k →∞, the lower and upper bounds both

converge to the s∗(β) of (7).
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A.2. Existence and Characterization of the Consensus Expectation: Proof of Proposition 1.

Recall that p is the unique vector in p ∈ ∆(S) satisfying p = pB ; this vector is uniquely deter-

mined and positive by a standard result for irreducible Markov chains. Write

(18) x(β) = (1−β)
∞∑

n=0
βnB n z.

We will show that for any z ∈RS , we have

(19) lim
β↑1

x(β) = pz1.

Note that by the Neumann series, which can be used since the spectral radius of βB is β< 1,

we have
∑∞

n=0(βB)n = (I −βB)−1, where I denotes the identity matrix of appropriate size; in

particular, I −βB is invertible. So x(β) = (1−β)(I −βB)−1z, or, equivalently,

(20) (I −βB)x(β) = (1−β)z.

The formula (18) says that x(β) is an average, because the weights (1−β)βn sum to 1, of the

vectors B n z. Because B n is a Markov matrix, no entry of B n z can exceed the largest value of z

in absolute value. So the same is true of x(β), and therefore all the x(β) lie in a compact set.

Consider a sequence βk ↑ 1. By what we have said, the sequence (x(βk ))k lies inside a com-

pact set. By a standard fact about compact sets, such a sequence converges, and has the limit

pz1, if and only if every convergent subsequence of it converges to pz1. So consider a conver-

gent subsequence, (x(βκ))κ, and let x denote its limit. We will show that x = pz1, which will

conclude the proof of (19).

By taking β ↑ 1 in (20), we see that x satisfies x = B x, which, given that our matrix B is irre-

ducible, means that x = a1 for some constant a. It remains only to prove that a = pz. Premulti-

plying (20) by p gives (1−βκ)px(βκ) = (1−βκ)pz. Canceling (1−βκ), we get px(βκ) = pz. Letting

κ→∞ and recalling that x is defined as the limit of the subsequence yields px = pz. When we

plug in x = a1—the statement that x is a constant vector—we find that ap1 = pz. Since p is a

probability vector, we have p1 = 1, and so we conclude that a = pz.

A.3. Proof of Lemma 2. If W1 is drawn from the ergodic distribution p, the distributions of W1

and W2 are the same, and so the expected difference between f (W2) and f (W1) is 0:

(21) EW1∼p [ f (W2)− f (W1)] = 0.
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On the other hand, using hypotheses (1) and (2) in the second line below, we have

EW1∼p [ f (W2)− f (W1)] = ∑
s: f (s)< f

p(s)EW1=s[ f (W2)− f (s)]+ ∑
s: f (s)≥ f

p(s)EW1=s[ f (W2)− f (s)]

≥ δp(s : f (s) < f )−εp(s : f (s) ≥ f ).

Combining this result with (21) and using the shorthand χ = p(s : f (s) ≥ f ), we deduce 0 ≥
δ(1−χ)−εχ, from which the lower bound on χ claimed in the proposition follows.

A.4. Proof for Claims in Section 7.4.2 about Tightness Result. To demonstrate the claim made

in Section 7.4.2, first note that the chain satisfies the assumptions of Lemma 2 with f = m. Let

Sk be the set of states
{

t i
k : i ∈ {1,2}

}
. The stationary mass entering Sm has to be equal to the mass

exiting it. Transitions to Sm come only from Sm−1. Finally, the absorbing states are Sm−1 ∪Sm .

Combining these facts:

p(Sm)ε= p(Sm−1)δ= [1−p(Sm)]δ,

so that p(Sm) = 1/(1+ε/δ). A slight perturbation of the chain will result in very nearly the same

bound for an irreducible chain. Note that we can generate such an example for as many agents

as we want, and as many types per agent (so tightness is established for all “sizes” of the setting).

A.5. Proofs of Results on Tyranny of the Least-Informed. The key lemma behind our proof of

Proposition 5 is:

Lemma 3. Under the hypotheses of Proposition 5,∣∣∣∣p(s)− p̂(s)

p̂(s)

∣∣∣∣≤ 4|Θ||S|2
(γminρmin)2

· ε
δ

.

Proof. The proof relies on Theorem 2.1 of Cho and Meyer (2000), which says that, for any s ∈ S,

(22)

∣∣∣∣p(s)− p̂(s)

p̂(s)

∣∣∣∣≤ 1

2

∥∥B − B̂
∥∥∞ max

z 6=z ′
MB̂ (z, z ′),

where MB̂ (z, z ′) is the mean first passage time34 in B̂ to z ′ starting at z; the norm is the maxi-

mum absolute row sum. Two key technical lemmas, stated in Section A.5.1 below, allow us to

34Consider a Markov chain making transitions according to B̂ . The mean first-passage time from z to z ′ in B̂ is
denoted by MB̂ (z, z ′) and defined to be the expected number of steps that the chain started at z takes up to its first
visit to z ′ (inclusive).
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bound the right-hand side. Using Lemma 4 (summing the upper bounds on absolute differ-

ences across any row and taking the maximum over all rows i ):∥∥B − B̂
∥∥∞ ≤ |S| · 4|Θ||S|ε

mini 6=1ρ
i
min

.

To finish bounding the right-hand side of (22), it remains to bound maxz 6=z ′ MB̂ (z, z ′). Lemma 5

does exactly this, giving

max
z 6=z ′

MB̂ (z, z ′) ≤ 2

δρ1
minγ

2
min

.

Recall that γmin is the minimum off-diagonal entry of Γ—by assumption a positive number.

Combining the two inequalities gives the claimed bound. �

Now we can show how this result implies Proposition 5.

The first step is to show that the consensus expectation under the hatted information struc-

ture is equal to the first agent’s prior expectation:

c(y ;Bπ̂,Fπ̂) = Eρ
1
[y].

The key to this is to establish that the information structure (π̂i )i∈N is consistent with a common

prior over signals. Indeed, we will show that agent 1’s prior can be taken to be this common

prior. Let µ̂1 ∈∆(T 1) be the prior on T 1 induced by ρ1, and let

µ̂i (t i ) = ∑
t 1∈T 1

π̂1(t i | t 1)µ̂1(t 1).

For agents i 6= 1, the interim beliefs π̂i (· | t i ) are compatible with their respective priors µ̂i triv-

ially, because the interim beliefs place probability 0 or 1 on any state, and are compatible with

any prior—Bayes’ rule implies no restrictions. Moreover, with this profile (µ̂i )i∈N , the informa-

tion structure (π̂i )i∈N is consistent with a common prior over signals. Now note that the prior

over Θ corresponding to any µ̂i is ρ1. By Proposition 3, the consensus expectation c(y ;Bπ̂,Fπ̂)

is the common prior expectation of y , namely Eρ
1
[y].

The second step is to bound the distance between c(y ;Bπ̂,Fπ̂), which we have computed,

and c(y ;Bπ,Fπ), which we would like to characterize. It is here that Lemma 3 is relevant:

∣∣c(y ;Bπ,Fπ)− c(y ;Bπ̂,Fπ̂)
∣∣= ∣∣∣∣∣∑s∈S

[p(s)− p̂(s)]E i [y | s]

∣∣∣∣∣



EXPECTATIONS, NETWORKS, AND CONVENTIONS 51

=
∣∣∣∣∣∑s∈S

p(s)− p̂(s)

p̂(s)
p̂(s)E i [y | s]

∣∣∣∣∣ multiply and divide by p̂(s)

≤ ∑
s∈S

∣∣∣∣p(s)− p̂(s)

p̂(s)

∣∣∣∣ p̂(s)
∣∣∣E i [y | s]

∣∣∣ triangle inequality

≤ 4|Θ||S|2
(γminρmin)2

· ε
δ

∑
s∈S

p̂(s)
∣∣∣E i [y | s]

∣∣∣ Lemma 3

≤ 4|Θ||S|2
(γminρmin)2

· ymax · ε
δ

. definition of ymax

This completes the proof of the proposition, except for the technical lemmas, which are the

subject of the next section.

A.5.1. Statements of Technical Lemmas. The proof of Lemma 3 used two key bounds. We state

both here, and give proofs in Appendix B.

The first result, which was used to bound ‖B − B̂‖∞, converts hypotheses about the signal

structures (ηi )i∈N into statements about the agents’ interim beliefs (recall that the entries of B

are products of network weights from Γ and interim beliefs):

Lemma 4. For any t i , t j ∈ S with j 6= i , we have∣∣∣πi (t j | t i )− π̂i (t j | t i )
∣∣∣≤ 4|Θ||S|ε

ρi
min

.

This follows from Bayes’ rule, but the exact statement requires a good deal of calculation. The

core idea is that η̂ is obtained by changing the probabilities in η only slightly. Given full support

priors, each πi (t j | t i ) is continuous in ηi (t i | θ), so it is natural that the two should be close; our

calculation simply gives a quantitative version of this statement.

We also used a bound on mean first-passage times in B̂ :

Lemma 5. For any two states z, z ′ ∈ S,

MB̂ (z, z ′) ≤ 2

δρ1
minγ

2
min

.

The key idea here is that, as a consequence of agent 1 having noisy information, the subjec-

tive probability agent 1 puts on any type of any other agent is reasonably high: The lower bound

is ρ1
minδ, as we establish in the proof. Thus the corresponding weights in B̂ are lower-bounded

by δρ1
minγmin, once we take into account the network part of the weight. The other agents’ types

have perfect information, so each of them has an edge of weight at least γmin to a type of agent
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1. Thus the Markov chain is well-interconnected by agent 1’s types: Starting from any state, one

gets to agent 1’s types immediately, and then to any other given state in S with substantial prob-

ability, so the chain cannot take too long to visit that state (by a standard bound on geometric

random variables).

The proofs of the technical lemmas appear in Appendix B.
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APPENDIX B. FOR ONLINE PUBLICATION: PROOFS OF TECHNICAL LEMMAS

B.1. Proof of Lemma 4. The proof relies on the following fact about prior probabilities of sig-

nals.

Fact 3. For any i 6= 1 and any t i ,

µi (t i ) = ∑
θ′∈Θ

ηi (t i | θ′)ρi (θ′) ≥ (1−ε)ρi
min.

This bound holds because ηi is assumed to be at most ε-noisy, and so there must be some θti

such that ηi (t i | θti ) ≥ 1−ε.

The first step of the proof of Lemma 4 is to write the probabilities in question via sums over

states θ. For any t i , t j with j 6= i , we have

πi (t j | t i ) = ∑
θ∈Θ

η j (t j | θ)πi (θ | t i )

Define π̂i (t j | t i ) analogously, replacing πi by π̂i and ηi by η̂i . Let

H j (t j | θ) =
∣∣∣η j (t j | θ)− η̂ j (t j | θ)

∣∣∣
and

∆i (θ | t i ) =
∣∣∣πi (θ | t i )− π̂i (θ | t i )

∣∣∣ .

Now note that by the triangle inequality,

(23)
∣∣∣πi (t j | t i )− π̂i (t j | t i )

∣∣∣≤ ∑
θ∈Θ

[
∆i (θ | t i )+H j (t j | θ)+∆i (θ | t i )H j (t j | θ)

]
.

Having written the difference we are studying in this way, we will bound it piece by piece. If

j 6= 1, by definition of “at most ε-noisy,” we have that |H j (t j | θ)| ≤ ε. If j = 1, then H j (t j | θ) is

identically zero. Also, note that |∆i (θ | t i )| ≤ 1. So in all cases, we can bound the last two terms

in the brackets by 2ε.

Now, we turn to ∆i (θ | t i ). If i = 1, then ∆i (θ | t i ) = 0, because 1’s signals are the same in both

the original information structure π and the new one π̂.

So assume i 6= 1; we will show that ∆i (θ | t i ) ≤ (|S|−1) ε

(1−ε)ρi
min

, and this will allow us to com-

plete the proof. Let θti be such that ηi (t i | θti ) ≥ 1−ε, which is guaranteed to exist by the def-

inition of “at most ε-noisy.” We will bound ∆i (θ | t i ), considering the cases θ 6= θti and θ = θt i
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separately. If θ 6= θti , then by Bayes’ rule,

πi (θ | t i ) = ηi (t i | θ)ρi (θ)

µi (t i )

≤ ηi (t i | θ)ρi (θ)

(1−ε)ρi
min

by Fact 3

≤ ε

(1−ε)ρi
min

by definition of at least ε-nosiy.

Since π̂i (θ | t i ) = 0, it follows that

(24) ∆i (θ | t i ) ≤ ε

(1−ε)ρi
min

By the law of total probability,

πi (θt i | t i ) ≥ 1− (|S|−1)
ε

(1−ε)ρi
min

.

Since π̂i (θti | t i ) = 1, it follows that

(25) ∆i (θt i | t i ) ≤ (|S|−1)
ε

(1−ε)ρi
min

.

This is the looser of the two bounds (24) and (25), so we can say in general that

(26) ∆i (θt i | t i ) ≤ (|S|−1)
ε

(1−ε)ρi
min

.

Putting everything together, it follows that

∣∣∣πi (t j | t i )− π̂i (t j | t i )
∣∣∣≤ ∑

θ∈Θ

[
∆i (θ | t i )+2ε

]
by (23)

≤ ∑
θ∈Θ

[
(|S|−1) · ε

(1−ε)ρi
min

+2ε

]

≤ |Θ|
(

(|S|−1)
ε

(1−ε)ρi
min

+2ε

)

≤ |Θ|ε
(

(|S|−1)
2

ρi
min

+2

)
using 1−ε≥ 1

2

≤ |Θ| ε

ρi
min

(2(|S|−1)+2)

The claimed bound follows after noting and that 2|S| ≥ 2(|S|−1)+2 because |S| ≥ 2.



EXPECTATIONS, NETWORKS, AND CONVENTIONS 55

B.2. Proof of Lemma 5. The proof requires the following fact:

Fact 4. For any t 1 ∈ T 1 and t j ∈ T j with j 6= 1 we have:

π̂1(t j | t 1) =
∑
θ∈Θρ1(θ)η̂ j (t j | θ)∑
θ∈Θρ1(θ)η1(t 1 | θ)

≥ δρ1
min.

To establish this fact, we note that there is some θt j such that η̂ j (t j | θt j ) = 1, and the denomi-

nator is at most 1 since it is the prior probability of the signal t 1 under the information structure

associated with η̂1.

Now we prove Lemma 5. Let (Ŵn)n be a stochastic process corresponding to the Markov

matrix B̂ . Defining the function ι : S → N by ι(t i ) = i , we have a coupling between the chain

(Ŵn)n and a chain on N , the set of agents, with transition matrix Γ.

Case 1: z ′ ∉ T 1. Let us analyze the first passage time to some z ′ ∉ T 1. Starting from any z ∈ S,

the mean first passage time of the process (ι(Ŵn))n to 1 (the state corresponding to agent 1)

is at most 1/γmin. Then every time the process visits a state in T 1, it has probability at least

δρ1
minγmin of visiting z ′, by Fact 4. Conditional on not visiting it at this time, we wait on average

1/γmin steps for the process to return to a state in T 1 and have another δρ1
minγmin chance at

visiting z ′. Thus, using the formula for the expectation of a geometric random variable, we have

MB̂ (z, z ′) ≤ 1

δρ1
minγ

2
min

whenever z ′ ∉ T i .

Case 2: z ′ ∈ T 1. Let z ′ = t 1. If z = t j ∉ T 1, then there is a θt j such that π̂ j (θt j | t j ) = 1. Then

π̂ j (t 1 | t j ) = η1(t 1 | θt j ),

which is at least δ by the definition of “at least δ-noisy.” Thus, every time the process (Ŵn)n

visits any state in S \ T 1, it has probability at least δ of visiting z ′. If z ∈ T 1, then the process

surely visits the set S \ T 1 one step later. Thus the process takes at most two steps to be in a

position where it has probability δ of visiting z. By the same reasoning discussed above about a

geometric random variable, we conclude that

MB̂ (z, z ′) ≤ 2

δ
.
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APPENDIX C. FOR ONLINE PUBLICATION: DISCUSSION OF ASSUMPTIONS AND VARIANTS OF

OUR RESULTS

We now discuss robustness and extensions of our results (Sections C.1 and C.2), as well as

their context and broader implications (Sections C.3 through 9). More technical issues are post-

poned to Appendix D.

C.1. Joint Connectedness. An assumption maintained throughout was a joint connectedness

condition (recall Section 2.5), which amounts to the interaction structure B being irreducible.

In the present subsection, we no longer treat this condition as a maintained assumption, and

examine its content and what can be said without it. Proposition 6 reviews a characterization

of the irreducibility condition: It is equivalent to the agent-type vector p being strictly positive.

We then relate the condition to properties of the primitives Γ and π. Finally, we discuss results

that hold under weakenings of the assumption.

C.1.1. Relations to Beliefs and the Network. Some key properties of the network and beliefs will

feature in our characterization of irreducibility. A network Γ is complete if γi j > 0 for all i and

j . Beliefs π have full support marginals if πi
(
t j | t i

) > 0 for all agents i and j , and all signals

t i ∈ T i , t j ∈ T j . Event G ⊆ T is a product event if G =∏
i∈N Gi , where G i ⊆ T i for each i . Say that

a product event G =∏
i∈N Gi , is a public or closed event (under beliefsπ) if, for each agent i and

each signal t i ∈G i , the following implication holds for any t−i ∈ T −i :

πi
(
t−i | t i

)
> 0 =⇒ (t i , t−i ) ∈G .

A public or closed event is one that, when it occurs, is common certainty among all the agents:

For any observed signal, no probability is assigned any signal outside the event. Beliefs π are

connected if ∅ and T are the only public events. This corresponds to the notion of no (nontriv-

ial) common certainty: Every nontrivial product event has a connection (via beliefs placed by

some agent) to states outside itself. A subset of agents J ⊆ N is closed if i ∈ J and γi j > 0 implies

j ∈ J . A network Γ is connected if ∅ and N are the only closed subsets of the agent set N . Recall

that a network is a complete if γi j > 0 for all i and j .

The properties mentioned so far are restrictions on either the beliefs or the network, but not

both. The property of joint connectedness from Section 2.5 is a joint restriction on both. The

following result relates the two sorts of conditions.
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γ13 = 1 γ21 = 1

γ32 = 1

1

3 2

i = 3 i = 2

i = 1

a3

b3

a2

b2

b1

a1

FIGURE 3. An example illustrating that imposing connectedness of the network
and of beliefs is not sufficient to ensure joint connectedness, i.e. irreducibility of
the interaction structure B .

Proposition 6. The matrix B is irreducible if and only if beliefs and the network are jointly con-

nected. Necessary conditions for this are:

1. Beliefs are connected.

2. The network is connected.

Sufficient conditions for this are:

1. The network is complete and beliefs are connected.

2. The network is connected and beliefs have full support marginals.

Proof. The “if and only if” part is just a rewriting of the statement that there are no nonempty,

proper closed communicating classes in the Markov process corresponding to B . The two suf-

ficient conditions are strengthenings of this property. �

The following example illustrates that requiring a connected network and connected beliefs

separately is not sufficient for irreducibility.

Example. Suppose that there are three agents and each agent observes one of two signals, so

that T i = {ai ,bi }. The network is given by a cycle,

Γ=


0 1 0

0 0 1

1 0 0

 ,
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and the information structure is such that each agent i is sure that agent i + 1 has observed

the same signal and that agent i − 1 has observed a different signal (under mod 3 arithmetic

for agent indices). Figure 3 illustrates the network and the information structure. In this exam-

ple, the network is connected, and the beliefs are connected; nevertheless, B is not irreducible,

because beliefs and the network are not jointly connected. The subset
{

a1, a2, a3
}

places no

weight in B on its complement.

The conditions we have discussed have placed restrictions on beliefs directly, rather than on

observable consequences. In Appendix D.2, we give a “no trade” behavioral characterization of

irreducibility.

C.1.2. Consensus without Irreducibility. All our results have analogues when irreducibility fails.

As we saw in Section 4.2, what matters for the limit of x(n; y) as n →∞ is the behavior of B n . This

can be characterized quite generally based on the graph described in Section 5. The general

result can be found in many textbooks (e.g. Meyer, 2000, Section 8.4), and we summarize it

informally. First, consider the set S A, defined as the set of absorbing states in S according to

the transition matrix B . For such t i , the analysis of x(n; y) can proceed exactly as in Section 4.2,

restricting B to the maximal strongly connected component containing t i .

The simplest case is when S can be partitioned into several strongly connected components

(so S = S A) with B having no edges between these components. This occurs, for instance, if

there are exactly two public (product) events. Then the analysis can be done on each of these

components separately. That is, the analysis can be done conditional on public information.

More generally, when there are public events, our assertion that the consensus expectation is

nonrandom (recall Section 4.2) really means that it is nonrandom conditional on the public

event that has occurred (and which, by definition of its being public, is common knowledge).

Now suppose there are some nonabsorbing states. For each non-absorbing state t i ∉ S A, the

corresponding row of B∞ is a distribution that allocates mass (in a particular way) across the

set S A of absorbing states.

An important case is relevant to several of our discussions. When S A consists of exactly one

strongly connected component (though it may be a strict subset of S), we can refine our state-

ments above to obtain the following generalization of Proposition 1:
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Proposition 7. If S A has exactly one strongly connected component, the consensus expectation

exists and

(27) c(y ;π,Γ) = ∑
t i∈S A

p(t i )E i [y | t i ],

where p ∈∆(S A), called the vector of agent-type weights, is the stationary distribution of BS A (B

restricted to S A), i.e. the unique vector in p ∈∆(S A) satisfying pBS A = p. Moreover, all entries of p

are positive.

This specializes to Proposition 1 in case S A = S. In general, the consensus expectation still

exists and is unique, which is what we need for the examples of Section 7, where irreducibility

fails to hold.

Our results do not hold if we relax our maintained finiteness assumption: in Appendix D.3 we

report an example of Hellman (2011) showing this.

C.2. Heterogeneous Coordination Weights and Their Relation to Self-Weights in the Network.

In the linear best-response game, we assumed that all agents put a common weight β on oth-

ers’ actions, and studied the limit β ↑ 1. We again maintain the assumption that Γ is irre-

ducible and consider now a more general class of environments, characterized by (Γ,β, y),

where β = (
βi

)
i∈N is a profile of agent-specific weights. In the coordination game associated

with such an environment, the linear best responses are given by

(28) ai = (1−βi )E i y +βi
∑
j 6=i

γi j E i a j .

Paralleling our main study, we can ask what happens as βi → 1 simultaneously across i . As we

show in this section, this issue is closely related to “self-weights” γi i in the network.

First, we consider some simple examples. Suppose |N | = 2, with the network

Γ=
 0 1

1 0

 .

If β2 = 1 and β1 < 1, then in the limit β1 ↑ 1, iterating the (modified) best-response equation

ai = (1−βi )E i y +βi
∑
j 6=i

γi j E i a j shows that we would have a convention given by35

lim
n→∞

[
E 1E 2]n

E 1 y.

35See Appendix D.1 for discussion of such limits, called simple higher-order expectations, and related calculations.
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On the other hand, suppose |N | = 2, β1 = 1, and β2 < 1. Now, in the limit β2 ↑ 1, we would

symmetrically have a convention given by the (different) simple higher-order expectation

lim
n→∞

[
E 2E 1]n

E 2 y

Thus, with agent-specific self-weights—the corresponding convention will depend on the de-

tails of how the limit
(
β1, . . . ,β|N |)→ (1, . . . ,1) is taken—in particular, whose βi converges faster

to 1.

We briefly sketch how our analysis can be adapted to this case by changing the network. In

particular, we will show how the linear best-response game with weights
(
β1, . . . ,β|N |) and net-

work Γ has the same solution as the game with a common coordination weight β̂ (that depends

on
(
β1, . . . ,β|N |)) and an alternative network Γ̂. The alternative network Γ̂may, in general, have

nonzero self-weights (γ̂i i > 0 for some i ) even if Γ has zero self-weights (γi i = 0 for all i ). The

transformation applies to any Γ, with or without positive entries on its diagonal.

Note that, in general, consensus expectations were defined allowing the possibility of positive

self-weights in Γ, and our analysis of their basic properties (e.g., Propositions 1, 2 and 3) applies

in that case as well. Positive self-weights are unnatural in some applications. For instance, in

the game with the interpretation that each agent is a single player, one’s best response cannot

(by definition) depend on one’s own action. On the other hand, there are other applications

where self-weights have reasonable interpretations. For example, in the game with linear best

responses, if we replace each agent with a continuum of identical agents (as we have done in the

finance application), it would be natural to think of an agent caring about the average action of

individuals like himself (i.e., in the same class). The same holds in the financial trading appli-

cation, assuming there is a possibility that a player will sell into his own market (whose traders

have the same expectation, and thus the same interim beliefs). In those cases, characterizing

the average action of each population results in the equilibrium equations we have been study-

ing, but with positive entries permitted on the diagonal of Γ. Formally, we can construct an

analogue of the game in Section 3.1.1 and prove, paralleling part of Fact 1, that the game has a

unique rationalizable strategy profile. (The proof is by the same contraction argument used to

prove Fact 1.)

To see what that strategy profile is, we describe the transformation of any environment to

one with an agent-independent common weight on others’ actions:
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Proposition 8. Given an environment with a network Γ and a vector β = (βi )i∈N , define β̂ =
max
i∈N

βi and define Γ̂ by

γ̂i i = β̂−βi

β̂
(
1−βi

) and γ̂i j = γi j
(
1−γi i

)
.

For any y, the environments described by (Γ̂, β̂, y) and (Γ,β, y) have identical play in their respec-

tive unique rationalizable strategy profiles.

C.2.1. Proof of Proposition 8. By Fact 1, there is a unique rationalizable strategy profile in envi-

ronment (Γ̂, β̂, y). In that strategy profile, player i ’s action given his signal satisfies

ai = (1− β̂)E i y + β̂∑
j
γ̂i j E i a j .

Splitting the j = i term out of the last summation, and then using the definition γ̂i j = γi j
(
1−γi i

)
,

we have

ai = (1− β̂)E i y + β̂γ̂i i E i ai + β̂
(
1− γ̂i i

) ∑
j 6=i

γi j E i a j .

Rearranging and using E i ai = ai gives(
1− β̂γ̂i i

)
ai = (1− β̂)E i y + β̂

(
1− γ̂i i

) ∑
j 6=i

γi j E i a j

and thus

ai = 1− β̂
1− β̂γ̂i i

E i y + β̂
(
1− γ̂i i

)
1− β̂γ̂i i

∑
j 6=i

γi j E i a j

= (1−βi )E i y +βi
∑
j 6=i

γi j E i a j ,(29)

where in the last step we have deduced from the formula γ̂i i = β̂−βi

β̂(1−βi )
the fact that 1−β̂

1−β̂γ̂i i = 1−βi

and
β̂
(
1−γ̂i i

)
1−β̂γ̂i i =βi .

Now (29) is an equilibrium of the coordination game in environment (Γ,β, y) (recall equa-

tion (28) defining that game), and so by uniqueness of the rationalizable outcome, the proof is

complete.

C.3. Separability and Connection to Samet (1998a). In Section 5, we showed that—fixing the

information structure and network—there are strictly positive pseudopriors
(
λi
π,Γ

)
i∈N

such that

(30) c(y ;π,Γ) =∑
i

e i Eλ
i
π,Γ y.
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At the same time, we made the observation—which we have now made explicit in the subscripts

of λi —that those pseudopriors may depend on both the information structure π and the net-

work Γ. We say an information structureπ satisfies separability if the pseudopriors depend only

on the information structure:

Definition 6. The information structure π satisfies separability if there exists a profile (λi
π)i∈N

such that, for every irreducible Γ, we have λi
π,Γ =λi

π.

When separability holds, the asymmetric information affects the consensus expectation in

an additively separable way, with each agent’s pseudoprior being weighted by his eigenvector

centrality. Thus the incomplete information and the network can be analyzed separately. Net-

works matter only via the network centrality weights, and the information structure π affects

only the pseudopriors λ= (λi
π)i∈N .

We can illustrate the failure of separability with an example building on the one in Case II of

Section 7.1. Suppose we have three agents arranged in a cycle as shown in Figure 2, with each

considering his counterclockwise neighbor over-optimistic and his clockwise neighbor over-

pessimistic. The network Γ in which all weight goes counterclockwise (i.e., γi ,i−1 = 1 for all

i , with indices read modulo 3) gives the maximum consensus expectation. The network—call

it Γ′—in which all weight goes clockwise (i.e., γi ,i+1 = 1 for all i , with indices read modulo 3)

gives the minimum consensus expectation given the beliefs. Note that all agents are symmetric

in each network. Thus, in both networks, by symmetry all agents have the same eigenvector

centrality.

If separability held, then the two networks would have the same consensus expectation: We

have just said that the centralities are the same across them, and that the information structure

also remains the same if we reverse the direction of each link in the network. Since in fact the

consensus expectation differs (indeed, differs as much as possible) across the two networks, we

have a failure of the separability property.

We have already given one sufficient condition for separability in Section 6: a common prior

on signals. Thus the example described above cannot be consistent with a common prior on

signals. In Golub and Morris (2017) we give a necessary condition for separability. We now infor-

mally report the condition in stages. First, note that for higher-order expectations, and there-

fore consensus expectations, the only beliefs about others that enter are marginal distributions

over another’s signal. An agent is never concerned about the correlation in the signals of two or

more others. This already suggests that the common prior assumption on signals is more than
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we need: Recall from Definition 3 that the common prior assumption on signals places strong

restrictions on beliefs about profiles of signals. In fact, separability is implied by a weaker suf-

ficient condition—one that requires priors about signals to agree only in their marginals on

every agent’s signal. Like the existence of a common prior on signals, such a property puts no

restrictions on agents’ beliefs about Θ conditional on signals, but it also relaxes substantially

the restrictions on beliefs about signals.

In Golub and Morris (2017) we show that an even weaker condition is necessary and suf-

ficient: We call it higher-order expectation-consistency. This condition specifies that we can

find a “pseudoprior” for each agent with the property that those pseudopriors have the same

expectations of all random variables in a certain class. The class consists of all higher-order ex-

pectations of random variables that are Θ-measurable. In effect, this necessary and sufficient

condition imposes only those restrictions on higher-order beliefs that are relevant to higher-

order expectations.

Our results in both this paper and Golub and Morris (2017) relate closely to and build on those

of Samet (1998a). Samet showed that—if one fixes a state space and agents’ information on that

state space (modeled via a partitional information structure)—then higher-order expectations

of all random variables converge. If the common prior assumption holds, they converge to

ex ante expectations under the common prior. Our Proposition 3 is a version of this result;

critically, however, the reasoning is applied not to the whole state space but to the space of

signal profiles. Samet also showed a converse: If all higher-order expectations of any random

variable converge to the same number (depending on the random variable) regardless of the

order in which they are taken, then the information structure must satisfy the common prior

assumption. We do not have a converse in this paper. The characterization of the separability

result in Golub and Morris (2017), which we have described above, is tight and thus is the closest

analogue to Samet (1998a). There are many conceptual and technical issues that distinguish

our notion of separability from the properties that matter in Samet (1998a); these differences

are discussed in detail in Golub and Morris (2017).

There is also another important technical and methodological connection to Samet (1998a).

We follow Samet (1998a) in representing information structures—as well as a network, which

we add to the model—via a Markov process. However, we actually work with a different sort

of Markov process than the one in Samet (1998a): Our Markov process operates on the union
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of agents’ types (which we denote by S), whereas Samet’s process applied to our questions op-

erates on profiles of agents’ types T .36 There are a number of reasons why the former Markov

process (on S) is the appropriate one for our problem. First, it permits a unified or symmetric

treatment of networks and asymmetric information, as discussed in Section 5.1. If one adds a

network structure to Samet’s Markov formulation, networks and asymmetric information enter

in very different ways in the formalism (see Golub and Morris (2017) for a presentation along

these lines). Second, and relatedly, our formalism allows us to relate key elements of our analy-

sis to results in the literature on network games. Finally, the Samet (1998a) approach works with

matrices whose rows and columns are indexed by Ω =Θ×∏
i∈N T i , which can be much larger

than S = ⋃
i∈N T i ; thus it can be convenient to have our formalism for doing explicit computa-

tions.

C.4. Ex Ante and Interim Interpretation. We take an ex ante perspective in our analysis: At

an initial date, agents have prior beliefs—and no information—about a state of the world. This

interpretation entails common certainty among the agents of everyone’s prior beliefs and the

way agents update their beliefs.37 In this section, we discuss some consequences of our ex ante

approach and interim interpretations of our results

C.4.1. Dynamic Interpretation: The Arrival of Information. Under the ex ante perspective, the

results of this paper can be given an explicitly dynamic interpretation. Before the arrival of in-

formation, there is symmetric information and, therefore, the consensus expectation is equal

to the average of agents’ ex ante expectations, weighted by their eigenvector centralities (Sec-

tion 5). In other words, if the agents had to select actions at that stage, this is what their actions

would be equal to. One interpretation of our results is as an answer to the question, How does

the consensus expectation change after agents observe their signals? We show that common prior

over signals is a sufficient condition for no change in the consensus expectation (Proposition

3); second-order optimism causes the consensus expectation to increase to the highest possi-

ble interim belief (Proposition 5); and, under the conditions in the results on the tyranny of the

least-informed, the weights on agents’ priors change from those induced by the network Γ to a

degenerate vector which places all the weight on the least informed.

36Samet works with a partitional formalism; Golub and Morris (2017, Section 6) restates our framework in that
formalism.
37Under an interim interpretation, it is without loss of generality to assume common certainty of types’ interim
beliefs, i.e. how beliefs are updated: see Aumann (1976, p. 1237) and Brandenburger and Dekel (1993).
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C.4.2. Interim Interpretation. Though we take an ex ante view throughout, consensus expecta-

tions, which emerge from agents’ play at the interim stage, cannot depend on agents’ ex ante

beliefs about their own types. Thus consensus expectations must depend only on agents’ in-

terim beliefs (across all possible types). We have emphasized this in our notation, by first ex-

pressing the information structure in interim terms (i.e., via the beliefs πi (· | t i )), and only then

adding in ex ante beliefs over each agent’s signals (the λi in Proposition 2).

Let us discuss how certain main results would look if we were to stick to a purely interim

interpretation. First, results such as the representation of Proposition 2 would still make sense,

but theλi would not be interpreted as anyone’s beliefs. More substantially, consider Proposition

3. Let us focus on a particularly simple consequence of it: Under the common prior assumption

on all of Θ×T , the consensus expectation of y is the prior expectation of y . To make sense of

this in interim terms, we first have to say what the common prior assumption means in interim

terms. Samet (1998a) has characterized that assumption as the conditition that, for any random

variable y , higher-order expectations converge to the same number, independent of the order in

which expectations are taken (as long as each agent appears infinitely often); this number can

be identified with the common prior expectation of y . Thus an interim statement of the simple

consequence of Proposition 3 is: Under the italicized condition, the consensus expectation of

y is simply the prior expectation of y . This is natural: We can write the consensus expectation

as an average of higher-order expectations, and the irreducibility of Γ ensures that all agents

appear infinitely often in each of them. An interim version of Proposition 3 follows from very

similar reasoning, with more attention paid to the network, and this is carried out in Golub and

Morris (2017).

The consequence of Proposition 3 that we have discussed is similar to Corollary 1 but differs

in an important way. Corollary 1 does not depend on there being a common prior on the whole

state space (i.e, on signals and beliefs jointly); rather, it requires that the ex ante first-order

expectations of y be the same across agents. This assumption does not have an obvious interim

interpretation. Thus, the contrast between the “full common prior” result we have discussed

in the previous paragraph and the actual result of Corollary 1 helps bring out where an ex ante

perspective is important for us.

Our second-order optimism result (Proposition 4) is stated in terms of interim beliefs only

(the consensus expectation is equal to the highest possible interim belief), so ex ante beliefs do

not play a role in the interpretation. On the other hand, the common interpretation of signals
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property used in the result on the tyranny of the least-informed (Proposition 5) does not have

any natural interim interpretation.38

C.5. Agent-Specific Random Variables and Incomplete Information about the Network. Our

focus throughout the paper has been on agents’ higher-order expectations of a given random

variable, which is the same across all agents. But for many applications of interest, there is

a different random variable corresponding to each agent, and then higher-order expectations

are taken. For example, a literature on coordination games in networks focuses on the case

where agents have different preferred actions (which correspond to the different random vari-

ables) in the absence of coordination motives, and where one’s network neighbors also influ-

ence one’s choice, with linear best responses assumed (Ballester, Calvó-Armengol, and Zenou,

2006; Calvó-Armengol, Martí, and Prat, 2015; Bergemann, Heumann, and Morris, 2015b).

This case can be embedded readily into our formalism. Specifically, suppose that instead of

being interested in a (common) random variable y ∈RΘ measurable with respect to the external

state, each agent has a different random variable, y i ∈ RΘ. Now, in Section 2.3, equation (3) is

changed to

xi (1;y) = E i y i .

Once xi (1;y) is set, the higher-order average expectations are defined by the same equation,

(4), as before:

xi (n +1; y) = ∑
j∈N

γi j E i x j (n;y).

Correspondingly, in the matrix notation of Section 4, where the key iteration is x(n) = B n−1F y ,

the vector F y is replaced by a vector f ∈RS , with

f (t i ) = E i [y i | t i ].

The analogue of (12) is

lim
β↑1

(
1−β)( ∞∑

n=0
βnB n

)
f ,

and B n f has the interpretation that it describes the higher-order average expectations of the

agents’ first-order expectations of their agent-specific random variables.

One can generalize further and consider a “pure private values” setting: f can be replaced by

an arbitrary vector f ∈RS , with the interpretation that f (t i ) is the action that agent i would like

38The ex ante properties of Definitions 4 and 5 do imply properties of interim beliefs—see, for example, Lemma 4
in Section 8.3.
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to take, when he has signal t i , in the absence of coordination motives—an action he knows. In

this case, each agent faces no uncertainty about the random variable of interest to him. Note

that the case of different y i ∈ RΘ is a special case of this, because in that case f (t i ) is agent i ’s

expectation of his own y i given signal t i .

This brings us closer to Calvó-Armengol, Martí, and Prat (2015) and Bergemann, Heumann,

and Morris (2015a). Motivated by a study of endogenous attention allocation, they work with

a network version of a setting commonly studied in organizational economics and focus on an

analogue of our β ↑ 1 limit. They show that it is a weighted average of agents’ heterogeneous

ideal points that matters for determining the network consensus. Even though their setting

involves normally distributed random variables and linear–quadratic preferences, the core cal-

culations boil down to understanding an analogue of B n f , just as we must in order to study the

heterogeneous-values variation of our model we have just presented.

C.5.1. Equivalence Between Agent-Specific Random Variables and Different Priors overΘ. Given

any environment with agent-specific random variables and a common prior on signals, we can

find another environment with the same prior on signals in which agents all care about the

same random variable but have heterogeneous beliefs about external states. That is, given any

profile (y i )i∈N , we can define a new environment with new beliefs overΘ and a random variable

y so that the resulting f ∈ RS mimics that arising from the original environment. Then results

such as Proposition 3 can be applied.

This equivalence relies on the common prior on signals assumption: Without a common

prior on signals, we could maintain such an equivalence only if the “own random variables”

could depend on others’ signals (cf. Myerson, 1997, p. 74). This is related to the essential dif-

ferences we observed between the model with a common prior over signals (Section 6) and the

model without it.

C.5.2. Type-Dependent Network Weights. A related extension allows for type-dependence in

γi j . In this case, we take this network weight to depend on the signal of i , and write γi j (t i ).

Much of our analysis goes through unchanged: Equation (10) still describes x(n), but now un-

der the definition

B(t i , t j ) = γi j (t i )πi (t j | t i ).

If we interpret γi j as i ’s probability of meeting or interacting with j , then signal-dependence

of these weights corresponds to private information about interactions. The only results that
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we lose in this generalization are those of Section 6, because there is now no information-

independent notion of the network or of centrality. But the limits we study still exist, and much

of their structure (e.g., the structure described in Proposition 1, with p the left-hand unit eigen-

vector of the generalized B) is still present and can be used to study this more general setting.

APPENDIX D. FOR ONLINE PUBLICATION: ADDITIONAL DISCUSSION

D.1. Periodicity and Simple Higher-Order Expectations. In defining consensus expectations,

or the limit of higher-order average expectations, we considered the Abel average

(31) lim
β↑1

(
1−β) ∞∑

n=0
βn x(n +1; y) = lim

β↑1

(
1−β)( ∞∑

n=0
βnB n

)
F y,

which is always well defined. It is natural to ask how the higher-order average expectations

x(n; y) behave without this averaging, and about the limit

(32) lim
n→∞B nF y.

As long as B is aperiodic,39 the limit (32) exists and is equal to the right-hand side of (31).

Aperiodicity, and the existence of the limit (32), is not relevant for many of the applications

reported in the paper. For the linear best-response game and asset pricing, we are explicitly

interested in the limit of the weighted sum of higher-order expectations, i.e., (31) above, and not

in limits of unweighted higher-order expectations, i.e., (32) above. Nothing about the structure

of agent-type weights depends on aperiodicity.

However, periodicity does affect the behavior of the x(n; y) in the limit, and here we discuss

how. Suppose that we have a cycle of agents i1, i2, . . . , i|N |, i1: that is, that the network Γ has each

agent ik putting weight 1 on agent ik+1. Then the corresponding matrix will not be aperiodic.

For example, if there are two agents, N = {1,2}, and γ12 = γ21 = 1, then we have

Γ=
 0 1

1 0


and

B =
 0 B 12

B 21 0


39A matrix is said to be aperiodic if, in the associated weighted directed graph, the greatest common divisor of all
cycles’ lengths is equal to 1. A sufficient condition for this is that the matrix Γ have all positive entries. Even if
γi i = 0 for all i —a natural special case for some interpretations and applications—and if there are at least 3 agents,
γi j > 0 for all j 6= i is another sufficient condition for aperiodicity.
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(recall the definition of B i j from Section 4) and B will be periodic and give rise to a two-cycle.

In particular, there will be well-defined limits

lim
n→∞ [E2E1]n E2 y = c21

and

lim
n→∞ [E1E2]n E1

(
y
)= c11

but they will not be equal. In the limit, the vector x(n) will cycle between c11

c21

 and

 c21

c11

 .

For more general cycles of agents, we will have limits of the form

lim
n→∞

[
Ei1 Ei2 ...Eik y

]n Ei1 Ei2 ...Ei j y

but they will be different for different values of j = 1, . . . ,k. We will refer to such expressions as

simple higher-order expectations. If the network Γ were given by this cycle, then the entries of

B nF y would be the simple higher-order expectations. The general higher-order expectations

that we study will end up being complicated weighted sums of such simple higher-order expec-

tations, although we will not in general work with the decompositions.

Without the assumption of finitely many types, behavior more complicated than cycling can

arise, and (1−β)
∞∑

n=0
βn x(n +1; y) need not converge as β ↑ 1. This phenomenon is discussed in

Morris (2002b) and Morris (2002a). A related but different lack of convergence plays a role in

Han and Kyle (2017): there, because of the lack of finiteness of the type space, arbitrary higher-

order expectations can obtain.

D.2. A Behavioral Interpretation of Irreducibility via No Trade. What is the behavioral con-

tent of the joint connectedness of beliefs and the network, i.e., the irreducibility of B?

We report a characterization of the joint connectedness property, and therefore the existence

and uniqueness of a distribution of positive agent-type weights. Just as the common prior as-

sumption can be characterized as the non-existence of profitable trades among agents (see

Morris (1994) and Samet (1998b)), the property we are studying here has a no-trade charac-

terization.40

40See Nehring (2001) for more on the various relations between no-trade conditions, higher-order expectations,
and common priors.
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Let xi be a payment rule for agent i , xi : T i →R, which is measurable with respect to agent i ’s

signal. A trade consists of a profile of payment rules,
(
xi

)
i∈N . The trade generates strict expected

bilateral gains from trade if

xi
(
t i

)
≤ ∑

j 6=i
γi j

∑
t j∈T j

πi
(
t j |t i

)
x j

(
t j

)
for each agent i and t i ∈ T i , with strict inequality for at least one agent i and t i ∈ T i . The in-

terpretation is that agent i is committed to making a payment xi
(
t i

)
as a function of his signal.

But he anticipates receiving the payments to which others are committed.

Proposition 9. There exists a separable trade generating strict expected bilateral gains from trade

if and only if beliefs and the network are jointly connected.

Proof. The existence of a separable trade giving strict expected bilateral gains from trade is

equivalent to the requirement that there exists a vector x such that x > B x, where > means

a weak inequality on all components and strict inequality on some component. Recall that irre-

ducibility implies the existence of a strictly positive vector of agent-type weights p with pB = p.

Now we have px > pB x = pB x, a contradiction. So irreducibility fails. Conversely, suppose that

irreducibility fails. Then there exists at least one type t i ∈ S that no one assigns positive proba-

bility to, so that γ j iπ j
(
t i | t j

)= 0 for all t j . But now if we set xi
(
t i

)< 0 and x j
(
t j

)= 0 if t j 6= t i ,

then we have a separable trade with strict expected gains. �

D.3. Non-Existence of Consensus Expectations on Infinite State Spaces. We have maintained

the assumption thatΘ and all the T i are finite. In general, without finiteness, there may not be a

vector of agent-type weights as defined in Proposition 1. An example offered by Hellman (2011,

Section 6) demonstrates this. The example uses a version of the two-player information struc-

ture in Rubinstein’s (1989) electronic mail game, with T 1 and T 2 both having the cardinality of

N, the natural numbers. If we take a network Γ on two players such that each puts all weight

on the other, and construct a suitable infinite analogue of B , Hellman’s result implies that there

is no invariant measure for B—i.e., no vector p ∈ ∆(S) of agent-type weights such that pB = p.

Therefore, there is no analogue of Proposition 1, which was the foundation for all our results.

We conjecture that if, like Hellman (2011), we require the state space Ω underlying T 1 and

T 2 to be compact41 and the information structure to be everywhere mutually positive in his

41Hellman works with a partitional formalism similar to that of Samet (1998a); see Golub and Morris (2017) for a
translation of higher-order expectations into this framework.
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sense, then we can recover suitable analogues of our results. On the other hand, if the states

come from normal distributions and agents receive noisy signals about them, then the relevant

type spaces are uncountably infinite and the random variables have unbounded support, but

iterated expectations can still be well-behaved. This case is studied in Han and Kyle (2017); see

also Morris and Shin (2002).


