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Abstract. Agents learn about a state using private signals and the past actions of their

neighbors. In contrast to most models of social learning in a network, the target being

learned about is moving around. We ask: when can a group aggregate information quickly,

keeping up with the changing state? First, if each agent has access to neighbors with

sufficiently diverse kinds of signals, then Bayesian learning achieves good information

aggregation. Second, without such diversity, there are cases in which Bayesian information

aggregation necessarily falls far short of efficient benchmarks. Third, good aggregation

requires agents who understand correlations in neighbors’ actions with the sophistication

needed to concentrate on recent developments and filter out older, outdated information.

In stationary equilibrium, agents’ learning rules incorporate past information by taking

linear combinations of other agents’ past estimates (as in the simple DeGroot heuristic),

and we characterize the coefficients in these linear combinations.
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1. Introduction

Consider a group learning over a period of time about an evolving fundamental state,

such as future conditions in a market. In addition to making use of public information,

individuals learn from their own private information and also from the estimates of others.

For instance, farmers who are trying to assess the demand for a crop they produce may

learn from neighbors’ actions (e.g., how much they are investing in the crop), which reflect

those neighbors’ estimates of market conditions.1 In another example, economic analysts

or forecasters have their own data and calculations, but they may also have access to

the reports of some other analysts.2 Importantly, in many such settings, people have

access to the estimates of only some others. Therefore, without a central information

aggregation device, aggregation of information occurs locally and estimates may differ

across a population.

Given that the fundamental state in question is changing over time, a key question is:

When can the group respond to the environment quickly, aggregating dispersed information

efficiently in real time? In contrast, when are estimates of present conditions confounded?

These questions are important from a positive perspective, to better understand the deter-

minants of information aggregation and the welfare implications. They will also be relevant

in design decisions—e.g., for a planner who influences group composition or information

endowments and wants to facilitate better learning.

The question of whether decentralized communication can facilitate efficient adaptation

to a changing world is a fundamental one in economic theory, related to questions raised

by Hayek (1945).3 Nevertheless, there is relatively little modeling of dynamic states in the

large literature on social learning and information aggregation in networks,4 though we dis-

cuss some very important antecedents that we build on—including Frongillo, Schoenebeck,

1 A literature in economic development studies situations in which the flow of information crucial to pro-
duction decisions is constrained by geographic or social distance; see, e.g., Jensen (2007); Srinivasan and
Burrell (2013).
2 In a class of models of over-the-counter markets, agents learn about others’ valuations during trade (see,
e.g., Vives, 1993; Duffie and Manso, 2007; Duffie, Malamud, and Manso, 2009; Babus and Kondor, 2018).
3“If we can agree that the economic problem of society is mainly one of rapid adaptation to changes in the
particular circumstances of time and place. . . there still remains the problem of communicating to [each
individual] such further information as he needs.” Hayek’s main concern was aggregation of information
through markets, but the same questions apply more generally.
4 See, among many others, DeMarzo, Vayanos, and Zweibel (2003), Acemoglu, Dahleh, Lobel, and Ozdaglar
(2011), Mueller-Frank (2013), Eyster and Rabin (2014), Mossel, Sly, and Tamuz (2015), Lobel and Sadler
(2015a), Akbarpour et al. (2017), and Molavi, Tahbaz-Salehi, and Jadbabaie (2018). There is also a
literature in finance on information aggregation in complex environments, where the models are mainly
static: see, for instance, Malamud and Rostek (2017), Lambert, Ostrovsky, and Panov (2018), and the
papers cited there.
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and Tamuz (2011), Shahrampour, Rakhlin, and Jadbabaie (2013), and Alatas, Banerjee,

Chandrasekhar, Hanna, and Olken (2016)—in Section 6. Our first contribution is to de-

fine and study equilibria in a dynamic environment that captures two essential dimensions

emphasized above: the state of the world changes over time, and communication occurs in

an arbitrary network. These equilibria take a simple form and relate to certain canonical

learning rules, such as that of DeGroot (1974), which have been used extensively in the

literature on learning in networks. The second contribution is to derive conditions under

which decentralized information aggregation works well.

Our main substantive finding is that in large populations decentralized learning can ap-

proach an essentially optimal benchmark, as long as (i) each individual has access to a

set of neighbors that is sufficiently diverse, in the sense of having different signal distri-

butions from each other; and (ii) updating rules are Bayesian, responding to correlations

in a sophisticated way. If signal endowments are not diverse, then social learning can be

inefficiently confounded and far from optimal, even though each agent has access to an

unbounded number of observations, each containing independent information. Diversity is,

in a sense, more important than precision: giving everyone better signals can hurt aggrega-

tion severely if it makes those signals homogeneous. A key mechanism behind the value of

diverse signal endowments is that diversity helps agents concentrate on new developments

in the dynamic environment, and successfully filter out older, less useful information. To

take advantage of this, however, agents must have a sophisticated understanding of the

correlations in their neighbors’ estimates.

We now describe our dynamic model and some of the main results. The state, θt, drifts

around according to a stationary, discrete-time AR(1) process given by θt+1 = ρθt + νt+1,

with 0 < ρ < 1, and agents receive conditionally independent Gaussian signals of its current

value. The population consists of overlapping generations of decision-makers (agents),

located in a network. An agent’s action is an estimate ai,t: she sets it to her expectation,

given all her information, of the current state θt. In each period, the information the agent

observes consists of some past estimates of her neighbors in an arbitrary network and an

independent, normal signal si,t ∼ N (θt, σ
2
i ) of the current state; these estimates are relevant

for estimating θt because they depend on recent states, which, in turn, are correlated with

the current state. Her estimate is then used by her neighbors in the next round in the same

way. We vary three features of the environment.

1. The distributions of individuals’ information (the precisions σ−2i of private signals).

2. The structure of the network: the sizes and compositions of individuals’ neighbor-

hoods.
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3. How agents update their beliefs: the baseline model is that agents take correct

Bayesian conditional expectations of the state of interest; an important alternative

is that agents do not optimally account for redundancies in their observations (in

ways we will be specific about).

A helpful feature of the model is that stationary equilibrium learning rules take a simple,

time-invariant form: agents form their next-period estimates by taking linear combinations

of their neighbors’ earlier estimates and their own private signals. Technically, the problem

facing each agent is a standard one: estimating a linear statistical model. However, the

data about underlying fundamentals that an agent observes depend on others’ strategies,

i.e., updating rules.5 Each agent chooses her updating rule to optimally respond to the

past updating of others, and we study the stationary equilibria of this system. Our main

outcome of interest is the equilibrium quality of learning—the equilibrium error rates in

agents’ estimates of the state.6

We will now summarize our findings on the efficiency of information aggregation and

the importance of diverse signal endowments. Afterward, we will present an example to

illustrate the key intuition behind why diversity of signal endowments helps with inference.

First, consider agents who are Bayesian. Suppose there is sufficient diversity of private

information: there are at least two possible private signal precisions, and each individual

is exposed to sufficiently many neighbors with each kind of signal. We show—within a

random graph model that can capture essentially arbitrary network heterogeneity—these

properties are enough to guarantee an equilibrium in which information aggregation is as

good as it can possibly be. More precisely, each agent can figure out an arbitrarily good

estimate of the previous period’s state, which is the best information that she could hope

to extract from others’ actions, and then combine it with her own current private signal.

On the other hand, without sufficient diversity of private information—if all agents have

the same kind of private signals—good information aggregation may fail. This can occur

at the unique stationary equilibrium, even if each individual has access to the estimates of

very many neighbors, all of whom get conditionally independent signals of the recent state.

Our key theoretical results on the quality of learning use large random graphs with flexible

structure. To argue that neither the technical conditions assumed on these graphs nor a

5 In engineering terminology, each agent uses a Kalman filter, but the distribution of her observations
is determined by other agents’ behavior; thus, we analyze a set of Kalman filters in a network in Nash
equilibrium; cf. Olfati-Saber (2007) and Shahrampour, Rakhlin, and Jadbabaie (2013), which model a set
of distributed Kalman filters controlled by a planner.
6 Equilibrium weights satisfy a system of polynomial equations, but the system usually has high degree
and is not amenable to explicit solutions, so additional work is required to characterize properties of these
solutions.
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reliance on very large numbers is driving the conclusions, we calculate equilibria numerically

for real-world social networks both for diverse and non-diverse signal endowments, and

show that signal diversity does enable much better learning, even in networks with several

hundred agents, with agents having 10-20 neighbors.

We will also discuss some implications of our results for designers who wish to facili-

tate better learning, and what distributions of expertise they would prefer. In particular,

our results provide a distinctive rationale for informational specialization in organizations,

which we flesh out in Section 7.2.

Efficient aggregation depends on another factor, beyond the sufficient diversity of signal

precisions we have been discussing: sophisticated behavior by individuals. In particular,

even when correct inference is possible, to achieve it, agents must understand the correla-

tions among their observations to remove confounds (Eyster and Rabin, 2014). To make the

point that such understanding is essential to good aggregation, we examine some canonical

learning rules, adapted to our setting, in which it is absent. There, information aggregation

is essentially guaranteed to fall short of good aggregation benchmarks for all agents. We

also make this point on fixed finite networks, where we show such learning strategies are

necessarily Pareto inefficient.

Beyond these substantive results on what makes for efficient and inefficient information

aggregation, a methodological contribution of the paper is a model in which individuals’

learning takes a simple, tractable form (reminiscient of the DeGroot (1974) linear updating

rule). Our model is one in which such updating arises from Bayesian behavior, and the

coefficients in the linear rules are determined endogenously. This gives a new framework

for comparative statics, welfare analysis, counterfactuals, and estimation exercises in social

learning settings.

The value of diversity: An example. We now present a simple example that illustrates

the value of diverse signal endowments. This illustration can be done in a stripped-down

setting—with a fixed state and a few sequential decisions in a simple network—but it

demonstrates forces crucial in our general model. Consider an environment with a single

well-informed source S, many media outlets M1, . . . ,Mn with access to the source as well

as some independent private information, and the general public. The public consists of

many individuals who learn only from the media outlets, and we are interested in how

well a typical member of the public could learn by following many media outlets. More

precisely, we consider the example shown in Figure 1.1 and think of P1 as a generic member

of the large public.
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Figure 1.1. The network used in the value of diversity example

. . .

S

P1

M1 M2 M3 M4 M5 M6 Mn

In the first period, the source receives a noisy signal of the state θ, which we call sS =

θ + ηS. The source announces its posterior belief of the state, which (taking an improper

prior for the state θ) will be sS. After this, the media outlets receive noisy private signals

sMi
= θ+ ηMi

and announce their posterior means of θ, which we denote by aMi
. A typical

such estimate is a linear combination of sMi
and sS. In particular, taking all signal errors

to be mean-zero, independent normal draws, the estimate can be expressed as

aMi
= wisMi

+ (1− wi)sS

where the weight wi on the media outlet’s signal is increasing in the precision of that signal.

The member of the public then makes an estimate based on the observations aM1 , . . . , aMn .

Suppose first that the media outlets have identically distributed private signals. Because

the member of the public observes many symmetric media outlets, it turns out that her

best estimate of the state, aP , is simply the average of the estimates of the media outlets.

Since each of these outlets uses the same weight wi on its private signal, we may write

aP = w1

n∑
i=1

sMi

n
+ (1− w1)sS ≈ w1θ + (1− w1)sS.
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In the approximate equality, we have used the fact that an average of many private signals

is approximately equal to the state, by our assumption of independent errors. Despite the

large number of media outlets that each have independent information, the public’s beliefs

are biased in the direction of the error in the source’s signal, even with fully Bayesian

updating.

What if, instead, half of the media outlets (say M1, . . . ,Mn/2) have more precise private

signals than the other half, perhaps because these outlets have invested more heavily in

covering this topic? The media outlets with more precise signals will then place weight

wA on their private signals, while the media outlets with less precise signals use a smaller

weight wB. We will now argue that a member of the public can extract more information

from the media in this setting. In particular, she can first compute the averages of the two

groups’ actions

wA
n/2∑
i=1

sMi

n/2
+ (1− wA)sS ≈ wAθ + (1− wA)sS

wB
n∑

i=n/2+1

sMi

n/2
+ (1− wB)sS ≈ wBθ + (1− wB)sS.

Then, since wA > wB, the public knows two distinct linear combinations of θ and the

confound coming from the source’s signal error. The parameter θ is identified from these.

So the member of the public can form a very precise estimate of θ, and this implies that

the Bayesian estimate of θ must be very precise as n becomes large. The key force is that

the two groups of media outlets give different mixes of the source’s bias and the state, and

by understanding this, the public can infer both.

This illustration has a number of unrealistic features: one-directional links; no communi-

cation among the media outlets or public; only one round of updating for each agent; and

a particular sequencing of these rounds. These features are important to the illustration.

But, crucially, the intuition of how diversity affects inference plays a central role in our

dynamic model. There, quite generally, diversity of signal endowments allows agents to

concentrate on new developments in the state while filtering out old, less relevant informa-

tion, analogously to how they filtered out the confounding source bias in this example.

Outline. Section 2 sets up the basic model and discusses its interpretation. Section 3

defines our equilibrium concept and shows that equilibria exist. In Section 4, we give our

main results on the quality of leaxrning and information aggregation. In Section 5, we

discuss learning outcomes with naive agents and more generally without anti-imitation.

Section 6 relates our model and results to the social learning literature. In Section 7, we
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discuss structural estimation of our model, multidimensional states, and the role of signal

sturcture.

2. Model

2.1. Description. We describe the environment and game; complete details are formalized

in Appendix A.

State of the world. At each discrete instant (also called period) of time,

t ∈ {. . . ,−2,−1, 0, 1, 2, . . .} ,

there is a state of the world, a random variable θt taking values in R. This state evolves as

an AR(1) stochastic process. That is,

θt+1 = ρθt + νt+1,

where ρ is a constant with 0 < |ρ| ≤ 1 and νt+1 ∼ N (0, σ2
ν) are independent innovations.

We can write explicitly

θt =
∞∑
`=0

ρ`νt−`,

and thus θt ∼ N
(

0, σ2
ν

1−ρ2

)
. We make the normalization σν = 1 throughout.

Information and observations. The set of nodes is N = {1, 2, . . . , n}. Each node i has

a set Ni ⊆ N of other nodes that i can observe, called its neighborhood.

Each node is populated by a sequence of agents in overlapping generations. At each time

t, there is a node-i agent, labeled (i, t), who takes that node’s action ai,t. When taking

her action, the agent (i, t) can observe the actions in her node’s neighborhood in the m

periods leading up to her decision. That is, she observes aj,t−` for all nodes j ∈ Ni and lags

` ∈ {1, 2, . . . ,m}. (One interpretation is that the agent (i, t) is born at time t − m at a

certain location (node) and has m periods to observe the actions taken around her before

she acts.) She also sees a private signal,

si,t = θt + ηi,t,

where ηi,t ∼ N (0, σ2
i ) has a variance σ2

i > 0 that depends on the agent but not on the time

period. All the ηi,t and νt are independent of each other. A vector of all of agent (i, t)’s

observations—si,t and the neighbors’ past actions—defines her information. An important

special case will be m = 1, where there is one period of memory, so that the agent’s

information is (si,t, (aj,t−1)j∈Ni). The observation structure is common knowledge, as is the

informational environment (i.e., all precisions, etc.). We will sometimes take the network
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G to mean the set of nodes N together with the set of links E, defined as the subset of

pairs (i, j) ∈ N ×N such that j ∈ Ni.

Preferences and best responses. As stated above, in each period t, agent (i, t) at each

node i chooses an action ai,t ∈ R. Utility is given by

ui,t(ai,t) = −E[(ai,t − θt)2].

The agent makes the optimal choice for the current period given her information—i.e., does

not seek to affect future actions.7 By a standard fact about squared-error loss functions,

given the distribution of (aNi,t−`)
m
`=1, she sets:

(2.1) ai,t = E[θt | si,t, (aNi,t−`)m`=1].

Here the notation aNi,t refers to the vector (aj,t)j∈Ni . An action can be interpreted as an

agent’s estimate of the state, and we will sometimes use this terminology.

The conditional expectation (2.1) depends on the prior of agent (i, t) about θt, which

can be any normal distribution or a uniform improper prior (in which case all of i’s beliefs

about θt come from her own signal and her neighbors’ actions).8 We take priors, like the

information structure and network, to be common knowledge. In the rest of the paper, we

formally analyze the case where all agents have improper priors. Because actions under a

normal prior are related to actions under the improper prior by a simple bijection—and

thus have the same information content for other agents—all results extend to the general

case.

2.2. Interpretation. The agents are fully Bayesian given the information they have access

to. Much of our analysis is done for an arbitrary finite m; we view the restriction to

finite memory as an assumption that avoids technical complications, but because m can

be arbitrarily large, this restriction has little substantive content. The model generalizes

“Bayesian without Recall” agents from the engineering and computer science literature

(e.g., Rahimian and Jadbabaie, 2017), which, within our notation, is the case of m = 1.

Even when m is small, observed actions will indirectly incorporate signals from further in

the past, and so they can convey a great deal of information.

Note that an agent does not have access to the past private signals observed either at her

own node or at neighboring ones. This is not a critical choice—our main results are robust

to changing this assumption—but it is worth explaining. Whereas ai,t is an observable

7 In Section 2.2 we discuss this assumption and how it relates to applications.
8 With 0 < ρ < 1, one natural choice for a prior is the stationary distribution of the state.
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Figure 2.1. An illustration of the overlapping generations structure of the
model for m = 2.

At time t− 1, agent (i, t) is born and observes estimates from time t− 2. At time t agent
(i, t) observes estimates from t− 1, her private signal si,t and submits her estimate ai,t.

choice, such as a published evaluation of an asset or a mix of inputs actually used by an

agent in production, the private signals are not shareable.9

Finally, our agents act once and do not consider future payoffs, which shuts down the

possibility that they may distort reports to manipulate the future path of social learning

for their successors’ benefit. Equivalently, we could simply assume that agents sincerely

announce their subjective expectations of the state, as in Geanakoplos and Polemarchakis

(1982) and the literature following it. For discussions of this type of assumption in social

learning models, and ways to relax it, see, for instance Mueller-Frank (2013) and Mossel

et al. (2015).

We discuss extensions of the basic model in various directions in Section 7.

3. Equilibrium

In this section we present the substance of our notion of equilibrium and the basic

existence result.10

9 Though we model the signals for convenience as real numbers, a more realistic interpretation of these is
an aggregation of all of an agent’s experiences, impressions, etc., and these may be difficult to summarize
or convey.
10 Because time in this game is doubly infinite, there are some subtleties in definitions, which are dealt
with in Appendix A.
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3.1. Equilibrium in linear strategies. A strategy of an agent is linear if the action taken

is a linear function of the variables in her information set. We will focus on stationary

equilibria in linear strategies—ones in which all agents’ strategies are linear with time-

invariant coefficients—though, of course, we will allow agents to consider deviating at each

time to arbitrary strategies, including non-linear ones. Once we establish the existence of

such equilibria, we will refer to them simply as equilibria for the rest of the paper.

We first argue that in studying agents’ best responses to stationary linear strategies, we

may restrict attention to linear strategies. If linear strategies have been played up to time

t, we can express each action up until time t as a weighted summation of past signals.

Because all innovations νt and signal errors ηi,t are independent and Gaussian, it follows

that the joint distribution of any finite random vector of the past errors (ai,t−`′− θt)i∈N,`′≥1
is multivariate Gaussian. Thus, E[θt | si,t, (aNi,t−`)m`=1] is a linear function of si,t and

(aNi,t−`)
m
`=1 (see (3.1) below for details). It follows that solving for equilibrium can be

reduced to solving for the weights agents place on the variables in their information sets.

A reason for focusing on equilibria in linear strategies comes from considering how agents

would behave in a variant of the model where time began at t = 0. In that first period,

agents would see only their own signals, and therefore play linear strategies; after that,

inductively applying the argument in the previous paragraph shows that strategies would

be linear at all future times. This is the thought experiment that motivates our focus on

linear strategies; taking time to extend infinitely backward is an idealization that allows us

to focus on exactly stationary behavior.

3.2. Covariance matrices. The optimal weights for an agent to place on her sources of

information depend on the precisions and covariances of these sources, and so we now study

these.

Given a linear strategy profile played up until time t, let Vt be the nm× nm covariance

matrix of the vector (ρ`ai,t−`− θt)i∈N, 0≤`≤m−1. The entries of this vector are the differences

between the best predictors of θt based on actions ai,t−` during the past m periods and

the current state of the world. (In the case m = 1, this is simply the covariance matrix

Vt = Cov(ai,t − θt).) The matrix Vt records covariances of action errors: diagonal entries

measure the accuracy of each action, while off-diagonal entries indicate how correlated the

two agents’ action errors are. The entries of Vt are denoted by Vij,t.

3.3. Best-response weights. A strategy profile is an equilibrium if the weights each agent

places on the variables in her information set minimize her posterior variance.
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We now characterize these in terms of the covariance matrices we have defined. Consider

an agent at time t, and suppose some linear strategy profile has been played up until time t.

Let VNi,t−1 be a sub-matrix of Vt−1 that contains only the rows and columns corresponding

to neighbors of i11 and let

Ci,t−1 =


0

VNi,t−1 0
...

0 0 . . . σ2
i

.
Conditional on observations (aNi,t−`)

m
`=1 and si,t, the state θt is normally distributed with

mean

(3.1)
1TC−1i,t−1

1TC−1i,t−11
·


ρaNi,t−1

...

ρmaNi,t−m

si,t+1

 .

(see Example 4.4 of Kay (1993)). This gives E[θt | si,t, (aNi,t−`)m`=1] (recall that this is the

ai,t the agent will play). Expression (3.1) is a linear combination of the agent’s signal and

the observed actions; the coefficients in this linear combination depend on the matrix Vt−1

(but not on realizations of any random variables). In (3.1) we use our assumption of an

improper prior.12

We denote by (Wt,w
s
t ) a weight profile in period t, with ws

t ∈ Rn being the weights

agents place on their private signals and Wt recording the weights they place on their

other information.13 When m = 1, we refer to the weight agent i places on aj,t−1 (agent j’s

action yesterday) as Wij,t and the weight on si,t, her private signal, as wsi,t.

In view of the formula (3.1) for the optimal weights, we can compute the resulting next-

period covariance matrix Vt from the previous covariance matrix. This defines a map

Φ : V → V , given by

(3.2) Φ : Vt−1 7→ Vt

which we study in characterizing equilibria.

11 Explicitly, VNi,t−1 are the covariances of (ρ`aj,t−` − θt) for all j ∈ Ni and ` ∈ {1, . . . ,m}.
12As we have mentioned, this is for convenience and without loss of generality. Our analysis applies equally
to any proper normal prior for θt: To get an agent’s estimate of θt, the formula in (3.1) would simply
be averaged with a constant term accounting for the prior, and everyone could invert this deterministic
operation to recover the same information from others’ actions.
13 We do not need to describe the indexing of coefficients in Wt explicitly in general; this would be a bit
cumbersome because there are weights on actions at various lags.
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3.4. Equilibrium existence. Consider the map Φ defined in (3.2). Stationary equilibria

in linear strategies correspond to fixed points of the map Φ.14

Our first result concerns the existence of equilibrium:

Proposition 1. A stationary equilibrium in linear strategies exists, and is associated with

a covariance matrix V̂ such that Φ(V̂ ) = V̂ .

The proof appears in Appendix B.

At the stationary equilibrium, the covariance matrix and all agent strategies are time-

invariant. Actions are linear combinations of observations with stationary weights (which

we refer to as Ŵij,t and ŵsi ). The form of these rules has some resemblance to static

equilibrium notions studied in the rational expectations literature (e.g., Vives (1993); Babus

and Kondor (2018); Lambert, Ostrovsky, and Panov (2018); Mossel, Mueller-Frank, Sly, and

Tamuz (2018)), but here we explicitly examine the dynamic environment in which these

emerge as steady states. We discuss the relationship between our model and DeGroot

learning, which has a related form, in Section 6.

The idea of the argument is as follows. The goal is to apply the Brouwer fixed-point

theorem to show there is a covariance matrix V̂ that remains unchanged under updating.

To find a compact set to which we can apply the fixed-point theorem, we use the fact that

when agents best respond to any beliefs about prior actions, all variances are bounded

above and bounded away from zero below. This is because all agents’ actions must be at

least as precise in estimating θt as their private signals, and cannot be more precise than

estimates given perfect knowledge of yesterday’s state combined with the private signal.

Because the Cauchy-Schwartz inequality bounds covariances in terms of the corresponding

variances, it follows that there is a compact set containing the image of Φ.15 This along

with the continuity of Φ allow us to apply the Brouwer fixed-point theorem.

Example 1. In the case of m = 1, we can write out the map Φ explicitly, which yields the

fixed-point condition for the equilibrium variances and covariances V̂ .

(3.3) V̂ii = (ŵsi )
2σ2

i +
∑

ŴikŴik′(ρ
2V̂kk′ + 1) and V̂ij =

∑
ŴikŴjk′(ρ

2V̂kk′ + 1)

More generally, for any m, we can obtain a formula in terms of V̂ for the weights Ŵij

and ŵsi in the best response to V̂ , in order to write the equilibrium V̂ij as the solutions to

14 More generally, one can use this map to study how covariances of actions evolve given any initial distri-
bution of play. Note that the map Φ is deterministic, so we can study this evolution without considering
the particular realizations of signals.
15 When m = 1, the proof gives bounds V̂ii ∈ [ 1

1+σ−2
i

, σ2
i ] on equilibrium variances and V̂ij ∈ [−σiσj , σiσj ]

on equilibrium covariances.
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a system of polynomial equations. These equations have large degree and cannot be solved

analytically except in very simple cases, but they can readily be used to solve for equilibria

numerically.16

The main insight is that we can find equilibria by studying action covariances; this idea

applies equally to many extensions of our model. We give two examples: (1) We assume

that agents observe neighbors perfectly, but one could define other observation structures.

For instance, agents could observe actions with noise, or they could observe some set of

linear combinations of neighbors’ actions with noise. (2) We assume agents are Bayesian

and best-respond rationally to the distribution of actions, but the same proof would also

show that equilibria exist under other behavioral rules.17

We show later, as part of Proposition 2, that there is a unique stationary linear equilib-

rium in networks having a particular structure. In general, uniqueness of the equilibrium is

an open question that we leave for future work; our efforts to use standard approaches for

proving uniqueness have run into obstacles.18 Nevertheless, in computing equilibria numer-

ically for many examples, we have not been able to find a case of equilibrium multiplicity

(see Section 4.5 for more on numerical results).

We now briefly touch on how agents could come to play the strategies posited above.

If other agents are using stationary equilibrium strategies, then best-responding is easy to

do under some conditions. For instance, if historical empirical data on neighbors’ error

variances and covariances are available (i.e., the entries of the matrix VNi,t discussed in

Section 3.3), then the agent needs only to use these to compute a best estimate of θt−1,

which is essentially a linear regression problem.

4. When is there fast information aggregation in large networks?

In this section, we consider the quality of learning outcomes in equilibrium, and when

good diffusion can be achieved. To make this exercise precise, we first define a benchmark

of good information aggregation. Our main results show that, under certain conditions on

the distribution of signals in the population, this benchmark can actually be achieved in a

16 Indeed, we have used numerical solutions to study the system and to conjecture many of our results. In

practice, a fixed point V̂ is found by repeatedly applying Φ, as written in (3.3), to an initial covariance
matrix. In all our experiments, the same fixed point has been found, independent of starting conditions.
17 What is important in the proof is that actions depend continuously on the covariance structure of an
agent’s observations; the action variances are uniformly bounded under the rule agents play; and there is
a decaying dependence of behavior on the very distant past.
18 We have checked numerically that Φ is not, in general, a contraction in any of the usual norms (entrywise
sup, Euclidean operator norm, etc.), nor does it seem clear how to prove uniqueness by defining a Lyapunov
function.
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class of large networks. Indeed, we will show that if signals are distributed in a suitably

heterogeneous way across the population the aggregation benchmark is achieved robustly.

We also show this result is tight, in the sense that without such signal diversity, aggregation

can fail.

4.1. The aggregation benchmark. Because agents cannot learn a moving state exactly,

we must define what it means for agents to learn well. Our benchmark is the expected

payoff that an agent would obtain given her private signal and perfect knowledge of the

state in the previous period. (The state in the previous period is the maximum that an

agent can hope to learn from neighbors’ information, since social information arrives with

a one-period delay.) Let V benchmark
ii be the error variance that player i achieves at this

benchmark: namely, V benchmark
ii = (σ−2i + 1)−1.

Definition 1. An equilibrium achieves the ε-perfect aggregation benchmark if, for all i,

V̂ii
V benchmark
ii

≤ 1 + ε.

This says that all agents do nearly as well as if each knew her private signal and yester-

day’s state. Note agents can never infer yesterday’s state perfectly from observed actions

in any finite network, and so we must have V̂ii
V benchmark
ii

> 1 for all i on any fixed network.

We give conditions under which ε-perfect aggregation is achieved for any ε > 0 on large

enough networks. To make this formal, we fix ρ and consider a sequence of networks

(Gn)∞n=1, where Gn has n nodes.

Example 2. We use a very simple example to demonstrate that the ε-perfect aggregation

benchmark can be achieved for any ε > 0. Suppose each Gn for n ≥ 2 has a connected

component with exactly two agents, 1 and 2, with σ2
1 = 1 and σ2

2 = 1/n. Then agent

2’s weight on her own signal converges to 1 as n → ∞. So V̂11 converges to V benchmark
11 =

(σ−21 + 1)−1 = 1
2

as n→∞. Thus, the learning benchmark is achieved.

The environment we have devised in this example is quite special: agent 1 can essentially

infer last period’s state because someone else has arbitrarily precise information. A much

more interesting question is whether anything similar can occur without anyone having

extremely precise signals. In the next section, we address this and show that perfect

aggregation can be achieved by all agents simultaneously even without anyone having very

precise signals.

4.2. Distributions of networks and signals. To study learning in large populations,

we specify two aspects of the environment: network distributions and signal distributions.
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In terms of network distributions, we define a stochastic model that makes the analysis of

large networks tractable, but is flexible in that it allows us to encode rich heterogeneity in

network positions. We also specify signal distributions : how signal precisions are allocated

to agents, in a way that may depend on network position. We now describe these two

primitives of the model and make some assumptions that are maintained in Section 4.

Fix a set of network types k ∈ K = {1, 2, . . . , K}. There is a probability pkk′ for each pair

of network types, which is the probability that an agent of network type k has a link to a

given agent of network type k′. An assumption we maintain on these probabilities is that

each network type k observes at least one network type (possibly k itself) with positive

probability. There is also a vector (α1, . . . , αK) of population shares of each type, which we

assume are all positive. Jointly, (pkk′)k∈K and α specify the network distribution.19 These

parameters can encode differences in expected degree and also features such as homophily

(where some groups of types are linked to each other more densely than to others).

We next define signal distributions, which describe the allocation of signal variances to

network types. Fix a finite set S of private signal variances, which we call signal types.20

We let qkτ be the share of agents of network type k with signal type τ ; (qkτ )k∈K,τ∈S defines

the signal distribution.

Generating the networks. Let the nodes in network n be a disjoint union of sets

N1
n, N

2
n, . . . , N

K
n , with the cardinality |Nk

n | equal to bαknc or dαkne (rounding so that there

are n agents in the network). We (deterministically) set the signal variances σ2
i equal to

elements of S in accordance with the signal shares (again rounding as needed). Let (Gn)∞n=1

be a sequence of undirected random networks with these nodes, so that i ∈ Nk
n and j ∈ Nk′

n

linked with probability pkk′ ; these realizations are all independent.

Diversity of signals. The environment is described by the linking probabilities (pkk′)k∈K,

the type shares α, and the signal distribution (qkτ )k∈K,τ∈S . We say that a signal type τ is

represented in a network type k if qkτ > 0.

Definition 2. We say that the environment satisfies signal diversity if at least two distinct

signal types are represented in each network type.

We will satisfy environments that satisfy this condition as well as ones that do not, and

show that it is pivotal for information-aggregation.

19 This type of network is known as a stochastic block model (Holland et al., 1983).
20 The assumptions of finitely many signal types and network types are purely technical, and could be
relaxed.
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4.3. Diverse signals. Our first main result is that signal diversity is sufficient for good ag-

gregation. Under this condition, the benchmark is achieved independently of the structural

properties of the network.

We say an event occurs asymptotically almost surely if for any ε > 0, the event occurs

with probability at least 1− ε for n sufficiently large.

Theorem 1. Let ε > 0. If an environment satisfies signal diversity, asymptotically almost

surely Gn has a equilibrium where the ε-perfect aggregation benchmark is achieved.

So on large networks, society is very likely to aggregate information as well as possible.

The uncertainty in this statement is over the network, as there is always a small probability

of a realized network which obstructs learning (e.g., an agent has no neighbors). We give

an outline of the argument next, and the proof appears in Appendix C.

Outline of the argument. To give intuition for the result, we first describe why the theorem

holds on the complete network21 in the m = 1 case. This echoes the intuition of the example

in the introduction. We then discuss the challenges involved in generalizing the result to

our general stochastic block model networks, and the techniques we use to overcome those

challenges.

Consider a time-t agent, (i, t). We define her social signal ri,t to be the optimal estimate

of θt−1 based on the actions she has observed in her neighborhood. On the complete

network, all players have the same social signal, which we call rt.
22

At any equilibrium, each agent’s action is a weighted average of her private signal and

this social signal:23

(4.1) ai,t = ŵissi,t + (1− ŵis)rt.

The weight ŵis depends only on the precision of agent i’s signal. We call the weights of two

distinct signal types ŵAs and ŵBs .

Now observe that each time-(t + 1) agent can average the time-t actions of each type,

which can be written as follows using (4.1) and si,t = θt + ηi,t:

1

nA

∑
i:σ2

i=σ
2
A

ai,t = ŵAs θt + (1− ŵAs )rt +O(n−1/2),

21 Note this is a special case of the stochastic block model.
22 In particular, agent (i, t) sees everyone’s past action, including ai,t−1.
23 Agent i’s weights on her observations si,t and ρaj,t−1 sum to 1, because the optimal action is an unbiased
estimate of θt.
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1

nB

∑
i:σ2

i=σ
2
B

ai,t = ŵBs θt + (1− ŵBs )rt +O(n−1/2).

Here nA and nB denote the numbers of agents of each type, and the O(n−1/2) error terms

come from averaging the signal noises ηi,t of agents in each group. In other words, by the

law of large numbers, each time-(t+ 1) agent can obtain precise estimates of two different

convex combinations of θt and rt. Because the two weights, ŵAs and ŵBs , are distinct, she can

approximately solve for θt as a linear combination of the average actions from each type (up

to signal error). It follows that in the equilibrium we are considering, the agent must have

an estimate at least as precise as what she can obtain by the strategy we have described,

and will thus be very close the benchmark. The estimator of θt that this strategy gives will

place negative weight on 1
nA

∑
i:σ2

i=σ
2
B
ai,t−1, thus anti-imitating the agents of signal type

A. It can be shown that the equilibrium we construct in which agents learn will also have

agents anti-imitating others.

To use the same approach in general, we need to show that each individual observes a

large number of neighbors of each signal type with similar social signals. More precisely, the

proof shows that agents with the same network type have highly correlated social signals.

This is not easy, because the social signals at an equilibrium are endogenous, and in a

general network will depend to some extent on many details of the network.

A key insight allowing us to overcome this difficulty and get a handle on social signals is

that the number of paths of length two between any two agents is nearly deterministic in

our random graph model. While any two agents of the same network type may have very

different neighborhoods, their connections at distance two will typically look very similar.

(In fact, “length two” is not essential: in sparser random graphs, this statement holds with

a different length, and the same arguments go through, as we discuss below.) This gives

us a nice expression for the social signal as a combination of private signals and the social

signals from two periods earlier. Using this expression, we show that if agents of the same

network type have similar social signals two periods ago, the same will hold in the current

period. We use this to show that Φ2 maps the neighborhood of covariance matrices where

all social signals are close to perfect to itself, and then we apply a fixed point theorem. �

We have assumed that agents know the signal types of their neighbors exactly, but this

assumption could be relaxed. For example, if each agent were instead to receive only a noisy

signal about each of her neighbors’ signal types, she could solve her estimation problem in a

similar way. By conditioning on the observable correlate of signal type, an agent could form

enough distinct linear combinations reflecting the previous state and older social signals to
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form a precise estimate of the previous state, thus achieving the benchmark. Of course, in

finite populations the precision of this inference would depend on the details.

Concerning the rate of learning as n grows, the proof implies that, under the assumptions

of the theorem, the error in agents’ estimates of θt−1 is O(n−1/2); thus they learn at the

same rate as in the central limit theorem, though the constants will depend considerably on

the network. Section 4.5 offers numerical evidence on the quality of aggregation in networks

of practically relevant sizes.

Sparser random graphs. The random graphs we defined have held (pkk′) fixed for sim-

plicity. This yields expected degrees that grow linearly in the population size, which may

not be the desired asymptotic model. While it is important to have neighborhoods “large

enough” (i.e., growing in n) to permit the application of laws of large numbers, their rate

of growth can be considerably slower than linear: for example, our proof extends directly

to degrees that scale as nα for any α > 0. Instead of studying Φ2 and second-order neigh-

borhoods, we apply the same analysis to Φk and kth-order neighborhoods for k larger than

1/α.

4.4. Non-diverse signals. So far we have seen that good aggregation can be obtained

robustly across network distributions assuming signal diversity. We now show this result

is tight: without signal diversity, there are environments in which equilibrium aggregation

is much worse.

To gain an intuition for this, note that it is essential to the argument from the previous

subsection that different agents have different signal precisions. Recall the complete graph

case we examined in our outline of the argument. From the perspective of an agent (i, t+1),

the fact that type A and type B neighbors place different weights on the social signal rt

allows i to prevent the social signal used by her neighbors from confounding her estimate

of θt. We now show that without diversity in signal quality, information aggregation may

be much worse.

We first study a class of networks with certain symmetries and show that for this class

there is a unique equilibrium, and at this equilibrium good aggregation is not achieved.

We then present a corollary of this result showing that improving some agents’ signals can

hurt learning, which distinguishes this regime not only in terms of its outcomes but also in

its comparative statics.

Finally, we outside that class of networks, there exists a similar equilibrium without good

aggregation on random graphs. This shows that some variation in network positions need

not give individuals enough power to identify the state, as they can under signal diversity.
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4.4.1. Graphs with symmetric neighbors.

Definition 3. A network G has symmetric neighbors if Nj = Nj′ for any j, j′ ∈ Ni.

In the undirected case, the graphs with symmetric neighbors are the complete network

and complete bipartite networks.24 For directed graphs, the condition allows a larger variety

of networks.

Consider a sequence (Gn)∞n=1 of strongly connected graphs with symmetric neighbors.

Assume that all signal qualities are the same, equal to σ2, and that m = 1.

Proposition 2. Under the assumptions in the previous paragraph, each Gn has a unique

equilibrium. There exists ε > 0 such that the ε-perfect aggregation benchmark is not

achieved at this equilibrium for any n.

All agents are bounded away from our learning benchmark at the unique equilibrium. So

all agents learn poorly compared to the diverse signals case. The proof of this proposition,

and the proofs of all subsequent results, appear in Appendix D.

This immediately implies that in environments not satisfying signal diversity, there are

network distributions—for which aggregation fails in a strong sense.

This failure of good aggregation is not due simply to a lack of sufficient information in the

environment: On the complete graph with exchangeable (i.e., non-diverse) signals, a social

planner who exogenously set weights for all agents could achieve ε-perfect aggregation for

any ε > 0 when n is large. See Appendix F for a formal statement, proof and numerical

results.25

We now give intuition for Proposition 2. In a graph with symmetric neighbors, in the

unique equilibrium, the actions of any agent’s neighbors are exchangeable.26 So actions

must be unweighted averages of observations. This prevents the sort of inference of θt

that occurred with diverse signals. This is easiest to see on the complete graph, where all

observations are exchangeable. So, in any equilibrium, each agent’s action at time t+ 1 is

equal to a weighted average of his own signal and 1
n

∑
j∈Ni aj,t:

(4.2) ai,t+1 = ŵissi,t+1 + (1− ŵis)
1

n

∑
j∈Ni

aj,t.

By iteratively using this equation, we can see that actions must place substantial weight

on the average of signals from, e.g., two periods ago. Although the effect of signal errors

24 These are both special cases of our stochastic block model from Section 4.3.
25 We thank Alireza Tahbaz-Salehi for suggesting this analysis.
26 The proof of the proposition establishes uniqueness by showing that Φ is a contraction in a suitable
sense.
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ηi,t vanishes as n grows large, the correlated error from past changes in the state νt never

“washes out” of estimates, and this is what prevents perfect aggregation.

We can also explicitly characterize the limit action variances and covariances. Consider

again the complete graph and the (unique) symmetric equilibrium. Let V ∞ denote the

limit, as n grows large, of the variance of any agent’s error (ai,t − θt). Let Cov∞ denote

the limit covariance of any two agent’s errors. By direct computations, these can be seen

to be related by the following equations, which have a unique solution:

(4.3) V ∞ =
1

σ−2 + (ρ2Cov∞ + 1)−1
, Cov∞ =

(ρ2Cov∞ + 1)−1

[σ−2 + (ρ2Cov∞ + 1)−1]2
.

This variance and covariance describe behavior not only in the complete graph, but to

any graph with symmetric neighbors where degrees tend uniformly to ∞. In such graphs,

too, the variances of all agents converge to V ∞ and the covariances of all pairs of agents

converge to Cov∞, as n→∞.27 This implies that, in large graphs, the equilibrium action

distributions are close to symmetric. Indeed, it can be deduced that these actions are equal

to an appropriately discounted sum of past θt−`, up to error terms (arising from ηi,t−`) that

vanish asymptotically.

4.4.2. A corollary: Perverse consequences of improving signals. As a consequence of The-

orem 1 and Proposition 2, we can give an example where making one agent’s private

information less precise helps all agents.

Corollary 1. There exists a network G and an agent i ∈ G such that increasing σ2
i gives

a Pareto improvement in equilibrium variances.

To prove the corollary, we consider the complete graph with homogeneous signals and

n large. By Proposition 2, all agents do substantially worse than perfect aggregation. If

we instead give agent 1 a very uninformative signal, all players can anti-imitate agent 1

and achieve nearly perfect aggregation. When the signals at the initial configuration are

sufficiently imprecise, this gives a Pareto improvement.

4.4.3. Non-diverse signals in large random graphs. Our results on non-diverse signals have

used graphs with symmetric neighbors. In those graphs, the unique prediction is that

learning outcomes fall far short of the perfect aggregation benchmark. We would like to

show that exact symmetry is not essential, and that the lack of good aggregation is robust

to adding noise. To this end, we now show that in Erdos-Renyi random networks, there

27 This is established by the same argument as in the proof of Proposition 3.
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is an equilibrium with essentially the same learning outcomes when signal precisions are

homogeneous.

Let (Gn)∞n=1 be a sequence of undirected random networks, with Gn having n nodes, with

any pair of distinct nodes linked (i.i.d.) with positive probability p. We continue to assume

all signal variances are equal to σ2 and m = 1.

Proposition 3. Under the assumptions in the previous paragraph, there exists ε > 0

such that asymptotically almost surely there is an equilibrium on Gn where the ε-perfect

aggregation benchmark is not achieved.

The equilibrium covariances in this equilibrium again converge to V ∞ and Cov∞ (for

any value of p). Thus, when there is only one signal type, we obtain the same learning

outcomes asymptotically on a variety of networks.

4.5. Aggregation and its absence without asymptotics: Numerical results. The

results presented in this section so far can be summarized as saying that, to achieve the

aggregation benchmark of essentially knowing the previous period’s state, there need to be

at least two different private signal variances in the network. Formally, this is a knife-edge

result: As long as private signal variances differ at all, then as n→∞, perfect aggregation

is achieved; with exactly homogeneous signal endowments, agents’ variances are much

higher. In this section, we show numerically that for fixed values of n, the transition from

the first regime to the second is actually gradual: Action error remains well above the

perfect aggregation benchmark when signal qualities differ slightly.28

In Figure 4.1, we study the complete network with ρ = 0.9. The private signal variance

of agents of signal type A is fixed at σ2
A = 2. We then vary the private signal variance of

agents of type B (the horizontal axis), and compute the equilibrium variance of ai,t − θ

for agents of type A (plotted on the vertical axis). The variance of type A agents at the

benchmark is 2/3. We note several features: First, the change in aggregation quality is

continuous, and indeed reasonably gradual, for n in the hundreds as we vary σ2. Second, as

n increases, we can see that the curve is moving toward the theoretical limit: a discontinuity

at σ2
B = 2. Third, there are nevertheless considerable gains to increasing n, the number of

agents: going from n = 200 to n = 600 results in a gain of 5.2% in precision when σ2
B = 3.

To examine whether the large network results above work in realistic networks with mod-

erate degrees, we present numerical evidence based on the data in Banerjee, Chandrasekhar,

Duflo, and Jackson (2013). This data set contains the social networks of villages in rural

28 We repeatedly apply Φ, as written in (3.3), to an initial covariance matrix. In doing full grid searches
on many networks, we did not find any instances in which the fixed point found depended on the choice of
initial point.
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Figure 4.1. Distinct Variances Result in Learning
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India.29 There are 43 networks in the data, with an average network size of 212 nodes

(standard deviation = 53.5), and an average degree of 19 (standard deviation = 7.5). For

each network, we calculated the equilibrium for two different situations. The first is the

homogeneous case, with all signal variances set to 2. The latter is a heterogeneous case,

where a majority has the same signal distribution as in the first case, but a minority has a

substantially worse signal. More precisely, we kept the signal variances of people that have

access to electricity (92% of the nodes) at 2, while setting the signal variances of the rest

at 5.30

In Figure 4.2(a), the green points show that in the vast majority of networks, the median

agent in terms of learning quality has a lower error variance (i.e., more precise estimates of

the state) in the heterogeneous case. Now consider an agent who is at the 25th percentile

in terms of error variance (and thus estimates the state better than 75 percent of agents);

the red points show that the advantage of the heterogeneous case becomes even more stark

for these agents. In Figure 4.2(b), we pool all the agents together across all networks

and depict the empirical distribution of error variance. In the homogeneous case (red

29 We take the networks that were used in the estimation in Banerjee, Chandrasekhar, Duflo, and Jackson
(2013). As in their work, we take every reported relationship to be reciprocal for the purposes of sharing
information. This makes the graphs undirected.
30 We made the heterogeneous signals dependent on electricity status because we believe signal precision
would in practice be correlated with, e.g., access to communication technology (or similar attributes). In
the figure, we plot outcomes of the nodes with access to electricity—i.e., those whose signal variances did
not change in our exercise.
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Figure 4.2. Prediction Variance In Indian Villages
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(a) The error variance of the agent in the 25th, 50th and 75th percentiles in each village, in
the homogeneous and heterogeneous cases. (b) Histograms of error variance (we pool all
the agents together across all networks) for the homogeneous (red) and heterogeneous

(blue) case. Vertical lines show the asymptotic variance for the complete graph as n→∞
for the two cases.

histogram), there is bunching around the asymptotic variance for the homogeneous-signal

case. When we introduce heterogeneity in signal quality (blue histogram), a substantial

share of households have prediction variance below this boundary, thus benefiting from

the heterogeneity. Overall, we see that even in networks with relatively small degree our

qualitative results hold: adding heterogeneity helps learning in the population, even with

a small group of agents with the new signal type.

5. The importance of understanding correlations

In the proof of our positive result on achieving the perfect aggregation benchmark (Theo-

rem 1), a key aspect of the argument involved agents filtering out confounding information

from their neighbors’ estimates by optimally responding to the correlation structure of

these estimates. In this section, we demonstrate that this sort of behavior is essential for

nearly perfect aggregation, and that more naively imitative heuristics yield outcomes far

from the benchmark. Empirical studies have found evidence (depending on the setting

and the subjects) consistent with both Bayesian behavior and correlation-neglect in the

presence of correlated observations (e.g., Eyster, Rabin, and Weizsacker (2015); Dasaratha

and He (2017); Enke and Zimmermann (2019)).
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We begin with a canonical model of agents who do not account for correlations among

their neighbors’ estimates conditional on the state, and show by example that naive agents

achieve much worse learning than Bayesian agents, and thus fail to reach the perfect aggre-

gation benchmark. We then formalize the idea that accounting for correlations in neighbors’

actions is crucial to reaching the benchmark. This is done by demonstrating a general lack

of asymptotic learning by naive agents, and the techniques extend easily to alternative

behavioral specifications. Finally, we show that even in fixed, finite networks, any positive

weights chosen by optimizing agents will be Pareto-dominated.

5.1. Naive agents. In this part we introduce agents who misunderstand the distribution

of the signals they are facing and who therefore do not update as Bayesians with a correct

understanding of their environment. We consider a particular form of misspecification that

simplifies solving for equilibria analytically:31

Definition 4. We call an agent naive if she believes that all neighbors choose actions equal

to their private signals and maximizes her expected utility given these incorrect beliefs.

Equivalently, a naive agent believes her neighbors all have empty neighborhoods. This is

the analogue, in our model, of “best-response trailing naive inference” (Eyster and Rabin,

2010). So naive agents understand that their neighbors’ actions from the previous period

are estimates of θt−1. But they think each such estimate is independent given the state,

and that the precision of the estimate is equal to the signal precision of the corresponding

agent.

In Figure 5.1, we compare Bayesian and naive learning outcomes. As in Figure 4.1,

we consider a complete network where half of agents have signal variance σ2
A = 3 and we

vary the signal variance σ2
B of the remaining agents. We observe that naive agents learn

substantially worse than rational agents, whether signals are diverse or not. Formal analysis

and formulas for variances under naive learning can be found in Appendix E.

5.2. Understanding correlation is essential for reaching the benchmark. We now

show more generally that naive agents all fail to achieve perfect aggregation on any sequence

of growing networks.

Consider a sequence of undirected networks (Gn)∞n=1 with n agents in Gn.

31 A seminal paper studying boundedly rational learning rules in networks is Bala and Goyal (1998). There
are a number of possible variants of our behavioral assumption, and it is straightforward to numerically
study alternative specifications of behavior in our model (Alatas, Banerjee, Chandrasekhar, Hanna, and
Olken (2016) consider one such variant).
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Figure 5.1. Bayesian and Naive Learning
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Proposition 4. Assume that all private signal variances are bounded below by σ2 > 0. Fix

any sequence of naive equilibria on Gn. Then there is an ε > 0 such that, for all n, the

ε-aggregation benchmark is not achieved by any agent i at the naive equilibrium.

The essential idea is that at time t+ 1 observed time-t actions all put weight on actions

from period t−1, which causes θt−1 to have a (positive weight) contribution to all observed

actions. Agents do not know θt−1 and, with positive weights, cannot take any linear combi-

nation that would recover it. Even with a very large number of observations, this confound

prevents agents from learning yesterday’s state precisely.

To make the argument more precise, assume toward a contradiction that agent i achieves

the ε-perfect aggregation benchmark for an arbitrarily small ε. Because of the confounding

discussed in the last paragraph, she would have to observe many neighbors who place

almost all of their weight on their private signals. Because the network is undirected,

though, these neighbors themselves see i. Since i’s action in this hypothetical reflects the

state very precisely, the neighbors would do better by placing substantial weight on agent

i and not just on their private signals. So we cannot have such an agent i.

In summary, bidirectional observation presents a fundamental obstruction to attaining

the best possible benchmark of aggregation. This is related to a basic observation about

learning from multivariate Gaussian signals about a parameter: if the signals (here, social

observations), conditional on the state of interest (θt) are all correlated and the correlation

is bounded below, away from zero, (here this occurs because all involve some indirect weight
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on θt−2) then the amount one can learn from these signals is bounded, even if there are

infinitely many of them. Related obstructions to learning play an important role in Harel,

Mossel, Strack, and Tamuz (2017).

The statement of the proposition uses our functional form specification of naiveté. How-

ever, it is evident from the proof that the method extends to alternative specifications of

agents who estimate θt−1 by averaging their observations with nonnegative weights, and

then combine this social information and private signals in a reasonable (e.g., Bayesian)

manner. This nests various other specifications of correlation neglect. Moreover, the same

proof shows that in any sequence of Bayesian equilibria where all agents use positive

weights, no agent can learn well.

5.3. Without anti-imitation, outcomes are Pareto-inefficient. The previous section

argued that anti-imitation is critical to achieving the perfect aggregation benchmark. We

now show that even in small networks, where that benchmark is not relevant, any equi-

librium without anti-imitation is Pareto-inefficient relative to another steady state. This

result complements our asymptotic analysis by showing a different sense (relevant for small

networks) in which anti-imitation is necessary to make the best use of information.

Our result in this section defines a profile of behavior that results in a steady state Pareto-

dominating a given equilibrium. To make this formal, we make the following definition:

Definition 5. The steady state associated with weights W and ws is the (unique) covari-

ance matrix V ∗ such that if actions have a variance-covariance matrix given by Vt = V ∗

and next-period actions are set using weights (W ,ws), then Vt+1 = V ∗ as well.

In this definition of steady state, instead of optimizing (as at equilibrium) agents use

fixed weights in all periods. By a straightforward application of the contraction mapping

theorem, if agents use any non-negative weights under which covariances remain bounded

at all times, there is unique steady state.

Proposition 5. Suppose the network G is strongly connected and some agent has more

than one neighbor. Given any naive equilibrium or any Bayesian equilibrium where all

weights are positive, the variances at that equilibrium are Pareto-dominated by variances

at another steady state.

The basic argument behind Proposition 5 is that if agents place marginally more weight

on their private signals, this introduces more independent information that eventually ben-

efits everyone. In the proof in Appendix D, we state and prove a more general result with

weaker hypotheses on behavior.
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In a review of sequential learning experiments, Weizsäcker (2010) finds that subjects

weight their private signals more heavily than is optimal (given the empirical behavior of

others they observe). Proposition 5 implies that in our environment with optimizing agents,

it is actually welfare-improving for individuals to “overweight” their own information rela-

tive to best-response behavior.

Discussion of conditions in the proposition. We next briefly discuss the sufficient

conditions in the proposition statement. First, it is clear that some condition on neighbor-

hoods is needed: If every agent has exactly one neighbor and updates rationally or naively,

there are no externalities and the equilibrium weights are Pareto optimal.32 Second, the

condition on equilibrium weights says that no agent anti-imitates any of her neighbors.

This assumption makes the analysis tractable, but we believe the basic force also works in

finite networks with some anti-imitation.

Proof sketch. The idea of the proof of the rational case is to begin at the steady state

and then marginally shift the rational agent’s weights toward her private signal. By the

envelope theorem, this means agents’ actions are less correlated but not significantly worse

in the next period. We show that if all agents continue using these new weights, the

decreased correlation eventually benefits everyone. In the last step, we use the absence of

anti-imitation, which implies that the updating function associated with agents using fixed

(as opposed to best-response) weights is monotonic in terms of the variances of guesses. To

first order, some covariances decrease while others do not change after one period under

the new weights. Monotonicity of the updating function and strong connectedness imply

that eventually all agents’ variances decrease.

The proof in the naive case is simpler. Here a naive agent is overconfident about the

quality of her social information, so she would benefit from shifting some weight from her

social information to her signal. This deviation also reduces her correlation with other

agents, so it is Pareto-improving.

An illustration. An example illustrates the phenomenon:

Example 3. Consider n = 100 agents in an undirected circle—i.e., each agent observes

the agent to her left and the agent to her right. Let σ2
i = σ2 be equal for all agents and

ρ = .9. The equilibrium strategies place weight ŵs on private signals and weight 1
2
(1− ŵs)

on each observed action.

32 In fact, the result of Proposition 5 (with the same proof) applies to a larger class of networks: it is
sufficient that, starting at each agent, there are two paths of some length k to a rational agent and another
distinct agent.



SOCIAL LEARNING IN A DYNAMIC ENVIRONMENT 28

When σ2 = 10, the equilibrium weight is ŵs = 0.192 while the welfare-maximizing sym-

metric weights have ws = 0.234. That is, weighting private signals substantially more is

Pareto improving. When σ2 = 1, the equilibrium weight is ŵs = 0.570 while the wel-

fare maximizing symmetric weights have ws = 0.586. The inefficiency persists, but the

equilibrium strategy is now closer to the optimal strategy.

6. Related literature

We now put our contribution in the context of the extensive literature on social learning

and learning in networks.33

6.1. DeGroot and other network models. Play in the stationary linear equilibria of

our model closely resembles behavior in the DeGroot (1974) and Friedkin and Johnsen

(1997) heuristics, where agents update by linearly aggregating network neighbors’ past

estimates, with constant weights on neighbors over time. We now discuss how our model

compares to existing work on these kinds of models—both in terms of foundations and

outcomes.

DeMarzo, Vayanos, and Zweibel (2003) justified the DeGroot heuristic by assuming

that agents have an oversimplified model of their environment. In their model, the state is

drawn once and for all at time zero, and each agent receives one signal about it; then agents

repeatedly observe each other’s conditional expectations of the state and form estimates. At

time zero, assuming all randomness is Gaussian, the Bayesian estimation rule is linear with

certain weights. DeMarzo, Vayanos, and Zweibel (2003) made the behavioral assumption

that in subsequent periods, agents treat the informational environment as being identical

to that of the first period (even though past learning has, in fact, induced redundancies

and correlations). In that case, the agents behave according to the DeGroot rule, using the

same weights over time. Recently, Jadbabaie, Molavi, Sandroni, and Tahbaz-Salehi (2012)

and Molavi, Tahbaz-Salehi, and Jadbabaie (2018) have offered powerful new analyses of

these types of heuristics, and have introduced flexible forms suited to a state that changes

over time. We give an alternative, Bayesian microfoundation for the same sort of rule by

studying a different environment. Our foundation relies on the fact that the environment

is stationary and so the joint distribution of the random variables in the model (neighbors’

estimates and the state of interest) is actually stationary.34

33 For surveys of different parts of this literature, see, among others, Acemoglu and Ozdaglar (2011), Golub
and Sadler (2016), and Mossel and Tamuz (2017).
34 Indeed, agents behaving according to the DeGroot heuristic even when it is not appropriate might have
to do with their experiences in stationary environments where it is closer to optimal.



SOCIAL LEARNING IN A DYNAMIC ENVIRONMENT 29

Concerning learning outcomes under the DeGroot learning rule, DeMarzo, Vayanos, and

Zweibel (2003) emphasized that in their model, the stationary rule could in general be

far from optimal in finite populations. Golub and Jackson (2010) showed that DeGroot

agents could nevertheless converge to precise estimates in large networks as long as no

agent has too prominent a network position, and not otherwise. Less demanding sufficient

conditions for good DeGroot-style learning were given by Jadbabaie, Molavi, Sandroni, and

Tahbaz-Salehi (2012) in a world with a fixed state but ongoing arrival of information. An

overall message that emerges from these papers is that in these fixed-state environments,

certain simple heuristics (requiring no sophistication about correlations between neighbors’

behavior) can allow agents to guess the state quite precisely.35 Our findings highlight

new obstructions to naive learning arising in a world with a changing state: agents need

a sophisticated response to the correlation in neighbors’ estimates that arises from those

neighbors’ past learning.

Moreover, in contrast to the environment of DeMarzo, Vayanos, and Zweibel (2003), even

Bayesian agents who understand the environment perfectly are not guaranteed to be able to

aggregate information well (Section 4.4). Bayesians’ good learning in our environment, and

its failure, depend on conditions—namely, signal diversity throughout the network—that

differ markedly from the ones that play a role in the papers discussed above.

6.2. Recent models with evolving states. Several recent papers in computer science

and engineering study environments similar to ours. Frongillo, Schoenebeck, and Tamuz

(2011) study (in our notation) a θt that follows a random walk (ρ = 1).36 They examine

agents who learn using fixed (exogenous) weights on arbitrary networks. They characterize

the steady-state distribution of behavior with arbitrary (non-equilibrium) fixed weights.

They also examine best-response (equilibrium) weights on a complete network, where all

agents observe everyone’s last-period action. Their main result concerning these shows

that the equilibrium weights can be inefficient. This is generalized by our Proposition 5 on

Pareto-inefficiency on an arbitrary graph. Our existence result (Proposition 1) generalizes

the construction in their paper from the symmetric case of the complete network to arbitrary

networks.

35Of course, when the model is enriched in various directions, the findings are not uniformly optimistic for
naive learning. For instance, Akbarpour et al. (2017) show that with a fixed state and a changing society,
DeGroot learning can be quite inefficient, because agents do not know, even approximately, how precise
the guesses of various contacts are.
36 For an early model of repeated learning about a changing state based on social information, see Ellison
and Fudenberg (1995); that model differs in that there is no persistence in the state over time.
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The stochastic process and information structure in Shahrampour, Rakhlin, and Jad-

babaie (2013) are also the same as ours, though their analysis does not consider optimizing

agents. The authors consider a class of fixed weights and study heuristics, computing or

bounding various measures of welfare. When we study Pareto inefficiency, we compare

welfare under such fixed exogenous weights with the welfare obtained by optimizing agents

at equilibrium. Because weights in our model are determined in a Nash equilibrium, we

can consider how they respond endogenously to changes in the environment (e.g., network).

We also give conditions for good learning even when agents are optimizing for themselves,

as opposed to being programmed to achieve a global objective.

In economics, the model in Alatas, Banerjee, Chandrasekhar, Hanna, and Olken (2016)

most closely resembles ours. There, agents are not fully Bayesian, ignoring the correlation

between social observations. The model is estimated using data on social learning in In-

donesian villages, where the state variables are the wealths of villagers. As we show, how

rational agents are in their inferences plays a major role in the accuracy of such aggrega-

tion processes. Our model provides foundations for structural estimation with Bayesian

behavior as well as testing of the Bayesian model against behavioral alternatives such as

that of Alatas, Banerjee, Chandrasekhar, Hanna, and Olken (2016); we discuss this below

in Section 7.1.

6.3. Classical social learning models. A canonical model of social learning involves

infinitely many agents choosing, in sequence, from finitely many (often two) actions to

match a fixed state, with access to predecessors’ actions (Bikhchandani, Hirshleifer, and

Welch (1992); Banerjee (1992); Smith and Sørensen (2000); Eyster and Rabin (2010)).

The first models were worked out with observation of all predecessors, but recent papers

have developed analyses where some subset of predecessors seen by each agent (Acemoglu,

Dahleh, Lobel, and Ozdaglar, 2011; Eyster and Rabin, 2014; Lobel and Sadler, 2015a,b).

These models thus featAgents learn about a state using private signals and the past actions

of their neighbors. In contrast to most models of social learning in a network, the target

being learned about is moving around. We ask: when can a group aggregate information

quickly, keeping up with the changing state? First, if each agent has access to neighbors

with sufficiently diverse kinds of signals, then Bayesian learning achieves good information

aggregation. Second, without such diversity, there are cases in which Bayesian information

aggregation necessarily falls far short of efficient benchmarks. Third, good aggregation

requires agents who understand correlations in neighbors’ actions with the sophistication

needed to concentrate on recent developments and filter out older, outdated information.

Agents’ stationary equilibrium learning rules incorporate past information by taking linear
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combinations of other agents’ past estimates (as in the simple DeGroot heuristic), and

we characterize the coefficients in these linear combinations.ure an incomplete network of

observation opportunities.

A major concern of this literature is the potential for information aggregation to stop

after some finite time due to inference problems. The discreteness of individuals’ actions

often plays an important role. Our focus is different in that we study a moving continuous

state and continuous actions, and ask how well agents aggregate information, in steady

state, about the relatively recent past. These modeling differences allow new insights to

emerge: for example, heterogeneity of signal endowments turns out to be critical for good

aggregation in the Bayesian case, which is very different from the kinds of conditions that

play a role in Smith and Sørensen (2000), Acemoglu, Dahleh, Lobel, and Ozdaglar (2011),

and Lobel and Sadler (2015a).37

Some other recent models consider Gaussian environments, and the prospects for good

learning there depend, as in our model, on agents’ ability to infer information from neigh-

bors’ actions in the presence of confounds. This is the case, for example, in Sethi and Yildiz

(2012) and Harel et al. (2017), both of which study a fixed state. In Sethi and Yildiz (2012),

learning outcomes depend on whether individuals’ (heterogeneous) priors are independent

or correlated. In Harel et al. (2017) mutual observation opportunities keep learning far

from an efficient benchmark.

Another point of contact with the classical social learning literature concerns the model-

ing of changing states: Moscarini, Ottaviani, and Smith (1998) (see also van Oosten (2016))

study learning models where the binary state evolves as a two-state Markov chain. Their

results focus largely on the frequency and dynamics of information cascades: changes in the

state can break cascades/herds and renew learning. Our main focus is on the aggregation

properties.

Finally, a robust aspect of rational learning in sequential models is anti-imitation. Eyster

and Rabin (2014) give general conditions for fully Bayesian agents to anti-imitate in the

sequential model. We find that anti-imitation also is an important feature in our dynamic

model, and in our context is crucial for good learning. Despite this similarity, there is an

important contrast between our findings and standard sequential models. In those models,

while rational agents do prefer to anti-imitate, in many cases individuals as well as society

as a whole could obtain good outcomes using heuristics without any anti-imitation: for

instance, by combining the information that can be inferred from one neighbor with one’s

37 Those conditions require either that some signals are very informative, or that some agents have access
to a large number of samples of behavior that are not based on any common signals—neither of which we
assume in our main results.
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own private signal, as in Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) and Lobel and

Sadler (2015a). Our dynamic learning environment is different, as shown in Proposition 4:

to have any hope of approaching good aggregation benchmarks, agents must respond in a

sophisticated way, with anti-imitation, to their neighbors’ (correlated) estimates.

7. Discussion and extensions

7.1. Identification and testable implications. One of the main advantages of the

parametrization we have studied is that standard methods can easily be applied to estimate

the model and test hypotheses within it. The key feature making the model econometri-

cally well-behaved is that, in the solutions we focus on, agents’ actions are linear functions

of the random variables they observe. Moreover, the evolution of the state and arrival of

information creates exogenous variation. We briefly sketch how these features can be used

for estimation and testing.

Assume the following. The analyst obtains noisy measurements ai,t = ai,t+ ξi,t of agent’s

actions (where ξi,t are i.i.d., mean-zero error terms). He knows the parameter ρ governing

the stochastic process, but may not know the network structure or the qualities of private

signals (σi)
n
i=1. Suppose also that the analyst observes the state θt ex post (perhaps with

a long delay).38

Now, consider any steady state in which agents put constant weights Wij on their neigh-

bors and wsi on their private signals over time. We will discuss the case of m = 1 to save

on notation, though all the statements here generalize readily to arbitrary m.

We first consider how to estimate the weights agents are using, and to back out the

structural parameters our model when it applies. The strategy does not rely on uniqueness

of equilibrium. We can identify the weights agents are using through standard vector

autoregression methods. In steady state,

(7.1) ai,t =
∑
j

Wijρaj,t−1 + wsi θt + ζi,t,

where ζi,t = wsi ηi,t −
∑

jWijρξj,t−1 + ξi,t are error terms i.i.d. across time. The first

term of this expression for ζi,t is the error of the signal that agent i receives at time t.

The summation combines the measurement errors from the observations aj,t−1 from the

38 We can instead assume that the analyst observes (a proxy for) the private signal si,t of agent i; we
mention how below.



SOCIAL LEARNING IN A DYNAMIC ENVIRONMENT 33

previous period.39 Thus, we can obtain consistent estimators W̃ij and w̃si for Wij and wsi ,

respectively.

We now turn to the case in which agents are using equilibrium weights. First, and

most simply, our estimates of agents’ equilibrium weights allow us to recover the network

structure. If the weight Ŵij is non-zero for any i and j, then agent i observes agent j.

Generically the converse is true: if i observes j then the weight Ŵij is non-zero. Thus,

network links can generically be identified by testing whether the recovered social weights

are nonzero. For such tests (and more generally) the standard errors in the estimators can

be obtained by standard techniques.40

Now we examine the more interesting question of how structural parameters can be

identified assuming an equilibrium is played, and also how to test the assumption of equi-

librium.

The first step is to compute the empirical covariances of action errors from observed data;

we call these Ṽ ij. Under the assumption of equilibrium, we now show how to determine

the signal variances using the fact that equilibrium is characterized by Φ(V̂ ) = V̂ and

recalling the explicit formula (3.3) for Φ. In view of this formula, the signal variances σ2
i

are uniquely determined by the other variables:

(7.2) V̂ii =
∑
j

∑
k

ŴijŴik(ρ
2V̂jk + 1) + (ŵsi )

2σ2
i .

Replacing the model parameters other than σ2
i by their empirical analogues, we obtain

a consistent estimate σ̃2
i of σi. This estimate could be directly useful—for example, to

an analyst who wants to choose an “expert” from the network and ask about her private

signals directly.

Note that our basic VAR for recovering the weights relies only on constant linear strate-

gies and does not assume that agents are playing any particular strategy within this class.

Thus, if agents are using some other behavioral rule (e.g., optimizing in a misspecified

model) we can replace (7.2) by a suitable analogue that reflects the bounded rationality in

agents’ inference. If such a steady state exists, and using the results in this section, one

can create an econometric test that is suitable for testing how agents are behaving. For

instance, we can test the hypothesis that they are Bayesian against the naive alternative

of our Section 5.1.

39 This system defines a VAR(1) process (or generally VAR(m) for memory length m).
40 Methods involving regularization may be practically useful in identifying links in the network. Manresa
(2013) proposes a regularization (LASSO) technique for identifying such links (peer effects). In a dynamic
setting such as ours, with serial correlation, the techniques required will generally be more complicated.
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7.2. Multidimensional states and informational specialization. So far, we have

been working with a one-dimensional state and one-dimensional signals, which varied only

in their precisions. Our message about the value of diversity is, however, better interpreted

in a mathematically equivalent multidimensional model.

Consider Bayesian agents who learn and communicate about two independent dimensions

simultaneously (each one working as in our model). If all agents have equally precise

signals about both dimensions, then society may not learn well about either of them. In

contrast, if half the agents have superior signals about one dimension and inferior signals

about the other (and the other half has the reverse), then society can learn well about

both dimensions. Thus, the designer has a strong preference for an organization with

informational specialization where some, but not all, agents are expert in a particular

dimension.41

Of course, there are many familiar reasons for specialization, in information or any other

activity. For instance, it may be that more total information can be collected in this case,

or that incentives are easier to provide. Crucially, specialization is valuable in our setting

for a reason distinct from all these: it helps agents with their inference problems.

7.3. General distributions and dynamic networks. The example of the previous sub-

section involved trivially extending our model to several independent dimensions. We now

briefly discuss a more substantive extension, which applies to more realistic signal struc-

tures.

Our analysis of stationary linear learning rules relied crucially on the assumptions that

the innovations νt and signal errors ηi,t are Gaussian random variables. However, we believe

the basic logic of our result about good aggregation with signal diversity (Theorem 1) does

not depend on this particular distributional assumption, or the exact functional form of

the AR(1) process.

Suppose we have

θt = T(θt−1, νt) and si,t = S(θt, ηt)

and consider more general distributions of innovations νt and signal errors ηt. For simplicity,

consider the complete graph and m = 1.42 Because θt−1 is still a sufficient statistic for the

past, an agent’s action in period t will still be a function of her subjective distribution

over θt−1 and her private signal. An agent with type τ (which is observable) who believes

41This raises important questions about what information agents would acquire, and whom they would
choose to observe, which are the focus of a growing literature. For recent papers in environments most
closely related to ours, see Sethi and Yildiz (2016), Myatt and Wallace (2017), Fudenberg et al. (2019),
and Liang and Mu (2019), among others.
42These states and signals may now be multidimensional.
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θt−1 is distributed according to D takes an action equal to f(τ,D, si,t). Here, τ could

reflect the distribution of agent i’s signal, but also perhaps her preferences. We no longer

assume that an agent’s action is her posterior mean of the random variable: it might be

some other statistic, and might be multi-dimensional. Similarly, information need not be

one-dimensional, or characterized only by its precision.

This framework gives an abstract identification condition: agents can learn well if, for any

feasible distribution D over θt−1, the state θt can be inferred from the observed distributions

of actions, i.e., distribution of (τ, f(τ,D, si,t)), which each agent would essentially know

given enough observations.

Now consider a time-t agent i. Suppose now that any possible distribution that time-

(t − 1) agents might have over θt−2 can be fully described by a finite tuple of parameters

d ∈ Rp (e.g., a finite number of moments). For each type τ of t− 1 agent that i observes,

the distribution of f(τ, d, si,t) gives an agent a different measurement of d, which is a

summary of beliefs about θt−2, and θt−1. Assuming there is not too much “collinearity,”

these measurements of the finitely many parameters of interest should, in fact, provide

independent information about θt−1. Thus, as long as the set of signal types τ is sufficiently

rich, we would expect the identification condition to hold.

Throughout the paper, we have studied an unchanging network. However, we can also

consider neighborhoods that change over time, which is obviously an important possibility

in reality. Notice that even if the neighborhood of an agent changes from period to period,

if some of the individuals in that neighborhood are randomly sampled, this can provide

information about the empirical distribution of actions of various types as described above.

That, in turn, can facilitate the identification of recent states. Considering dynamic net-

works requires different solution concepts, and is thus left for future work, but the ideas

sketched here suggest that conditions for good learning can be formulated in that setting.
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Weizsäcker, G. (2010): “Do we follow others when we should? A simple test of rational expectations,”

The American Economic Review, 100, 2340–2360.

Appendix A. Details of definitions

A.1. Exogenous random variables. Fix a probability space (Ω,F ,P). Let (νt, ηi,t)t∈Z,i∈N

be normal, mutually independent random variables, with νt having variance 1 and ηi,t hav-

ing variance σ2
i . Also take a stochastic process (θt)t∈Z, such that for each t ∈ Z and i ∈ N ,

we have (for 0 < |ρ| ≤ 1)

θt = ρθt−1 + νt

Such a stochastic process exists by standard constructions of the AR(1) process or, in the

case of ρ = 1, of the Gaussian random walk on a doubly infinite time domain. Define

si,t = θt + ηi,t.

A.2. Formal definition of game and stationary linear equilibria.

Players and strategies. The set of players (or agents) is A = {(i, t) : i ∈ N, t ∈ Z}. The

set of (pure) responses of an agent (i, t) is defined to be the set of all Borel-measurable

functions σ(i,t) : R × (R|N(i)|)m → R, mapping her own signal and her neighborhood’s

actions, (si,t, (aNi,t−`)
m
`=1), to a real-valued action ai,t. We call the set of these functions

Σ̃(i,t). Let Σ̃ =
∏

(i,t)∈A Σ̃(i,t) be the set of response profiles. We now define the set of

(unambiguous) strategy profiles, Σ ⊂ Σ̃. We say that a response profile σ ∈ Σ̃ is a strategy

profile if the following two conditions hold

1. There is a tuple of real-valued random variables (ai,t)i∈N,t∈Z on (Ω,F ,P) such that

for each (i, t) ∈ A, we have

ai,t = σ(i,t) (si,t, (aNi,t−`)
m
`=1) .
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2. Any two tuples of real-valued random variables (ai,t)i∈N,t∈Z satisfying Condition 1

are equal almost surely.

That is, a response profile is a strategy profile if there is an essentially unique specifi-

cation of behavior that is consistent with the responses: i.e., if the responses uniquely

determine the behavior of the population, and hence payoffs.43 Note that if σ ∈ Σ, then

σ̃ = (σ′(i,t), σ−(i,t)) ∈ Σ whenever σ′(i,t) ∈ Σ̃(i,t). This is because any Borel-measurable func-

tion of a random variable is itself a well-defined random variable. Thus, if we start with

a strategy profile and consider agent (i, t)’s deviations, they are unrestricted: she may

consider any response.

Payoffs. The payoff of an agent (i, t) under any strategy profile σ ∈ Σ is

ui,t(σ) = −E
[
(ai,t − θt)2

]
∈ [−∞, 0],

where the actions ai,t are taken according to σ(i,t) and the expectation is taken in the

probability space we have described. This expectation is well-defined because inside the

expectation there is a nonnegative, measurable random variable, for which an expectation

is always defined, though it may be infinite.

Equilibria. A (Nash) equilibrium is defined to be a strategy profile σ ∈ Σ such that, for

each (i, t) ∈ A and each σ̃ ∈ Σ such that σ̃ = (σ′(i,t), σ−(i,t)) for some σ′(i,t) ∈ Σ(i,t), we have

ui,t(σ̃) ≤ ui,t(σ).

For p ∈ Z, we define the shift operator Tp to translate variables to time indices shifted

p steps forward. This definition may be applied, for example, to Σ.44 A strategy profile

σ ∈ Σ is stationary if, for all p ∈ Z, we have Tpσ = σ.

We say σ ∈ Σ is a linear strategy profile if each σi is a linear function. Our analysis

focuses on stationary, linear equilibria.

Appendix B. Existence of equilibrium: Proof of Proposition 1

Recall from Section 3.3 the map Φ, which gives the next-period covariance matrix Φ(Vt)

for any Vt. The expression given there for this map ensures that its entries are continuous

functions of the entries of Vt. Our strategy is to show that this function maps a compact

43 Condition 1 is necessarily to rule out response profiles such as the one given by σi,t (si,t, ai,t−1) = |ai,t−1|+
1. This profile, despite consisting of well-behaved functions, does not correspond to any specification of
behavior for the whole population (because time extends infinitely backward). Condition 2 is necessary to
rule out response profiles such has the one given by σi,t (si,t, ai,t−1) = ai,t−1, which have many satisfying
action paths, leaving payoffs undetermined.
44 I.e., σ′ = Tpσ is defined by σ(i,t) = σ(i,t−p).
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set, K, to itself, which, by Brouwer’s fixed-point theorem, ensures that Φ has a fixed point

V̂ . We will then argue that this fixed point corresponds to a stationary linear equilibrium.

We begin by defining the compact set K. Because memory is arbitrary, entries of Vt

are covariances between pairs of neighbor actions from any periods available in memory.

Let k, l be two indices of such actions, corresponding to actions taken at nodes i and j

respectively, and let σi = max{σ2
i , ρ

m−1σ2
i + 1−ρm−1

1−ρ }. Now let K ⊂ V be the subset of

symmetric positive semi-definite matrices Vt such that, for any such k, l,

Vkk,t ∈
[
min

{
1

1 + σ−2i
,
ρm−1

1 + σ−2i
+

1− ρm−1

1− ρ

}
,max

{
σ2
i , ρ

m−1σ2
i +

1− ρm−1

1− ρ

}]
Vkl,t ∈ [−σiσj, σiσj].

This set is closed and convex, and we claim that Φ(K) ⊂ K.
To show this claim, we will first find upper and lower bounds on the variance of any

neighbor’s action (at any period in memory). For the upper bound, note that a Bayesian

agent will not choose an action with a larger variance than her signal, which has variance

σ2
i . For a lower bound, note that if she knew the previous period’s state and her own

signal, then the variance of her action would be 1
1+σ−2

i

. Thus an agent observing only noisy

estimates of θt and her own signal can do no better.

By the same reasoning applied to the node-i agent from m periods ago, the variance of

the estimate of θt−1 based on i’s action from m periods ago is at most ρm−1σ2
i + 1−ρm−1

1−ρ and

at least ρm−1

1+σ−2
i

+ 1−ρm−1

1−ρ . This establishes bounds on Vkk,t for observations k coming from

either the most recent or the oldest available period. The corresponding bounds from the

periods between t−m+ 1 and t are always weaker than at least one of the two bounds we

have described, so we need only take minima and maxima over two terms.

This established the claimed bound on the variances. The bounds on covariances follow

from Cauchy-Schwartz.

We have now established that there is a variance-covariance matrix V̂ such that Φ(V̂ ) =

V̂ . By definition of Φ, this means there exists some weight profile (W,ws) such that,

when applied to prior actions that have variance-covariance matrix V̂ , produce variance-

covariance matrix V̂ . However, it still remains to show that this is the variance-covariance

matrix reached when agents have been using the weights (W,ws) forever.

To show this, first observe that if agents have been using the weights (W,ws) forever, the

variance-covariance matrix Vt in any period is uniquely determined and does not depend
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on t; call this V̌ .45 This is because actions can be expressed as linear combinations of

private signals with coefficients depending only on the weights. Second, it follows from our

construction above of the matrix V̂ and the weights (W,ws) that there is a distribution

of actions where the variance-covariance matrix is V̂ in every period and agents are using

weights (W,ws) in every period. Combining the two statements shows that in fact V̌ = V̂ ,

and this completes the proof.

45 The variance-covariance matrices are well-defined because the (W,ws) weights yield unambiguous strat-
egy profiles in the sense of Appendix A.
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Appendix C. Proof of Theorem 1

C.1. Notation and key notions. Let S be the (by assumption finite) set of all possible

signal variances, and let σ2 be the largest of them. The proof will focus on the covariances of

errors in social signals. Take two arbitrary agents i and j. Recall that both ri,t and rj,t have

mean θt−1, because each is an unbiased estimate46 of θt−1; we will thus focus on the errors

ri,t− θt−1. Let At denote the variance-covariance matrix (Cov(ri,t − θt−1, rj,t − θt−1))i,j and

let W be the subset of such covariance matrices. For all i, j note that Cov(ri,t− θt−1, rj,t−
θt−1) ∈ [−σ2, σ2] using the Cauchy-Schwarz inequality and the fact that Var(ri,t − θt−1) ∈
[0, σ2] for all i. This fact about variances says that no social signal is worse than putting

all weight on an agent who follows only her private signal. Thus the best-response map Φ

is well-defined and induces a map Φ̃ on W .

Next, for any δ, ζ > 0 we will define the subset Wδ,ζ ⊂ W to be the set of covariance

matrices in W such that both of the following hold:

1. for any pair of distinct agents47 i ∈ Gk
n and j ∈ Gk′

n ,

Cov(ri,t − θt−1, rj,t − θt−1) = δkk′ + ζij

where (i) δkk′ depends only on the network types of the two agents (k and k′, which

may be the same); (ii) |δkk′| < δ; and (iii) |ζij| < ζ;

2. for any single agent i ∈ Gk
n,

Var(ri,t − θt−1) = δk + ζii

where (i) δk only depends on the network type of the agent; (ii) |δk| < δ, and (iii)

|ζii| < ζ.

This is the space of covariance-matrices such that each covariance is split into two parts.

Considering (1) first, δkk′ is an effect that depends only on i’s and j’s network types, while

ζij adjusts for the individual-level heterogeneity arising from different link realizations. The

description of the decomposition in (2) is analogous.

C.2. Proof strategy.

C.2.1. A setWδ,ζ of outcomes with good learning. Our goal is to show that as n grows large,

Var(ri,t−θt−1) becomes very small, which then implies that the agents asymptotically learn.

We will take δ and ζ to be arbitrarily small numbers and show that for large enough n,

with high probability (which we abbreviate “asymptotically almost surely” or “a.a.s.”) the

46 This is because it is a linear combination, with coefficients summing to 1, of unbiased estimates of θt−1.
47 Throughout this proof, we abuse terminology by referring to agents and nodes interchangeably when
the relevant t is clear or specified nearby.
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equilibrium outcome has a social error covariance matrix At in the set Wδ,ζ . In particular,

Var(ri,t−θt−1) becomes arbitrarily small in this limit. In our constructions, the ζij (resp., ζi)

terms will be set to much smaller values than the δkk′ (resp., δk) terms, because group-level

covariances are more predictable and less sensitive to idiosyncratic realizations.

C.2.2. Approach to showing that Wδ,ζ contains an equilibrium. To show that the equilib-

rium outcome has (a.a.s.) a social error covariance matrix At in the set Wδ,ζ , the plan is

to construct a set so that (a.a.s.) W ⊂ Wδ,ζ and Φ̃(W) ⊂ W . This set will contain an

equilibrium by the Brouwer fixed point theorem, and therefore so will Wδ,ζ .

To construct the set W , we will fix a positive constant β (to be determined later), and

define

W =W β
n
, 1
n
∪ Φ̃(W β

n
, 1
n
).

We will then prove that, for large enough n, (i) Φ̃(W) ⊆ W and (ii) for another suitable

positive constant λ,

W ⊂W β
n
,λ
n
.

This will allow us to establish that (a.a.s.) W ⊂Wδ,ζ and Φ̃(W) ⊂ W , with δ and ζ being

arbitrarily small numbers.

The following two lemmas will allow us to deduce (immediately after stating them)

properties (i) and (ii) of W .

Lemma 1. For all large enough β and all λ ≥ λ(β), with probability at least 1 − 1
n

, we

have Φ̃(W β
n
, 1
n
) ⊂ W β

n
,λ
n

.

Lemma 2. For all large enough β, with probability at least 1− 1
n

, the set W β
n
, 1
n

is invariant

under48 Φ̃2, i.e., Φ̃2(W β
n
, 1
n
) ⊂ W β

n
, 1
n

.

Putting these lemmas together, a.a.s. we have,

Φ̃2(W β
n
, 1
n
) ⊂ W β

n
, 1
n

and Φ̃(W β
n
, 1
n
) ⊂ W β

n
,λ
n
.

From this it follows that W = W β
n
, 1
n
∪ Φ̃(W β

n
, 1
n
) is invariant under Φ̃ and contained in

W β
n
,λ
n
, as claimed.

C.2.3. Proving the lemmas by analyzing how Φ̃ and Φ̃2 act on sets Wδ,ζ. The lemmas are

about how Φ̃ and Φ̃2 act on the covariance matrix At, assuming it is in a certain setWδ,ζ , to

yield new covariance matrices. Thus, we will prove these lemmas by studying two periods

of updating. The analysis will come in five steps.

48 The notation Φ̃2 means the operator Φ̃ applied twice.
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Step 1: No-large-deviations (NLD) networks and the high-probability event.

Step 1 concerns the “with high probability” part of the lemmas. In the entire argument,

we condition on the event of a no-large-deviations (NLD) network realization, which says

that certain realized statistics in the network (e.g., number of paths between two nodes)

are close to their expectations. The expectations in question depend only on agents’ types.

Therefore, on the NLD realization, the realized statistics do not vary much based on which

exact agents we focus on, but rather depend only on their types. Step 1 defines the NLD

event E formally and shows that it has high probability. We use the structure of the NLD

event throughout our subsequent steps, as we mention below.

Step 2: Weights in one step of updating are well-behaved. We are interested in Φ̃

and Φ̃2, which are about how the covariance matrix At of social signal errors changes under

updating. How this works is determined by the “basic” updating map Φ, and so we begin

by studying the weights involved in it and then make deductions about the matrix At.

The present step establishes that in one step of updating, the weight Wij,t′ that agent

(i, t′), where t′ = t + 1, places on the action of another agent j in period t, does not

depend too much on the identities of i and j. It only depends on their (network and

signal) types. This is established by using our explicit formula for weights in terms of

covariances. We rely on (i) the fact that covariances are assumed to start out in a suitable

Wδ,ζ , and (ii) our conditioning on the NLD event E. The NLD event is designed so that the

network quantities that go into determining the weights depend only on the types of i and

j (because the NLD event forbids too much variation conditional on type). The restriction

to At ∈ Wδ,ζ ensures that covariances in the initial period t did not depend too much on

type, either.

Step 3: Lemma 1: Φ̃(W β
n
, 1
n
) ⊂ W β

n
,λ
n
. Once we have analyzed one step of updating, it

is natural to ask what that does to the covariance matrix. Because we now have a bound

on how much weights can vary after one step of updating, we can compute bounds on

covariances. This step shows that the initial covariances At being in W β
n
, 1
n

implies that

after one step, covariances are in W β
n
,λ
n
. Note that the introduction of another parameter

λ on the right-hand side implies that this step might worsen our control on covariances

somewhat, but in a bounded way. This establishes Lemma 1.

Step 4: Weights in two steps of updating are well-behaved. The fourth step estab-

lishes that the statement made in Step 2 remains true when we replace t′ by t+ 2. By the

same sort of reasoning as in Step 2, an additional step of updating cannot create too much

further idiosyncratic variation in weights. Proving this requires analyzing the covariance
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matrices of various social signals (i.e., the At+1 that the updating induces), which is why

we needed to do Step 3 first.

Step 5: Lemma 2: Φ̃2(W β
n
, 1
n
) ⊂ W β

n
, 1
n
. Now we use our understanding of weights from

the previous steps, along with additional structure, to show the key remaining fact. What

we have established so far about weights allows us to control the weight that a given agent’s

estimate at time t + 2 places on the social signal of another agent at time t. This is Step

5(a). In the second part, Step 5(b), we use that to control the covariances in At+2. It is

important in this part of the proof that different agents have very similar “second-order

neighborhoods”: the paths of length 2 beginning from an agent are very similar, in terms of

their counts and what types of agents they go through. We carefully separate the variation

(across agents) in covariances in At into three pieces and use our control of second-order

neighborhoods to bound this variation such that At+2 ∈ W β
n
, 1
n
.

C.3. Carrying out the steps.

C.3.1. Step 1. Here we formally define the NLD event, which we call E. It is given by

E = ∩5i=1Ei, where the events Ei will be defined next.

(E1) Let X
(1)
i,τk be the number of agents having signal type τ and network type k who

are observed by i. The event E1 is that this quantity is close to its expected value in the

following sense, simultaneously for all possible values of the subscript:

(1− ζ2)E[X
(1)
i,τk] ≤ X

(1)
i,τk ≤ (1 + ζ2)E[X

(1)
i,τk].

(E2) Let X
(2)
ii′,τk be the number of agents having signal type τ and network type k who

are observed by both i and i′. The event E2 is that this quantity is close to its expected

value in the following sense, simultaneously for all possible values of the subscript:

(1− ζ2)E[X
(2)
ii′,τk] ≤ X

(2)
ii′,τk ≤ (1 + ζ2)E[X

(2)
ii′,τk].

(E3) Let X
(3)
i,τk,j be the number of agents having signal type τ and network type k who

are observed by agent i and who observe agent j. The event E3 is that this quantity is

close to its expected value in the following sense, simultaneously for all possible values of

the subscript:

(1− ζ2)E[X
(3)
i,τk,j] ≤ X

(3)
i,τk,j ≤ (1 + ζ2)E[X

(3)
i,τk,j].

(E4) Let X
(4)
ii′,τk,j be the number of agents having signal type τ and network type k who

are observed by both agent i and i′ and who observe j. The event E4 is that this quantity
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is close to its expected value in the following sense, simultaneously for all possible values

of the subscript:

(1− ζ2)E[X
(4)
ii′,τk′,j] ≤ X

(4)
ii′,τk′,j ≤ (1 + ζ2)E[X

(4)
ii′,τk′,j].

(E5) Let X
(5)
i,τk,jj′ be the number of agents of signal type τ and network type k who are

observed by agent i and who observe both j and j′. The event E5 is that this quantity is

close to its expected value in the following sense, simultaneously for all possible values of

the subscript:

(1− ζ2)E[X
(5)
i,τk,jj′ ] ≤ X

(5)
i,τk,jj′ ≤ (1 + ζ2)E[X

(5)
i,τk,jj′ ].

We claim that the probability of the complement of the event E vanishes exponentially.

We can check this by showing that the probability of each of the Ei vanishes exponentially.

For E1, for example, the bounds will hold unless at least one agent has degree outside the

specified range. The probability of this is bounded above by the sum of the probabilities

of each individual agent having degree outside the specified range. By the central limit

theorem, the probability a given agent has degree outside this range vanishes exponentially.

Because there are n agents in Gn, this sum vanishes exponentially as well. The other cases

are similar.

For the rest of the proof, we condition on the event E.

C.3.2. Step 2. As a shorthand, let δ = β/n for a sufficiently large constant β, and let

ζ = 1/n.

Lemma 3. Suppose that in period t the matrix A = At of covariances of social signals

satisfies A ∈ Wδ,ζ and all agents are optimizing in period t + 1. Then there is a γ so that

for all n sufficiently large,
Wij,t+1

Wi′j′,t+1

∈
[
1− γ

n
, 1 +

γ

n

]
.

whenever i and i′ have the same network and signal types and j and j′ have the same

network and signal types.

To prove this lemma, we will use our weights formula:

Wi,t+1 =
1TC−1i,t

1TC−1i,t 1
.

This says that in period t + 1, agent i’s weight on agent j is proportional to the sum of

the entries of column j of C−1i,t . We want to show that the change in weights is small as

the covariances of observed social signals vary slightly. To do so we will use the Taylor
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expansion of f(A) = C−1i,t around the covariance matrix A(0) at which all δkk′ = 0, δk = 0

and ζij = 0.

We begin with the first partial derivative of f at A(0) in an arbitrary direction. Let

A(x) be any perturbation of A0 in one parameter, i.e., A(x) = A(0) + xM for some

constant matrix M with entries in [−1, 1]. Let Ci(x) be the matrix of covariances of

the actions observed by i given that the covariances of agents’ social signals were A(x).

There exists a constant γ1 depending only on the possible signal types such that each entry

of Ci(x)−Ci(x
′) has absolute value at most γ1(x− x′) whenever both x and x′ are small.

We will now show that the column sums of Ci(x)−1 are close to the column sums of

C(0)−1i . To do so, we will evaluate the formula

(C.1)
∂f(A(x))

∂x
=
∂Ci(x)−1

∂x
= Ci(x)−1

∂Ci(x)

∂x
Ci(x)−1

at zero. If we can bound each column sum of this expression (evaluated at zero) by a

constant (depending only on the signal types and the number of network types K), then

the first derivative of f will also be bounded by a constant.

Recall that S is the set of signal types and let S = |S|; index the signal types by numbers

ranging from 1 to S. To bound the column sums ofCi(0)−1, suppose that the agent observes

ri agents from each signal type 1 ≤ i ≤ S. Reordering so that all agents of each signal type

are grouped together, we can write

Ci(0) =


a111r1×r1 + b1Ir1 a121r1×r2 aS11r1×rS

a121r2×r1 a221r2×r2 + b2Ir2
...

. . .

a1S1rS×r1 · · · aSS1rs×rs + bsIrs


Therefore, Ci(0) can be written as a block matrix with blocks aij1ri×rj + biδijIri where

1 ≤ i, j ≤ S and δij = 1 for i = j and 0 otherwise.

We now have the following important approximation of the inverse of this matrix.49

Lemma 4 (Pinelis (2018)). Let C be a matrix consisting of S×S blocks, with its (i,j) block

given by

aij1ri×rj + biδijIri

and let A = aij1riÖrj be an invertible matrix. As n → ∞, then the (i, i) block of C−1 is

equal to

49We are very grateful to Iosif Pinelis for suggesting this argument.
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1

bi
Iri −

1

biri
1ri×ri +O(1/n2)

while the off-diagonal blocks are O(1/n2).

Proof. First note that the ij-block of C−1 has the form

cij1ri×rj + diδijIri

for some real cij and di.

Therefore, CC−1 can be written in matrix form as∑
k(aik1ri×rk + biδikIri)(ckj1rk×rj + dkδkjIrk) =

aijdj +
∑

k(aikrk + δikbk)ckj1ri×rj + bidiδijIri .(C.2)

Note that the last summand is the identity matrix.

Let Dd denote the diagonal matrix with di in the (i, i) diagonal entry, let D1/b denote

the diagonal matrix with 1/bi in the (i, i) diagonal entry, etc. Breaking up the previous

display (C.2) into its diagonal and off-diagonal parts, we can write

ADd + (ADr +Db)C = 0 and Dd = D1/b.

Hence,

C = −(ADr +Db)
−1ADd

= −(Iq +D−1r A−1Db)
−1(ADr)

−1AD1/b

= −(Iq +D−1r A−1Db)
−1D1/(br)

= −D1/(br) +O(1/n2)

where br := (b1r1, . . . , bqrq). Therefore as n → ∞ the off-diagonal blocks will be O(1/n2)

while the diagonal blocks are

1

bi
Iri −

1

biri
1ri×ri +O(1/n2)

as desired. �

Using Lemma 4 we can analyze the column sums of50

Ci(0)−1MCi(0)−1.

50 Recall we wrote A(x) = A(0) + xM , and in (C.1) we expressed the derivative of f in x in terms of the
matrix we exhibit here.
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In more detail, we use the formula of the lemma to estimate both copies of Ci(0)−1, and

then expand this to write an expression for any column sum of Ci(0)−1MCi(0)−1. It follows

straightforwardly from this calculation that all these column sums are O(1/n) whenever all

entries of M are in [−1, 1].

We can bound the higher-order terms in the Taylor expansion by the same technique: by

differentiating equation C.1 repeatedly in x, we obtain an expression for the kth derivative

in terms of Ci(0)−1 and M :

f (k)(0) = k!Ci(0)−1MCi(0)−1MCi(0)−1 · . . . ·MCi(0)−1,

where M appears k times in the product. By the same argument as above, we can show

that the column sums of f (k)(0)
k!

are bounded by a constant independent of n. The Taylor

expansion is

f(A) =
∑
k

f (k)(0)

k!
xk.

Since we take A ∈ Wδ,ζ , we can assume that x is O(1/n). Because the column sums of each

summand are bounded by a constant times xk, the column sums of f(A) are bounded by

a constant.

Finally, because the variation in the column sums is O(1/n) and the weights are propor-

tional to the column sums, each weight varies by at most a multiplicative factor of γ1/n

for some γ1. We find that the first part of the lemma, which bounded the ratios between

weights Wij,t+1/Wi′j′,t+1, holds.

C.3.3. Step 3. We complete the proof of Lemma 1, which states that the covariance matrix

of ri,t+1 is in Wδ,ζ′ . Recall that ζ ′ = λ/n for some constant n, so we are showing that if the

covariance matrix of the ri,t is in a neighborhood Wδ,ζ , then the covariance matrix in the

next period is in a somewhat larger neighborhood Wδ,ζ′ . The remainder of the argument

then follows by the same arguments as in the proof of the first part of the lemma: we now

bound the change in time-(t + 2) weights as we vary the covariances of time-(t + 1) social

signals within this neighborhood.

Recall that we decomposed each covariance Cov(ri,t − θt−1, rj,t − θt−1) = δkk′ + ζij into

a term δkk′ depending only on the types of the two agents and a term ζij, and similarly

for variances. To show the covariance matrix is contained in Wδ,ζ′ , we bound each of these

terms suitably.
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We begin with ζij (and ζi). We can write

ri,t+1 =
∑
j

Wij,t+1

1− wsi,t+1

ai,t =
∑
j

Wij,t+1

1− wsi,t+1

(wsj,tsj,t + (1− wsj,t)rj,t).

By the first part of the lemma, the ratio between any two weights (both of the form Wij,t+1,

wsi,t+1, or wsj,t) corresponding to pairs of agents of the same types is in [1− γ1/n, 1 + γ1/n]

for a constant γ1. We can use this to bound the variation in covariances of ri,t+1 within

types by ζ ′: we take the covariance of ri,t+1 and rj,t+1 using the expansion above and then

bound the resulting summation by bounding all coefficients.

Next we bound δkk′ (and δk). It is sufficient to show that Var(ri,t+1 − θt) is at most

δ. To do so, we will give an estimator of θt with variance less than β/n, and this will

imply Var(ri,t+1 − θt) < β/n = δ (recall ri,t+1 is the estimate of θt given agent i’s social

observations in period t+ 1). Since this bounds all the variance terms by δ, the covariance

terms will also be bounded by δ in absolute value.

Fix an agent i of network type k and consider some network type k′ such that pkk′ > 0.

Then there exists two signal types, which we call A and B, such that i observes Ω(n) agents

of each of these signal types in Gk
n.51 The basic idea will be that we can approximate θt

well by taking a linear combination of the average of observed agents of network type k

and signal type A and the average of observed agents of network type k and signal type B.

In more detail: Let Ni,A be the set of agents of type A in network type k observed by i

and Ni,B be the set of agents of type B in network type k observed by i. Then fixing some

agent j0 of network type k,

1

|Ni,A|
∑
j∈Ni,A

aj,t−1 =
σ−2A

1 + σ−2A
θt +

1

1 + σ−2A
rj0,t−1 + noise

where the noise term has variance of order 1/n and depends on signal noise, variation in

rj,t, and variation in weights. Similarly

1

|Ni,B|
∑
j∈Ni,B

aj,t =
σ−2B

1 + σ−2B
θt +

1

1 + σ−2B
rj0,t−1 + noise

where the noise term has the same properties. Because σ2
A 6= σ2

B, we can write θt as a linear

combination of these two averages with coefficients independent of n up to a noise term of

order 1/n. We can choose β large enough such that this noise term has variance most β/n

for all n sufficiently large. This completes the Proof of Lemma 1.

51 We use the notation Ω(n) to mean greater than Cn for some constant C > 0 when n is large.
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C.3.4. Step 4: We now give the two-step version of Lemma 3.

Lemma 5. Suppose that in period t the matrix A = At of covariances of social signals

satisfies A ∈ Wδ,ζ and all agents are optimizing in periods t+ 1 and t+ 2. Then there is a

γ so that for all n sufficiently large,

Wij,t+2

Wi′j′,t+2

∈
[
1− γ

n
, 1 +

γ

n

]
.

whenever i and i′ have the same network and signal types and j and j′ have the same

network and signal types.

Given what we established about covariances in Step 3, the lemma follows by the same

argument as the proof of Lemma 3.

Step 5: Now that Lemma 5 is proved, we can apply it to show that

Φ̃2(Wδ,ζ) ⊂ Wδ,ζ .

We will do this by first writing the time-(t + 2) behavior in terms of agents’ time-t obser-

vations (Step 5(a)), which comes from applying Φ̃ twice. This gives a formula that can be

used for bounding the covariances52 of time-(t+ 2) actions in terms of covariances of time-t

actions. Step 5(b) then applies this formula to show we can take ζij and ζi to be sufficiently

small. (Recall the notation introduced in Section C.1 above.) We split our expression for

ri,t+2 into several groups of terms and show that the contribution of each group of terms

depends only on agents’ types up to a small noise term. Step 5(c) notes that we can also

take δkk′ and δk to be sufficiently small.

Step 5(a): We calculate:

ri,t+2 =
∑
j

Wij,t+2

1− wsi,t+2

ρaj,t+1

= ρ(
∑
j

Wij,t+2

1− wsi,t+2

wsj,t+1sj,t+1 +
∑
j,j′

Wij,t+2

1− wsi,t+2

Wjj′,t+1ρaj′,t)

= ρ(
∑
j

Wij,t+2

1− wsi,t+2

wsj,t+1sj,t+1 + ρ(
∑
j,j′

Wij,t+2

1− wsi,t+2

Wjj′,t+1w
s
j′,tsj′,t

+
∑
j,j′

Wij,t+2

1− wsi,t+2

Wjj′,t+1(1− wsj′,t)rj′,t)).

52 We take this term to refer to variances, as well.
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Let cij′,t be the coefficient on rj′,t in this expansion of ri,t+2. Explicitly,

cij′,t =
∑
j

Wij,t+2

1− wsi,t+2

Wjj′,t+1(1− wsj′,t).

The coefficient cij′,t adds up the influence of rj′,t on ri,t+2 over all paths of length two.

First, we establish a lemma about how much these weights vary.

Lemma 6. For n sufficiently large, when i and i′ have the same network types and j′ and

j′′ have the same network and signal types, the ratio cij′,t/ci′j′′,t is in [1− 2γ/n, 1 + 2γ/n].

Proof. Suppose i ∈ Gk and j′ ∈ Gk′ . For each network type k′′, the number of agents j

of type k′′ who are observed by i and who observe j′ varies by at most a factor ζ2 as we

change i in Gk and j′ in Gk′ . For each such j, the contribution of that agent’s action to

cij′,t is
Wij,t+2

1− wsi,t+2

Wjj′,t+1(1− wsj′,t).

By Lemma 3 applied to each term, this expression varies by at most a factor of γ/n as we

change i in Gk and j′ in Gk′ . Combining these facts for each type k′′ shows the lemma. �

Step 5(b): We first show that fixing the values of δkk′ and δk in period t, the variation in

the covariances Cov(ri,t+2−θt+1,ri′,t+2−θt+1) of these terms as we vary i and i′ over network

types is not larger than ζ. From the formula above, we observe that we can decompose

ri,t+2 − θt+1 as a linear combination of three mutually independent groups of terms:

(i) signal error terms ηj,t+1 and ηj′,t;

(ii) the errors rj′,t − θt in the social signals from period t; and

(iii) changes in state νtand νt+1 between periods t and t+ 2.

Note that the terms rj′,t − θt are linear combinations of older signal errors and changes

in the state. We bound each of the three groups in turn:

(i) Signal Errors: We first consider the contribution of signal errors. When i and i′ are

distinct, the number of such terms is close to its expected value because we are conditioning

on the events E2 and E4 defined in Section C.1. Moreover the weights are close to their

expected values by Step 2, so the variation is bounded suitably. When i and i′ are equal,

we use the facts that the weights are close to their expected values and the variance of an

average of Ω(n) signals is small.

(ii) Social Signals: We now consider terms rj′,t − θt, which correspond to the third

summand in our expression for ri,t+2. Since we will analyze the weight on νt below, it is

sufficient to study the terms rj′,t − θt−1.
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By Lemma 6, the coefficients placed on rj′,t by i and on rj′′,t by i′ vary by a factor of at

most 2γ/n. Moreover, the absolute value of each of these covariances is bounded above by

δ and the variation in these terms is bounded above by ζ. We conclude that the variation

from these terms has order 1/n2.

(iii) Innovations: Finally, we consider the contribution of the innovations νtand νt+1.

We treat νt+1 first. We must show that any two agents of the same types place the same

weight on the innovation νt+1 (up to an error of order 1
n2 ). This will imply that the

contributions of timing to the covariances Cov(ri,t+2 − θt+1,ri′,t+2 − θt+1) can be expressed

as a term that can be included in the relevant δkk′ and a lower-order term which can be

included in ζii′ .

The weight an agent places on νt+1 is equal to the weight she places on signals from

period t+ 1. So this is equivalent to showing that the total weight

ρ
∑
j

Wij,t+2

1− wsi,t+2

wsj,t+1

agent i places on period t+ 1 depends only on the network type k of agent i and O(1/n2)

terms. We will first show the average weight placed on time-(t + 1) signals by agents of

each signal type depends only on k. We will then show that the total weights on agents of

each signal type do not depend on n.

Suppose for simplicity here that there are two signal types A and B; the general case is

the same. We can split the sum from the previous paragraph into the subgroups of agents

with signal types A and B:

ρ
∑

j:σ2
j=σ

2
A

Wij,t+2

1− wsi,t+2

wsj,t+1 + ρ
∑

j:σ2
j=σ

2
B

Wij,t+2

1− wsi,t+2

wsj,t+1.

Letting WA
i =

∑
σ2
j=σ

2
A

Wij,t+2

1−wsi,t+2
be the total weight placed on agents with signal type A and

similarly for signal type B, we can rewrite this as:

WA
i ρ

∑
j:σ2

j=σ
2
A

Wij,t+2

WA
i (1− wsi,t+2)

wsj,t+1 +WB
i ρ

∑
j:σ2

j=σ
2
B

Wij,t+2

WB
i (1− wsi,t+2)

wsj,t+1.

The coefficients
Wij,t+2

WA
i (1−wsi,t+2)

in the first sum now sum to one, and similarly for the second.

We want to check that the first sum
∑

j:σ2
j=σ

2
A

Wij,t+2

WA
i (1−wsi,t+2)

wsj,t+1 does not depend on k, and

the second sum is similar.
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For each j in group A,

wsj,t+1 =
σ−2A

σ−2A + (ρ2κj,t+1 + 1)−1
,

where we recall that κ2j,t+1 = Var(rj,t+1 − θt). Because κj,t+1 is close to zero, we can

approximate wsj,t+1 locally as a linear function µ1κj,t+1 + µ2 where µ1 < 1 (up to order 1
n2

terms).

So we can write the sum of interest as∑
j:σ2

j=σ
2
A

Wij,t+2

WA
i (1− wsi,t+2)

(µ1

∑
j′,j′′

Wjj′,t+1Wjj′′,t+1(ρ
2Vj′j′′,t + 1) + µ2).

By Lemma 3, the weights vary by at most a multiplicative factor contained in [1−γ/n, 1 +

γ/n]. The number of paths from i to j′ passing through agents of any network type k′′

and any signal type is close to its expected value (which depends only on i’s network

type), and the weight on each path depends only on the types involved up to a factor in

[1− γ/n, 1 + γ/n]. The variation in Vj′j′′,t consists of terms of the form δk′k′′ , δk′ , and ζj′j′′ ,

all of which are O(1/n), and terms from signal errors ηj′,t. The signal errors only contribute

when j = j′, and so only contribute to a fraction of the summands of order 1/n. So we

can conclude the total variation in this sum as we change i within the network type k has

order 1/n2.

Now that we know each the average weight on private signals of the observed agents of

each signal type depends only on k, it remains to check that WA
i and WB

i only depend on

k. The coefficients WA
i and WB

i are the optimal weights on the group averages∑
j:σ2

j=σ
2
A

Wij,t+2

WA
i (1− wsi,t+2)

ρaj,t+1 and
∑

j:σ2
j=σ

2
B

Wij,t+2

WB
i (1− wsi,t+2)

ρaj,t+1,

so we need to show that the variances and covariance of these two terms depend only on

k. We check the variance of the first sum: we can expand

∑
σ2
j=σ

2
A

Wij,t+2

WA
i (1− wsi,t+2)

ρaj,t+1 =
∑
σ2
j=σ

2
A

Wij,t+2

WA
i (1− wsi,t+2)

ρ(wsj,t+1sj,t+1 + (1− wsj,t+1)rj,t+1).

We can again bound the signal errors and social signals as in the previous parts of this

proof, and show that the variance of this term depends only on k and O(1/n2) terms. The

second variance and covariance are similar, so WA
i and WB

i depend only on k and O(1/n2)

terms.
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This takes care of the innovation νt+1. Because we have included any innovations prior

to νt in the social signals rj′,t, to complete Step 5(b) we need only show the weight on νt

depends only on the network type k of an agent.

The analysis is a simpler version of the analysis of the weight on νt+1. It is sufficient to

show the total weight placed on period t social signals depends only on the network type

of k of an agent i. This weight is equal to

ρ2
∑
j,j′

Wij,t+2

1− wsi,t+2

·Wjj′,t+1 · (1− wsj′,t).

As in the νt+1 case, we can approximate (1−wsj′,t) as a linear function of κj′,t up to O(1/n2)

terms. Because the number of paths to each agent j′ though a given type and the weights

on each such path cannot vary too much within types, the same argument shows that this

sum depends only on k and O(1/n2) terms.

Step 5(b) is complete.

Step 5(c): The final step is to verify that we can take δkk′ and δk to be smaller than δ.

It is sufficient to show that the variance Var(ri,t+2 − θt+1) of each social signal about θt+1

is at most δ. The proof is the same as in Step 2(b).

Appendix D. Remaining proofs (online appendix)

D.1. Proof of Proposition 2. We first check there is a unique equilibrium and then prove

the remainder of Proposition 2.

Lemma 7. Suppose G has symmetric neighbors. Then there is a unique equilibrium.

Proof of Lemma. We will show that when the network satisfies the condition in the propo-

sition statement, Φ induces a contraction on a suitable space. For each agent, we can

consider the variance of the best estimator for yesterday’s state based on observed actions.

These variances are tractable because they satisfy the envelope theorem. Moreover, the

space of these variances is a sufficient statistic for determining all agent strategies and

action variances.

Let ri,t be i’s social signal—the best estimator of θt based on the period t− 1 actions of

agents in Ni—and let κ2i,t be the variance of ri,t − θt.
We claim that Φ induces a map Φ̃ on the space of variances κ2i,t, which we denote Ṽ .

We must check the period t variances (κ2i,t)i uniquely determine all period t + 1 variances

(κ2i,t+1)i: The variance Vii,t of agent i’s action, as well as the covariances Vii′,t of all pairs

of agents i, i′ with Ni = Ni′ , are determined by κ2i,t. Moreover, by the condition on our
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network, these variances and covariances determine all agents’ strategies in period t + 1,

and this is enough to pin down all period t+ 1 variances κ2i,t+1.

The proof proceeds by showing Φ̃ is a contraction on Ṽ in the sup norm.

For each agent j, we have Ni = Ni′ for all i, i′ ∈ Nj. So the period t actions of an agent

i′ in Nj are

(D.1) ai′,t =
(ρ2κ2i,t + 1)−1

σ−2i′ + (ρ2κ2i,t + 1)−1
· ri,t +

σ−2i′

σ−2i′ + (ρ2κ2i,t + 1)−1
· si′,t

where si′,t is agent (i′)’s signal in period t and ri,t the social signal of i (the same one that i′

has). It follows from this formula that each action observed by j is a linear combination of

a private signal and a common estimator ri,t, with positive coefficients which sum to one.

For simplicity we write

(D.2) ai′,t = b0 · ri,t + bi′ · si′,t

(where b0 and bi′ depend on i′ and t, but we omit these subscripts). We will use the facts

0 < b0 < 1 and 0 < bi′ < 1.

We are interested in how κ2j,t = Var(rj,t − θt) depends on κ2i,t−1 = Var(ri,t−1 − θt−1).

The estimator rj,t is a linear combination of observed actions ai′,t, and therefore can be

expanded as a linear combination of signals si′,t and the estimator ri,t−1. We can write

(D.3) rj,t = c0 · (ρri,t−1) +
∑
i′

ci′si′,t

and therefore (taking variances of both sides)

κ2j,t = Var(rj,t − θt) = c0Var(ρri,t−1 − θt) +
∑
i′

ci′σ
2
i′

= c0(κ
2
i,t−1 + 1) +

∑
i′

ci′σ
2
i′

The desired result, that Φ̃ is a contraction, will follow if we can show that the derivative
dκ2j,t
dκ2i,t−1

∈ [0, δ] for some δ < 1. By the envelope theorem, when calculating this derivative,

we can assume that the weights placed on actions ai′,t−1 by the estimator rj,t do not change

as we vary κ2i,t−1, and therefore c0 and the ci′ above do not change. So it is enough to show

the coefficient c0 on κ2i,t−1 is in [0, δ]. �
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The intuition for the lower bound is that anti-imitation (agents placing negative weights

on observed actions) only occurs if observed actions put too much weight on public infor-

mation. But if c0 < 0, then the weight on public information is actually negative so there

is no reason to anti-imitate. This is formalized in the following lemma.

Lemma 8. Agent j’s social signal places non-negative weight on agent i’s social signal

from the previous period, i.e., c0 ≥ 0.

Proof. To check this formally, suppose that c0 is negative. Then the social signal rj,t puts
negative weight on some observed action—say the action ak,t−1 of agent k. We want to
check that the covariance of rj,t − θt and ak,t−1 − θt is negative. Using (D.2) and (D.3), we
compute that

Cov(rj,t − θt, ak,t−1 − θt) = Cov

c0(ρri,t−1 − θt) +
∑
i′∈Nj

ci′(si′,t − θt)), b0(ρri,t−1 − θt) + bk(sk,t−1 − θt)


= c0b0Var(ρri,t−1 − θt) + ckbkVar(sk,t−1 − θt)

because all distinct summands above are mutually independent. We have b0, bk > 0, while

c0 < 0 by assumption and ck < 0 because the estimator rj,t puts negative weight on ak,t−1.

So the expression above is negative. Therefore, it follows from the usual Gaussian Bayesian

updating formula that the best estimator of θt given rj,t and ak,t−1 puts positive weight

on ak,t−1. However, this is a contradiction: the best estimator of θt given rj,t and ak,t−1

is simply rj,t, because rj,t was defined as the best estimator of θt given observations that

included ak,t−1.

Now, for the upper bound c0 ≤ δ, the idea is that rj,t puts more weight on agents with

better signals while these agents put little weight on public information, which keeps the

overall weight on public information from growing too large.

Note that rj,t is a linear combination of actions ρai′,t−1 for i ∈ Nj, with coefficients

summing to 1. The only way the coefficient on ρri,t−1 in rj,t could be at least 1 would be

if some of these coefficients on ρai′,t−1 were negative and the estimator rj,t placed greater

weight on actions ai′,t−1 which placed more weight on rj,t.

Applying the formula (D.1) for ai′,t−1, we see that the coefficient b0 on ρri,t−1 is less than

1 and increasing in σi′ . On the other hand, it is clear that the weight on ai′,t−1 in the social

signal rj,t is decreasing in σi′ : more weight should be put on more precise individuals. So

in fact the estimator rj,t places less weight on actions ai′,t−1 which placed more weight on

ri,t.

Moreover, the coefficients placed on private signals are bounded below by a positive

constant when we restrict to covariances in the image of Φ̃ (because all covariances are
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bounded as in the proof of Proposition 1). Therefore, each agent i′ ∈ Nj places weight at

most δ on the estimator ρri,t−1 for some δ< 1. Agent j’s social signal rj,t is a sum of these

agents’ actions with coefficients summing to 1 and satisfying the monotonicity property

above. We conclude that the coefficient on ρri,t−1 in the expression for rj,t is at most δ. We

conclude that the coefficient on ρri,t−1 in rj,t is bounded above by some δ < 1. �

This completes the proof of Lemma 7. We now prove Proposition 2.

Proof of Proposition 2. By Lemma 7 there is a unique equilibrium on any network G with

symmetric neighbors. Let ε > 0.

Consider any agent i. Her neighbors have the same private signal qualities and the same

neighborhoods (by the symmetric neighbors assumption). So there exists an equilibrium

where for all i, the actions of agent i’s neighbors are exchangeable. By uniqueness, this in

fact holds at the sole equilibrium.

So agent i’s social signal is an average of her neighbors’ actions:

ri,t =
1

|Ni|
∑
j∈Ni

aj,t.

Suppose the ε-perfect aggregation benchmark is achieved. Then all agents must place

weight at least (1+ε)−1

(1+ε)−1+σ−2 on their social signals. So at time t, the social signal ri,t places

weight at least (1+ε)−1

(1+ε)−1+σ−2 on signals from at least two periods ago. Since the variance of

any linear combination of such signals is at least 1 + ρ, for ε sufficiently small the social

signal ri,t is bounded away from a perfect estimate of θt−1. This gives a contradiction. �

D.2. Proof of Corollary 1. Consider a complete graph in which all agents have signal

variance σ2 and memory m = 1. By Proposition 2, as n grows large the variances of all

agents converge to A > (1 + σ−2)−1. Choose σ2 large enough such that A > 1.

Now suppose that we increase σ2
1 to∞. Then a1,t = r1,t in each period, so all agents can

infer all private signals from the previous period. As n grows large, the variance of agent 1

converges to 1 and the variances of all other agents (1 + σ−2)−1. By our choice of σ2, this

gives a Pareto improvement. We can see by continuity that the same argument holds for

σ2
1 finite but sufficiently large.

D.3. Proof of Proposition 3. We outline the argument. In Step 1, we construct a sym-

metric version of the Erdos-Renyi network and show there exists a symmetric equilibrium

V̂ sym(n) on this symmetric network. In Step 2, we show variances and covariances at the

equilibrium V̂ sym(n) converge to V ∞ and Cov∞. The remainder of the proof shows there is

an equilibrium on Gn near V̂ sym(n). Step 3 defines a no-large-deviations event depending
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on the realized Erdos-Renyi network, and we condition on this event. Step 4 shows that Φ

maps a small neighborhood of V̂ sym(n) to itself. Finally, in Step 5 we apply the Brouwer

fixed point theorem to conclude there exists an equilibrium on Gn in this neighborhood.

Step 1: We first consider a symmetric and deterministic version Gsym
n of the network

Gn on which all agents observe exactly pn other agents and any pair of agents commonly

observes exactly p2n other agents.

Let Vsym ⊂ V be the space of covariance matrices for which each entry V (n)ij depends

only on whether i and j are equal and not on the particular agents. Even if such a Gsym
n

network does not exist (for combinatorial reasons), updating as if on such a network induces

a well-defined map Φsym : Vsym → Vsym. This map Φsym must have a fixed point, which we

call V̂ sym(n). We will next show that the variances and covariances at V̂ sym(n) converge

to V ∞ and Cov∞. The remainder of the proof will show that for n large enough, there

exists an equilibrium V̂ (n) on Gn close to the equilibrium V̂ sym(n) on Gsym
n .

Step 2: At V̂ sym(n), each agent’s social signal is:

ri,t =
∑
j∈Ni

ρaj,t−1
pn

.

So the variance of the social signal about θt is

κi,t =
(ρ2V̂ sym(n)11,t + 1)

pn
+

(pn− 1)(ρ2V̂ sym(n)12,t + 1)

pn
.

Thus the covariance of any two distinct agents solves

V̂ sym(n)12,t =
κ−2i,t

(σ−2 + κ−1i,t )2

(
(ρ2V̂ sym(n)11,t + 1)

p2n
+

(p2n− 1)(ρ2V̂ sym(n)12,t + 1)

p2n

)
.

As n→∞, the right-hand side approaches

(ρ2V̂ sym(n)12,t + 1)−1

[σ−2 + (ρ2V̂ sym(n)12,t + 1)−1]2
,

and the unique real solution to this equation is Cov∞. Computing V̂ sym(n)11,t in terms of

V̂ sym(n)12,t, we also see the variances converge to V ∞.

Step 3: We will show that when ζ = 1
n
, the updating map Φ on the network Gn maps

a small neighborhood around V̂ sym(n) to itself. Let Vn ⊂ V be the subset of covariance

matrices such that

V (n)ij ∈ [V̂ sym(n)− ζ, V̂ sym(n) + ζ]

for all i and j. We will show in Steps 3 and 4 that Φ(Vn) ⊂ Vn for n large enough.
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We first show that the network is close to symmetric with high probability. We will

consider the event E = E1 ∩ E2, where the Ei are defined by:

(E1) : The degree of each agent i is between 1 − ζ2 times its expected value and 1 + ζ2

times its expected value, i.e., in [(1− 1
n2 )pn/2, (1 + 1

n2 )pn].

(E2) : For any two agents i and i′, the number of agents observed by both i and i′

between 1 − ζ2 times its expected value and 1 + ζ2 times its expected value, i.e., in [(1 −
1
n2 )p2n/2, (1 + 1

n2 )p2n].

We can show as in the proof of Theorem 1 that the probability of the complement of

event E vanishes exponentially in n. We will condition on the event E, which occurs with

probability converging to 1, for the remainder of the proof.

Step 4: Assume all agents observe period t actions with covariances in Vn and then act

optimally in period t + 1. We can show as in the proof of Lemma 3 that there exists a

constant γ such any agent’s weight Wij,t+1 on an observed neighbor is in [(1− γ/n) 1
n
, (1 +

γ/n) 1
n
]. The relevant matrix Ci(0) now has only one block because we have only signal

type, so the calculation is in fact simpler.

We have

ri,t+1 =
∑
j

Wij,t+1aj,t,

and therefore for i and i′ distinct,

Cov(ri,t+1 − θt+1, ri′,t+1 − θt+1) =
∑
j,j′

Wij,t+1Wi′j′,t+1(ρ
2Vjj′,t + 1).

The termsWij,t+1Wi′j′,t+1 sum to 1, and each non-zero term is contained in [ (1−γ/n)
2

n2 , (1+γ/n)
2

n2 ].

The terms Vjj′,t are each contained in [V̂ sym(n)12− 1
n
, V̂ sym(n)12 + 1

n
] (for j and j′ distinct)

and the terms Vjj,t are each contained in [V̂ sym(n)11 − 1
n
, V̂ sym(n)11 + 1

n
]. So∣∣∣∣∣Cov(ri,t+1 − θt+1, ri′,t+1 − θt+1)−

(ρ2V̂ sym(n)11,t + 1)

p2n
− (p2n− 1)(ρ2V̂ sym(n)12,t + 1)

p2n

∣∣∣∣∣
≤ ρ2

n
+O(

1

n2
),

where the terms of order 1
n2 come from variation in weights and variation in the network.

The term
(ρ2V̂ sym(n)11,t + 1)

p2n
+

(p2n− 1)(ρ2V̂ sym(n)12,t + 1)

pn

is the covariance of two distinct social signals in Gsym
n .
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Similarly∣∣∣∣∣Var(ri,t+1 − θt+1, ri′,t+1 − θt+1)−
(ρ2V̂ sym(n)11,t + 1)

pn
− (pn− 1)(ρ2V̂ sym(n)12,t + 1)

pn

∣∣∣∣∣
≤ ρ2

n
+O(

1

n2
).

The term
(ρ2V̂ sym(n)11,t + 1)

pn
+

(pn− 1)(ρ2V̂ sym(n)12,t + 1)

pn

is the covariance of two distinct social signals in Gsym
n .

We compute from these inequalities that the variances Vii,t+1 and covariances Vii′,t+1 of

actions are within 1
n

of V̂ sym(n)11 and V̂ sym(n)12, respectively. This shows that Φ(Vn) ⊂ Vn.

Step 5: By the Brouwer fixed point theorem, there exists an equilibrium V̂ (n) on Gn

with the desired properties. Because V ∞ > (1 + σ−2)−1, there exists ε > 0 such that the

ε-perfect aggregation benchmark is not achieved at this equilibrium for any n.

D.4. Proof of Proposition 4. Suppose that for all ε > 0, agent 1 acheives the ε-perfect

aggregation benchmark on Gn for some n. This implies the result after relabeling agents

as necessary. We can assume that agent 1 has at least one neighbor in each Gn. We will

discuss the case of rational agents using positive weights.

If agent 1 achieve ε-perfect aggregation benchmark on Gn for ε small enough, then

V̂ii(n) < 1 . Fix any n so that V11(n) < 1 (to simplify notation we drop references to n for

the remainder of the proof).

Then, at naive equilibrium, any agent i connected to 1 chooses an estimator rnaivei,t of θt

based on observed actions which she believes has variance (κnaivei,t )2 less than 1 + ρ2 ≤ 2.

So agent i’s action

ai,t =
(κnaivei,t )−2ri,t + σ−2i si,t

(κnaivei,t )−2 + σ−2i
,

puts weight at least 2
2+σ2 on observed actions.

Therefore, in period t, agent 1’s best estimator rnaive1,t of θt−1 (indirectly) puts weight at

least 2ρ
2+σ2 on actions from period t− 2. Because

Var(ρ
∑

bjaj,t−2 − θt−1) = Var(ρ
∑

bjaj,t−2 − θt−2) + Var(θt−2 − θt−1) ≥ 1

for any positive coefficients bj summing to 1, the variance of rnaivei,t − θt−1 is at least 4ρ2

(2+σ2)2
.

But then agent 1’s action variance is bounded away from (σ−2i + 1) and this bound is

independent of ε and n, which contradicts our assumption that for all ε agent 1 achieves

the ε-perfect aggregation benchmark on some Gn.
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D.5. Proof of Proposition 5. We prove the following statement, which includes the

proposition as special cases.

Proposition 6. Suppose the network G is strongly connected. Consider weights W and

ws and suppose they are all positive, with an associated steady state Vt. Suppose either

(1) there is an agent i whose weights are a Bayesian best response to Vt, and some agent

observes that agent and at least one other neighbor; or

(2) there is an agent whose weights are a naive best response to Vt, and who observes

multiple neighbors.

Then the steady state Vt is Pareto-dominated by another steady state.

We provide the proof in the case m = 1 to simplify notation. The argument carries

through with arbitrary finite memory.

Case (1): Consider an agent l who places positive weight on a rational agent k and

positive weight on at least one other agent. Define weights W by W ij = Wij and wsi = wsi
for all i 6= k, W kj = (1 − ε)Wkj for all j ≤ n, and wsk = (1 − ε)wsk + ε, where Wij and

wsi are the weights at the initial steady state. In words, agent k places weight (1 − ε) on

her equilibrium strategy and extra weight ε on her private signal. All other players use the

same weights as at the steady state.

Suppose we are at the initial steady state until time t, but in period t and all subsequent

periods agents instead use weights W . These weights give an alternate updating function

Φ on the space of covariance matrices. Because the weights W are positive and fixed,

all coordinates of Φ are increasing, linear functions of all previous period variances and

covariances. Explicitly, the diagonal terms are

[Φ(Vt)]ii = (wsi )
2σ2

i +
∑
j,j′≤n

W ijW ij′Vjj′,t

and the off-diagonal terms are

[Φ(Vt)]ii′ =
∑
j,j′≤n

W ijW i′j′Vjj,t′ .

So it is sufficient to show the variances Φ
h
(Vt) after applying Φ for h periods Pareto

dominate the variances in Vt for some h.

In period t, the change in weights decreases the covariance Vjk,t of k and some other

agent j, who l also observes, by f(ε) of order Θ(ε). By the envelope theorem, the change in

weights only increases the variance Vkk by O(ε2). Taking ε sufficiently small, we can ignore

O(ε2) terms.
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There exists a constant δ > 0 such that all initial weights on observed neighbors are at

least δ. Then each coordinate [Φ(V )]ii is linear with coefficient at least δ2 on each variance

or covariance of agents observed by i.

Because agent l observes k and another agent, agent l’s variance will decrease below its

equilibrium level by at least δ2f(ε) in period t + 1. Because Φ is increasing in all entries

and we are only decreasing covariances, agent l’s variance will also decrease below its initial

level by at least δ2f(ε) in all periods t′ > t+ 1.

Because the network is strongly connected and finite, the network has a diameter. After

d + 1 periods, the variances of all agents have decreased by at least δ2d+2f(ε) from their

initial levels. This gives a Pareto improvement.

Case (2): Consider a naive agent k who observes at least two neighbors. We can write

agent k’s period t action as

ak,t = wsksi,t +
∑
j∈Ni

Wkjaj,t−1.

Define new weights W as in the proof of case (1). Because agent k is naive and the sum-

mation
∑

j∈NiWkjaj,t−1 has at least two terms, she believes the variance of this summation

is smaller than its true value. So marginally increasing the weight on si,t and decreasing

the weight on this summation decreases her action variance. This deviation also decreases

her covariance with any other agent. The remainder of the proof proceeds as in case (1).

Appendix E. Naive Agents (online appendix)

In this section we provide rigorous detail for the analysis given in 5.1. We will describe

outcomes with two signal types, σ2
A and σ2

B.53 We use the same random network model

as in Section 4.3 and assume each network type contains equal shares of agents with each

signal type.

We can define variances

(E.1) V ∞A =
κ2t + σ−2A(
1 + σ−2A

)2 , V ∞B =
κ2t + σ−2B(
1 + σ−2B

)2
where

κ−2t = 1− ρ2

(σ−2A + σ−2B )

(
σ−2A

1 + σ−2A
+

σ−2B
1 + σ−2B

)
.

Naive agents’ equilibrium variances converge to these values.

53 The general case, with many signal types, is similar.
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Proposition 7. Under the assumptions in this subsection:

(1) There is a unique equilibrium on Gn.

(2) Given any δ > 0, asymptotically almost surely all agents’ equilibrium variances are

within δ of V ∞A and V ∞B .

(3) There exists ε > 0 such that asymptotically almost surely the ε-perfect aggregation

benchmark is not achieved, and when σ2
A = σ2

B asymptotically almost surely all agents’

variances are larger than V ∞.

Aggregating information well requires a sophisticated response to the correlations in

observed actions. Because naive agents completely ignore these correlations, their learn-

ing outcomes are poor. In particular their variances are larger than at the equilibria we

discussed in the Bayesian case, even when that equilibrium is inefficient (σ2
A = σ2

B).

When signal qualities are homogeneous (σ2
A = σ2

B), we obtain the same limit on any

network with enough observations. That is, on any sequence (Gn)∞n=1 of (deterministic)

networks with the minimum degree diverging to ∞ and any sequence of equilibria, the

equilibrium action variances of all agents converge to V ∞A .

E.1. Proof of Proposition 7. We first check that there is a unique naive equilibrium.

As in the Bayesian case, covariances are updated according to equations 3.3:

Vii,t = (wsi,t)
2σ2

i +
∑

Wik,tWik′,t(ρ
2Vkk′,t−1 + 1) and Vij,t =

∑
Wik,tWi′k′,t(ρ

2Vkk′,t−1 + 1).

The weights Wik,t and wsi,t are now all positive constants that do not depend on Vt−1.

So differentiating this formula, we find that all partial derivatives are bounded above by

1− wsi,t < 1. So the updating map (which we call Φnaive) is a contraction in the sup norm

on V . In particular, there is at most one equilibrium.

The remainder of the proof characterizes the variances of agents at this equilibrium. We

first construct a candidate equilibrium with variances converging to V ∞A and V ∞B , and then

we show that for n sufficiently large, there exists an equilibrium nearby in V .

To construct the candidate equilibrium, suppose that each agent observes the same num-

ber of neighbors of each signal type. Then there exists an equilibrium V̂ sym where covari-

ances depend only on signal types, i.e., V̂ sym is invariant under permutations of indices

that do not change signal types. We now show variances of the two signal types at this

equilibrium converge to V ∞A and V ∞B .

To estimate θt−1, a naive agent combines observed actions from the previous period with

weight proportional to their precisions σ−2A or σ−2B . The naive agent incorrectly believes

this gives an almost perfect estimate of θt−1. So the weight on older observations vanishes
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as n → ∞. The naive agent then combines this estimate of θt−1 with her private signal,

with weights converging to the weights she uses if the estimate is perfect.

Agent i observes |Ni|
2

neighbors of each signal type, so her estimate rnaivei,t of θt−1 is

approximately:

rnaivei,t =
2

|Ni|(σ−2A + σ−2B )

σ−2A ∑
j∈Ni,σ2

j=σ
2
A

ρaj,t−1 + σ−2B
∑

j∈Ni,σ2
j=σ

2
B

ρaj,t−1

 .
The actual variance of this estimate converges to:

(E.2) Var(rnaivei,t − θt) =
ρ2

(σ−2A + σ−2B )

[
σ−4A Cov∞AA + σ−4B Cov∞BB + 2σ−2A σ−2B Cov∞AB

]
+ 1

where Cov∞AA is the covariance of two distinct agents of signal type A and Cov∞BB and

Cov∞AB are defined similarly.

Since agents believe this variance is close to 1, the action of any agent with signal variance

σ2
A is approximately:

ai,t =
rnaivei,t + σ−2A si,t

1 + σ−2A
.

We can then compute the limits of the covariances of two distinct agents of various signal

types to be:

Cov∞AA =
κ2t(

1 + σ−2A
)2 ; Cov∞BB =

κ2t(
1 + σ−2B

)2 ; Cov∞AB =
κ2t(

1 + σ−2A
) (

1 + σ−2B
) .

Plugging into E.2 we obtain

κ−2 = 1− ρ2

(σ−2A + σ−2B )

(
σ−2A

1 + σ−2A
+

σ−2B
1 + σ−2B

)
.

Using this formula, we can check that the limits of agent variances in V̂ sym match

equations E.1.

We must check there is an equilibrium near V̂ sym with high probability. Let ζ = 1/n.

Let E be the event that for each agent i, the number of agents observed by i with private

signal variance σ2
A is within a factor of [1− ζ2, 1 + ζ2] of its expected value, and similarly

the number of agents observed by i with private signal variance σ2
B is within a factor of

[1 − ζ2, 1 + ζ2] of its expected value. This event implies that each agent observes a linear

number of neighbors and observes approximately the same number of agents with each

signal quality. We can show as in the proof of Theorem 1 that for n sufficiently large, the
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event E occurs with probability at least 1− ζ. We condition on E for the remainder of the

proof.

Let Vε be the ε-ball around in V̂ sym the sup norm. We claim that for n sufficiently large,

the updating map preserves this ball: Φnaive(Vε) ⊂ Vε. We have Φnaive(V̂ sym) = V̂ sym up

to terms of O(1/n). As we showed in the first paragraph of this proof, the partial derivatives

of Φnaive are bounded above by a constant less than one. For n large enough, these facts

imply Φnaive(Vε) ⊂ Vε. We conclude there is an equilibrium in Vε by the Brouwer fixed

point theorem.

Finally, we compare the equilibrium variances to perfect aggregation and to V ∞. It is

easy to see these variances are worse than the perfect aggregation benchmark, and therefore

by Theorem 1 also asymptotically worse than the Bayesian case when σ2
A 6= σ2

B.

In the case σ2
A = σ2

B, it is sufficient to show that Bayesian agents place more weight on

their private signals (since asymptotically action error comes from past changes in the state

and not signal errors). Call the private signal variance σ2. For Bayesian agents, we showed

in Theorem 1 that the weight on the private signal is equal to σ−2

σ−2+(ρ2Cov∞+1)−1 where Cov∞

solves

Cov∞ =
(ρ2Cov∞ + 1)−1

[σ−2 + (ρ2Cov∞ + 1)−1]2
.

For naive agents, the weight on the private signal is equal to σ−2

σ−2+1
, which is smaller since

Cov∞ > 0.

Appendix F. Socially optimal learning outcomes with non-diverse signals

(online appendix)

In this section, we show that a social planner can achieve asymptotically perfect aggrega-

tion even when signals are non-diverse. Thus, the failure to achieve perfect aggregation at

equilibrium with non-diverse signals is a consequence of individual incentives rather than

a necessary feature of the environment.

Let Gn be the complete network with n agents. Suppose that σ2
i = σ2 for all i and

m = 1.

Proposition 8. Let ε > 0. Under the assumptions in this section, for n sufficiently large

there exist weights weights W and ws such that at the corresponding steady state on Gn,

the ε-perfect aggregation benchmark is achieved.

Proof. An agent with a social signal equal to θt−1 would place weight σ−2

σ−2+1
on her private

signal and weight 1
σ−2+1

on her social signal. Let wsA = σ−2

σ−2+1
+ δ and wsB = σ−2

σ−2+1
− δ,

where we will take δ > 0 to be small.
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Assume that the first bn/2c agents place weight wsA on their private signals and weight

1−wsA on a common social signal rt we will define, while the remaining agents place weight

wsB on their private signals and weight 1 − wsB on the social signal rt. As in the proof of

Theorem 2,

1

bn/2c

bn/2c∑
j=1

aj,t−1 = wsAθt−1 + (1− wsA)rt−1 +O(n−1/2),

1

dn/2e

n∑
j=bn/2c+1

aj,t−1 = wsBθt−1 + (1− wsB)rt−1 +O(n−1/2).

There is a linear combination of these summations equal to θt−1 + O(n−1/2), and we can

take rt equal to this linear combination. Taking δ sufficiently small and then n sufficiently

large, we find that ε-perfect aggregation is achieved. �

In Figure F.1, we conduct the same exercise as in Figure 4.1 with n = 600. The difference

is that we now also add the prediction variance of group A when a social planner minimizes

the total prediction variance (of both groups). The weights that each agent puts on her

own private signal and the other agents are set to depend only on the groups. Under these

socially optimal weights agents learn very well, and heterogeneity in signal variances only

has a small impact.
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Figure F.1. Social Planner and Bayesian Learning
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