
LEARNING AND INFLUENCE IN NETWORKS: LECTURE I

BENJAMIN GOLUB

Abstract. This lecture covers classical models of repeated Bayesian learning in

social networks.

1. Introduction

1.1. Some motivating questions.

(1) Why is there disagreement about factual matters?

(a) Can we explain it rationally?

(b) How does it depend on the network?

(2) Can decentralized learning (via talking or trading) diffuse/aggregate knowledge

effectively?

(a) How does this depend on the information people get?

(b) How does this depend on the network?

1.2. Overview of mini-course. We start with Aumann’s [1976] model of “inter-

active reasoning” and examine social learning models in that tradition, as well as

sequential social learning. We then set out to address some of what the classical

approach hasn’t successfully analyzed: who is influential, what learning is like when

it is imperfect, the causes of disagreement, and the rate of convergence. In the

last lecture, we turn to recent work that aims to obtain models as tractable as the

behavioral ones just discussed, but with Bayesian foundations.
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2. A general framework

•

A social learning setting consists of:

• N – a set of players;

• A – a common action space; e.g., A = {0, 1} or A = R;

• Θ – state space; e.g., Θ = {H,L};
• u : A×Θ→ R – a common utility function;

• S – private signal space;

• µi for each i – i’s prior over Ω = Θ× SN .

The general idea is to start with an environment like this and then specify an extensive

form: timing of moves and observation opportunities. We also specify a solution

concept. We will study two examples in depth that make clear what this entails.

3. Martingales to Aumann

3.1. Setting. Take a social learning setting and suppose that the set N of players

are located on a graph, G given by its neighborhoods N (i) ⊆ N . The timing is as

follows.

• At t = 0, receive signals si and take actions ai(0) [all simultaneously].

• For t ≥ 1, observe aj(s) for all s < t, j ∈ N (n) and take actions ai(t) [all

simultaneously].

Let Ii,t be the information of individual i at time t (formally a σ-algebra on Ω).

For simplicity let’s take

• Θ = {0, 1};
• A = R and a scoring-rule so that u is maximized by reporting P(θ = 1 | Ii,t);
• the solution concept as myopic best-response to all predecessors’ strategies.
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This is a generalization of the process of Geanakoplos and Polemarchakis [1982]. These

sorts of models were later studied by Parikh and Krasucki [1990], Mueller-Frank

[2013], and others.

3.2. Basic questions.

(1) Does each individual’s belief converge? That is, does limt ai(t) exist for each

i?

(2) Do individuals come to agree? Is it the case that limt ai(t) = limt aj(t) for all

i, j?

(3) Does the eventual outcome aggregate information efficiently?

3.3. Results. On the first question, we have the following simple result.

Proposition 1. ai = limt ai(t) exists a.s. for each i.

Proof. Each (ai(t)))t is a bounded martingale with respect to the filtration (Ii,t)t. �

Now we consider the question of agreement.We say the graph is undirected if

i ∈ N (j) implies j ∈ N (i). We say an undirected graph is connected if there is no

nonempty proper subset M ⊆ N so that N (M) ⊆M .

We will make the drastic simplification that Ω is finite.

Proposition 2. If G is undirected and connected, and the prior is common, for each

i and j, a.s., ai = aj.

Proof. Define I i to be the limit of the increasing sequence of σ-algebras (Ii,t)t. From

the facts that G is undirected and Ω is finite we deduce that if i and j are neighbors,

then E[θ = 1 | I i] and E[θ = 1 | Ij] are common knowledge at sufficiently late times.

Then by Aumann’s Theorem they must be the same. By connectedness this holds

across the entire network. �

This leaves the question of whether aggregation is accurate.
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Example 1. Take N = {1, 2}. Let s1 and s2 be independent, drawn uniformly at

random from S = {0, 1}. Let θ = s1 XOR s2.

Note that E[θ | si] = 1
2

for both values of si, so no information is revealed by an

announcement.

Then ai(t) = 1
2

for all t but clearly information is not aggregated.

However, this example is nongeneric. If we think about the prior over Ω = Θ×S1×S2

that gave rise to this, it is very uniform. If we were to perturb it a little bit, then

announcements would become informative and information would get aggregated.

Indeed, we have the following (loosely stated) result.

Claim 1. With a finite Ω and generic priors over Ω, for a nontrivial event E, posterior

probabilities of E fully reveal all private information.

3.4. Remarks and take-aways.

• Social learning in networks ties in naturally with central ideas of economic

theory, and the frameworks associated with them. E.g.:

– beliefs are martingales;

– agreeing to disagree.

• What is robust (and not)?

– Convergence of individual beliefs: This is a quite robust feature as long

as (i) individuals don’t forget and (ii) the state in question is fixed.

∗ Related to studies of market prices: Ostrovsky (ECMA 2012).

– Agreement: This is fairly robust, certainly in the belief announcement

framework. Raises some questions:

∗ Technical: What if Ω weren’t finite? To my knowledge this isn’t

fully resolved.

∗ More substantively: is undirected important? Yes, I think it can’t

be dropped fully. Exercise: Find a counterexample.
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∗ Important extension: what can we conclude with a coarser action

space? If i takes action a infinitely often and j takes action a′ 6= a

infinitely often, then it is eventually common knowledge between

them that i thinks a is weakly better while j thinks a′ is better.

I.e. it is eventually common knowledge that

E[u(a, θ) | I i] ≥ E[u(a, θ) | I i] and E[u(a, θ) | Ij] ≤ E[u(a, θ) | Ij].

By same logic as Aumann’s Agreeing to Disagree result, this forces

equalities everywhere. So neighbors have to be indifferent between

actions taken infinitely often.

– Aggregation:

∗ How do we assess the result?

· Aggregation is perfect because people pay very careful atten-

tion to exactly what the report reveals about everything that’s

happened.

· Result therefore insensitive to any aspect of network structure,

etc.

∗ Seems quite fragile. But do we learn anything from this fragility?

· Genericity assumptions are deceptive when there is a dimen-

sionality/cardinality mismatch.

· “Smuggling information” is feasible in designed protocols but

it can even happen “naturally”.

· For social learning questions to be interesting, actions should

not reveal beliefs about everything.

– Overall gripe: network doesn’t matter very much beyond coarse/quantitative

properties. Individuals’ deductive abilities overwhelm everything.
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