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Abstract

We model two experts who must make predictions about whether an event will occur
or not. The experts receive private signals about the likelihood of the event occurring,
and simultaneously make one of a finite set of possible predictions, corresponding to
varying degrees of alarm. The information structure is commonly known among the
experts and the recipients of the advice. Each expert’s payoff depends on whether
the event occurs, her prediction, and possibly the prediction of the other expert. Our
main result shows that when either or both experts receive uniformly more informative
signals, their predictions can become unambiguously less informative. We call such
information improvements perverse. Suppose a third party wishes to use the experts’
recommendations to decide whether to take some costly preemptive action to mitigate
a possible bad event. The third party would then trade off the costs of two kinds of
mistakes: (i) failing to take action when the event will occur; and (ii) needlessly taking
the action when the event will not occur. Regardless of how this third party trades
off the associated costs, he will be worse off after a perverse information improvement.
These perverse information improvements can occur when each expert’s payoff is in-
dependent of the other expert’s predictions and when the information improvement is
due to a transfer of technology between the experts.
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1 Introduction

Executive decisions are made under uncertainty and typically informed by multiple predic-

tions from advisors. Whether a country goes to war depends on the predicted military out-

come of the conflict and likely international reaction. Whether a vaccine should be stockpiled

depends on predictions about the spread of the disease. Whether a government implements

policies to avert a potential financial crisis depends on experts’ judgment of its likelihood.

Given constraints on an executive’s time, experts and advisors only coarsely communicate

the complex information they have that is relevant to such decisions. How useful is the

information ultimately communicated to the executive?

The department of defense, epidemiologists, and economists seem to have ever better

technologies for collecting and analyzing data, but do their coarse predictions become more

useful to executives as a result? We examine the possibility that improving the information

available to those who advise a decision-maker garbles the information ultimately available to

that decision-maker, making that information strictly less useful regardless of the principal’s

relative costs of various sorts of errors.

Dramatic errors in decisions taken based on expert advice are not uncommon. Predic-

tions that Iraq possessed weapons of mass destruction influenced the decision to invade it,

but no such weapons were found.1 Following epidemiologists’ predictions of a possible 30,000

to 90,000 deaths due to an influenza pandemic2 very large amounts of vaccine and other med-

ication were stockpiled, but the actual number of deaths was about 10,000 and most of the

medication went unused. Lastly, and perhaps most dramatically, the economics profession

collectively failed to detect and warn about the impending financial crisis of 2008. While

these are only a few specific examples, they do demonstrate that experts often make serious

errors. And they raise the question of whether better information and more sophisticated

analysis lead to better recommendations.

There are many similar examples in other settings despite apparently substantial im-

provements in technologies for analyzing information. Satellite surveillance and other tech-

nological advancements improved the abilities of the intelligence agencies in the U.S. in the

1A select committee report “Report of the Select Committee on Intelligence on the U.S. Intelligence
Community’s Prewar Intelligence Assessments on Iraq” (2004) concluded that: “Most of the major key judg-
ments in the Intelligence Community’s October 2002 National Intelligence Estimate (NIE), Iraq’s Continuing
Programs for Weapons of Mass Destruction, either overstated, or were not supported by, the underlying in-
telligence reporting. A series of failures, particularly in analytic trade craft, led to the mischaracterization
of the intelligence.”

2This prediction was made by the President’s Council of Advisors on Science and Technology in the
“Report to the president on U.S. preparations for 2009 – H1N1 influenza” (2009).
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1990s. The same is true of the intelligence agencies in the U.K. Yet since then large terrorist

attacks have occurred in both of these countries. In the medical profession, technological

and scientific advances have improved the ability of doctors to detect different illnesses, yet

it is not clear how well these improvements have translated into better diagnoses (Raftery

and Chorozoglou, 2011).

While there are clearly many possible explanations specific to each of the above examples,

several of which are likely to play important roles, we identify a possible contributing factor to

all of the above outcomes. Our partial explanation is that the optimizing behavior of experts,

be they economists, different intelligence agencies, doctors, or financial traders, can react in

counterintuitive ways to strict improvements in the quality of their information. We assume

that the experts cannot communicate their information fully, and must instead make coarse

predictions. In a considerable set of circumstances, information improvements can then lead

to the combined predictions of the experts becoming less informative. The effects of better

information can be strictly bad in equilibrium, simultaneously for all potential consumers

of the advice, no matter what their trade-offs between different kinds of errors are. These

perverse outcomes do not require the experts’ payoffs to depend on each other’s predictions.

We also show that these perverse information improvements can come from experts learning

each other’s technologies.

We now sketch a simplified version of the framework in which we derive these conclusions.

Consider two experts, say Alice and Bob. They are called experts because they are in the

business of analyzing large amounts of data using sophisticated models. Each must decide

whether the results of the analysis become worrisome enough to sound the alarm about the

possibility of a rare event. Sounding the alarm or not are the only actions available to Alice

and Bob. In other words, as experts, they must make “bottom line” predictions.3

Ex ante, both Alice and Bob know that a rare event happens with some probability, but

whether it is about to occur is not known to anyone. The complicated information of each

expert is modeled as a signal, which is drawn from one distribution if the event is about

to occur and from another distribution if it is not. Some signals are more worrisome than

others, and the signals of the two experts are independent conditional on the realization of

the event (i.e., whether it is about to occur).

After observing their signals, both Alice and Bob must choose whether to predict the

event or not. Alice’s payoff depends on her prediction and whether the bad event ends

up occurring. The same holds for Bob.4 Alice faces the usual statistical tradeoff between

3In Section 6 we extend our model to allow experts to make finer-grained predictions.
4In the general model we will also permit an expert’s payoff to depend on the predictions of the other
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sounding the alarm when she should not have (making a Type I error) and failing to sound

it when she should have (making a Type II error). So does Bob. Each of them is a rational

agent, optimizing against the uncertainty inherent in the environment.

Suppose that Alice and Bob start to get systematically more informative signals. That

is, they gain the ability to make predictions that have both a lower chance of Type I error

and a lower chance of a Type II error than any prediction they could make before. This

may happen because they get access to new data or because they figure out a way to process

existing data better. Society now has the potential to be better-informed than before.

Nevertheless, an improvement in the quality of Alice’s and Bob’s information may result

in a perverse effect. We identify a condition under which an improvement in the quality of

Alice and Bob’s information can make their collective predictions less informative. This con-

dition requires both Alice and Bob to ‘envy’ each other’s error rates before their information

improvements.

Each of Alice and Bob will always make either fewer Type I errors, or fewer Type II

errors following an information improvement, but neither of them has to improve on both

dimensions. Suppose that initially Bob makes fewer Type I errors than Alice but more Type

II errors. Following an improvement in his information, Bob, envious of Alice, may choose

to reduce his Type II error rate but increase his Type I error rate . Alice, envious of Bob,

may choose to make fewer Type I errors but more Type II errors following an improvement

in her information. If the reduction in Bob’s Type II errors is dominated by Alice’s increase

in Type II errors, while Alice’s reduction in Type I errors is dominated by Bob’s increase

in Type I errors, then Bob and Alice’s collective predictions can become less informative.5

Information improvements that result in these perverse outcomes can themselves be fairly

natural. For example, perverse outcomes are possible when the information improvements

result from the experts learning each other’s capabilities, e.g. via technology transfer (section

4.1).

Suppose the rare event being predicted by the experts is bad, but that society can take

costly preemptive action. How can society best use the predictions of the experts to decide

whether to take the preemptive action or not? Can society make a clever choice of a decision

rule that mitigates the effect of a perverse information improvement? Unfortunately, we

show that no decision rule can mitigate the effect of a perverse information improvement.

After a perverse information improvement, every potential consumer of the experts’ advice is

simultaneously worse off, regardless of how that consumer trades off different types of errors.

expert.
5We note that perversity of information improvement is a group phenomenon. If Alice is the only expert

and she gets a more informative signal, then she must do better with respect to at least one type of error.
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Section 2 lays out the basic model, assumptions, and definitions, and discusses the ex-

istence of equilibrium. Section 3 defines perverse information improvements and provides a

simple example of one. Section 4 identifies a necessary and sufficient condition for perverse

information improvements to exist when experts’ payoffs do not depend on each other’s pre-

dictions. We then show that information improvements due to technology transfer can be

perverse. These results are extended first to environments with strategic experts (whose

payoffs do depend on each other’s actions) in Section 5, and then in Section 6 to permit the

experts to also make finer predictions. Section 7 concludes.

1.1 Related Literature

Our paper is most closely related to the literature on committees.6,7 That literature focuses

on how committees can make informed decisions or give informed advice when individual

members have private information and only partially aligned incentives. The problem of

committee members collating their information to make a decision is therefore similar to the

problem of a third party (principal) interpreting the predictions of multiple experts to make

a decision.

The typical setup in the committees literature is as follows: (i) the committee must

make a binary decision; (ii) committee members have private information; (iii) all members

have the broadly aligned objective of wanting the committee to avoid Type I and Type II

errors; and (iv) although all committee members dislike both Type I and Type II errors,

their relative preferences over avoiding Type I versus Type II errors can differ. Committee

members, knowing each other’s preferences, may then strategically adjust their reports so

that the committee’s decision trades off the possibility of making Type I and Type II errors

in a way that aligns with their preferences. These strategic manipulations result in private

information becoming garbled and the committee making less well informed decisions than

6There are also some connections with the literature on testing experts. In this paper we assume that
experts truly have expertise in their field and restrict them to make a coarse and easily falsifiable prediction
about a single event. However, when experts’ can make more nuanced predictions about many events, the
issue of separating true experts from false experts is raised. There are then important philosophical questions
about what constitutes a “scientific” prediction, and whether true experts can be distinguished from false
but strategic experts. See Sandroni (2003), (2006), Olszewski and Sandroni (2008; 2010), Fortnow and Vohra
(2009), Al-Najjar and Weinstein (2008), and Feinberg and Stewart (2008).

7A second related literature is the one on herding, starting with the seminal papers of Banerjee (1992)
and Bikhchandani, Hirschleifer, and Welch (1992). One interpretation of herding models is that “experts”
receive many coarse and dependent signals (the actions choices of previous experts) before making a coarse
“recommendation”. It is the coarseness and dependence in observed signals that restricts information aggre-
gation. In our model observed signals drawn from a continuous distribution and only recommendations are
coarse.
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it could if it shared information completely (Li, Rosen and Suen (2001)).

We differ from the committees literature primarily in focusing on different phenomena

and asking different questions. In the committees literature, a primary concern is how

information should be transmitted to mitigate strategic distortions. Solutions involve coarse

information being transmitted in equilibrium, in a way that is reminiscent of cheap talk

models (Crawford and Sobel (1982)). A primary question is then how fine-grained the

information communicated is. We instead fix the coarseness of information transmission

and then consider the informativeness of experts’ joint predictions as the quality of their

information varies.8 In particular, we focus on the joint informativeness of the experts’

advice before and after their information has improved. While in the committees literature

more informed experts are typically beneficial (Li, Rosen and Suen (2001), Li and Suen

(2004), Suen (2004)), we show that experts can be collectively less informative following an

information improvement.

One exception to the tendency of better information to lead to better predictions is

Ottaviani and Sørensen (2006). In that work, experts care about their perceived ability and

have different (privately known) abilities, modeled through the quality of the signals they

receive. Experts then distort their predictions in order to appear to be high ability and

endogenously only binary recommendations can be sent in informative equilibria. However,

there may be multiple such equilibria and it is possible for a better-informed expert to

provide a recommendation that is of no use to a specific principal, while a less well informed

expert sometimes provides a useful recommendation. Our model is very different insofar

as our experts do not seek to affect a principal’s estimate of their unobserved information

type; indeed, in our model all information structures are commonly known. We also get

a stronger perversity result. Following improvements in their information, all potential

principals simultaneously can receive strictly less informative recommendations, rather than

just a given principal with specific preferences over Type I and Type II errors.

2 Predictions Game

We first study the model with binary predictions. An extension in which experts can make

n predictions is discussed in Section 6.

8This is also an important way in which we differ from the delegation literature. The delegation literature,
starting with Holmstrom (1983), broadly studies how a principal should optimally restrict an agent’s freedom
of choice when delegating a decision to that agent. By assumption, in our model, each expert can only make
coarse predictions.
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2.1 The Environment

Players There are two experts indexed indexed i = 1, 2.

Actions Each expert chooses whether to predict that an event will occur. We denote by

xi ∈ {1, 0} the prediction of expert i, with xi = 1 corresponding to the positive prediction.

Timing and Information Structure

1. Nature draws a Bernoulli random variable X with distribution

X =

1 with probability p

0 with probability 1− p.

We define the event E to be {X = 1}; its complement {X = 0} is denoted by E.

2. For each expert i, nature draws a private signal Si ∈ S = [0, 1] whose cumulative

distribution function is: Gi if X = 1 and Fi otherwise. These signals are conditionally

independent, where the conditioning is on E.

3. Simultaneously9, each expert predicts xi ∈ {1, 0}.

Strategies The strategy of each expert is a Borel measurable function σi : [0, 1] → [0, 1],

with σi(s) describing the probability with which i plays xi = 1 upon observing the signal

Si = s.

Payoffs Each expert’s payoff depends on her prediction, the other expert’s prediction and

whether the event E occurs. If i makes prediction xi and j makes prediction xj then i’s

payoff if E occurs is πi(xi, xj) ≡ πi(xi, xj |E) and πi(xi, xj) ≡ πi(xi, xj |E) if E does not

occur.

The experts simultaneously attempt to correctly predict the occurrence of the event E.

They predict the event E by choosing the action 1 (and conversely predict the event E by

choosing the action 0). We assume that the experts like making correct predictions and

dislike making incorrect predictions: πi(1, xj) > πi(0, xj) and πi(0, xj) > πi(1, xj) for either

prediction xj that j can make. An expert who knew the event E had occurred would have a

9See Ottaviani and Sørensen (2001) for a comparison of sequential and simultaneous predictions when
experts wish to maintain their reputation for being well informed.
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dominant strategy to play 1, and similarly, one who knew that E had occurred would have

a dominant strategy to play 0. However, the experts receive only a noisy signal of E. Given

the signal they receive they update their beliefs10 before choosing their action xi ∈ {1, 0}.
Expert j’s prediction may or may not affect expert i’s payoff.

2.2 Signals

We assume that Fi has a density fi and Gi has a density gi, each defined on [0, 1], such that

fi(s) > 0 and gi(s) > 0 for all s ∈ [0, 1] and for i ∈ {1, 2}. No signal si ∈ (0, 1) is fully

informative and so the quantity gi(s)/fi(s) is well-defined in this domain. This quantity

corresponds to expert i’s odds ratio on the event E (relative to its complement E) after

observing a signal Si = s. That is,

gi(s)

fi(s)
=

Pi(E |Si = s)

1−Pi(E |Si = s)
.

We assume that the signals in the domain [0, 1] are ordered such that this odds ratio is

strictly increasing as a function of s for each expert i and that the odds ratio is lowest when

s = 0. Higher signals indicate the event E is more likely to occur. This is the monotone

likelihood ratio property. Finally, we assume for sufficiently high signals, E becomes very

likely and that for sufficiently low signals E becomes very unlikely: as si → 1, we have
gi(s)
fi(s)
→∞ and as si → 0, we have gi(s)

fi(s)
→ 0.

Via a change of variables, we may assume without loss of generality that Fi(s) = s for

all s ∈ [0, 1]: that is, we may assume that Si is uniformly distributed when the event E does

not occur. This makes fi(s) the uniform density. It also makes gi(s) equal to the odds ratio.

One immediate implication of the monotone likelihood ratio property is that gi(s) is strictly

increasing in s.

2.3 Discussion of the Environment

We restrict the experts to make yes/no predictions to capture the idea that the “bottom-

line” predictions experts make are much coarser than their information. In Section 6 we

relax the assumption that predictions are binary by allowing the experts to choose from a

finite number of predictions of different strengths. Our main results are easily extended to

this setting.

10These are beliefs of expert i about the event E, about what the other expert will do, about the beliefs
of the other expert regarding what i will do, and so on.
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We also restrict the experts to receive conditionally independent signals. Including an

additional signal observed by both experts, but not the consumers of their predictions, would

not change results. The commonly observed signal would adjust the common prior of the

experts but subsequent analysis would go through with this new common prior. A fully

general model would permit for arbitrary correlations of experts’ signals and model their

joint distribution. However, this generality would come at the cost of substantial additional

complexity, and so we focus on the case of conditionally independent signals.

2.4 Equilibrium and Errors

In Appendix A we show that cutoff strategies are always played in equilibrium, and that a

Bayes-Nash equilibrium exists.11 In a given equilibrium, without loss of generality we may

assume there are numbers (γ∗1 , γ
∗
2) such that expert i predicts the event E whenever Si ≥ γ∗i ,

and we refer to γ∗i ∈ [0, 1] as i’s cutoff. Given that cutoff strategies are being played, we

can simply define some standard statistical quantities for each expert. In the event that E

does not occur, the distribution of the signal Si is uniform, so 1 − γ∗i is the probability of

expert i choosing xi = 1 when E does not occur. This is the probability of expert i making

a Type I error. Similarly, Gi(γ
∗
i ) is the probability of expert i making a Type II error – that

is, choosing xi = 0 when E occurs. To summarize:

1− γ∗i is i’s probability of Type I error (when event E does not occur).

Gi(γ
∗
i ) is i’s probability of Type II error (when event E occurs).

3 Better Informed Experts Can Give Less Informative

Advice

We now identify conditions under which “better” information becoming available to the

experts can make their predictions less informative to any principal.

3.1 The Perturbation: Better Information

The first step is to formally define an improvement in information.

In Section 2.4 it was shown that the experts’ cutoff strategies mapped directly into their

probabilities of making the two kinds of errors (Type I and II). When choosing their cutoff

11We do this for the more general environment in which the experts can choose from n predictions to
make.
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strategies, experts are trading off a lower cutoff and a lower probability of a Type I error (a

false positive) versus a higher cutoff and a lower probability of a Type II error (failing to

predict the event, a false negative). This tradeoff can be represented as a error avoidance

possibility frontier where the signal technology constrains their choice of Type I and Type

II errors. This is shown in Figure 1.

Probability of avoiding a type I error 
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Figure 1: Better information: A shift outward of the error avoidance possibility frontier.

An expert i receives better information when her error avoidance possibility frontier shifts

out. It is straightforward to show that this corresponds exactly to a first order stochastic

dominance shift outwards in the CDF (Gi) of the signal under the event E, such that when

the event E occurs, higher signals are received with higher probability. Indeed, the error

avoidance possibility frontier is si 7→ 1−Gi(si).
12 An expert with improved information can

then reduce both her Type I and Type II error probabilites.

Definition 1. Formally, an information improvement over (G1, G2) is defined to be any

pair of distributions (G̃1, G̃2) 6= (G1, G2) such that G̃i first-order stochastically dominates

Gi for each i ∈ {1, 2}.

12As Fi is uniformly distributed on s = [0, 1] the probability of i making a Type I error is 1 − γ∗i . The
probability of making a Type II error is Gi(γ

∗
i ). Plotting 1 − Gi(si) then identifies the trade-off an expert

faces between avoiding a Type I error and a Type II error. As gi(si) is increasing in si (by the monotone
likelihood ratio property), the function 1−Gi(si) is concave.
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Figure 2: The slope of the line reflects the cost of a Type II error relative to a Type I
error; along the line, an expert is indifferent. Setting it tangent to the curve described by
γ 7→ 1−G(γ) yields the optimal cutoff.

Looking at the tradeoff between different kinds of errors as a “production possibilities

frontier” has another advantage. We can plot an indifference curve of an expert with a

certain tradeoff between the two types of errors. Fixing the behavior of the other expert,

this is a line, since the expert has expected utility preferences and her utility is thus linear

in the probabilities of various types of errors. Let βi(γj) be the slope of i’s indifference curve

when expert j is choosing cutoff γj. This can be computed explicitly13. Finding a point of

tangency between that line and the production frontier is a way to find the optimal cutoff

(see Figure 2).

13Player i’s expected payoff has the form:

E[πi|γj ] = Φ0(γj) + Φ1(γj)(1−Gi(γi)) + Φ2(γj)γi,

where Φ0(γj), Φ1(γj) and Φ2(γj) are functions of γj (the other expert’s cutoff choice) but not γi. Setting
this expression equal to a constant defines this expert’s (linear) indifference curve in the coordinates depicted
in Figure 2, where a typical point is (γi, 1 − G(γi)): probabilities of avoiding the two types of errors. The
slope of this indifference curve is then βi(γj) = − (Φ2(γj)/Φ1(γj)). It can verified that

Φ1(γj) = p [(1−Gj(γj))(πi(1, 1)− πi(0, 1)) +Gj(γj)(πi(1, 0)− πi(0, 0))] ,

and
Φ2(γj) = (1− p) [γj(πi(0, 0)− πi(1, 0)) + (1− γj)(πi(0, 1)− πi(1, 1))] .
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3.2 An Illustration of What Can Go Wrong

Improvements in experts’ information do not necessarily have the intuitive effect of improving

the quality of information available to an outside observer. Indeed, it is possible that experts’

information strictly improves but the information available to be extracted becomes strictly

worse in a sense that we now make precise. The following example illustrates how better-

informed experts can make less informative predictions.

To emphasize that perverse information improvements are possible without any strategic

effects (e.g., trying to “outguess” the other expert), suppose that both experts’ payoffs are

independent of each others’ predictions. Let expert 1 start with the information depicted

in Figure 3a and receive the information improvement depicted in Figure 3b. Following this

information improvement expert 1 will choose to increase her cut-off, making more Type

II errors but fewer Type I errors. Expert 1’s rate of Type I and Type II errors therefore

changes from the point 1 to the point 1’.

Expert 2 also receives an information improvement which is depicted as a move from

Figure 3c to Figure 3d. After this information improvement expert 2 chooses to decrease her

cut-off value, making fewer Type I errors but more Type II errors, and moving from point 2

to 2’.

After these information improvements, expert 1 makes more Type I errors and more

Type II errors than expert 2 did before the information improvements. Similarly, expert 2

makes more Type II errors and more Type I errors than expert 1 did before the information

improvements. This is shown in Figure 3e. Overall, the experts’ collective predictions then

become strictly less informative.

It is also interesting to consider the kind of information improvement that resulted in

the perverse outcome. Comparing the experts’ information before and after the information

improvement in Figure 4a and 4b, it appears that, in some qualitative way, the experts’

information is more similar after the information improvements. This observation forms the

basis of Section 4.1 on how perversity can occur due to “technology r.

3.3 Utilizing the Experts’ Predictions

When do experts’ collective predictions become less valuable to society? For the experts’

predictions to have any impact there must exist decisions that are informed by those predic-
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(a) 1’s initial information.
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(b) 1’s information improvement.

P
ro

b
ab

il
it

y
 o

f 
av

o
id

in
g

 a
 t

y
p

e 
II

 e
rr

o
r 

Probability of avoiding a type I error 

2 

(c) 2’s initial information.
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(d) 2’s information improvement.
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(e) Predictions become less informative.

Figure 3: Improvements in the experts’ information leads them to make collectively less
informative predictions.
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(a) Old information.
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(b) New Information.

Figure 4: The experts’ information looks (more) similar after the information improvement.

tions. To capture this idea, we suppose society observes the experts’ predictions and must

then decide whether to take costly preemptive action to mitigate the effect of the event E.

We assume that society’s collective payoff from taking the preemptive action is greater than

not taking the preemptive action when the event E occurs, but lower when the event E does

not occur. More formally, we introduce a principal to represent the interests of society and

let the principal inherit society’s preferences, as well as make decisions on behalf of society.14

By choosing whether to take the preemptive action or not; the principal therefore trades

off the possibility of making a Type I error (taking the preemptive action when the event

E does not occur) and making a Type II error (not taking the preemptive action when the

event E does occur).

The principal’s payoffs are given by the following matrix, where y represents the princi-

pal’s decision.

E E

y = 1 a0 a0

y = 0 b0 b0

where, as just discussed, a0 > a0 and b0 < b0.

The principal can use the experts’ predictions in any way when deciding whether to

take the preemptive actions or not. The principal might take preemptive action only if

both experts predict the event E, if only expert 1 predicts the event E, and so on. Let

14This formulation allows us to abstract from any preference aggregation issues, and focus on the infor-
mativeness of the experts’ predictions.
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q(xi, xj) : {0, 1}2 → [0, 1] be a decision rule for the principal describing the probability with

which the principal takes preemptive action following expert predictions x1 and x2.

From now on, we consider a larger game in which the principal is another player, who

moves after the experts, choosing y, and whose payoffs are as above. “Equilibrium”, will

mean a Nash equilibrium of this larger game.

3.4 Perverse Information Improvements

As we are permitting the experts’ payoffs to depend on each others predictions, experts’

choices of predictions are modeled as a game and in general this game can have multiple

equilibria. When defining perverse information improvements, the possibility of multiple

equilibria needs to be accounted for. This leads us to introduce the concepts of weakly

perverse information improvements (perverse for an equilibrium) and strongly perverse in-

formation improvements (perverse for all equilibria).

Fix an initial information structure (G1, G2) and initial equilibrium defined by cutoffs

(γ∗1 , γ
∗
2). We will assume throughout that in this initial equilibrium the principal uses the

information provided by at least one expert – i.e. there exist a combination of recommenda-

tions the experts can make under which the principal chooses to take the preemptive action

and other recommendations under which the principal chooses not to take the preemptive

action.15 An information improvement (G̃1, G̃2) is weakly perverse at the equilibrium if and

only if there exists an equilibrium of the predictions game under (G̃1, G̃2) in which the princi-

pal is strictly worse off than before (i.e., at the original equilibrium (γ∗1 , γ
∗
2) under the original

information structure (G1, G2)), for any preferences the principal might have over Type I

and Type II errors. Information improvements are strongly perverse if, in all equilibria of

the predictions game under (G̃1, G̃2), the principal is strictly worse off than before for any

preferences the principal might have over Type I and Type II errors.16

The experts’ recommendations (which can be thought of, from an outsider’s or principal’s

perspective, as a pair of binary random variables). Denote by (X1, X2) and (X ′1, X
′
2) these

random variables before and after the information improvement, respectively. It can be

15These are the interesting cases. When the principal ignores both experts to begin with, no information
improvement can make any principal worse off – the principal always has the option of continuing to ignore
the experts, and by revealed preference, this was a best outcome for the principal before the change in
information quality.

16A much weaker notion of perversity would require only that some principal is made worse off by the
experts’ information improvements. This would drop the requirement that all principals be worse off, re-
gardless of their trade-off between different kinds of errors. For such a definition, it is straightforward to
find “perverse” information improvements as long as the principal has different preferences over Type I and
Type II errors from the experts.
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verified that seeing (X ′1, X
′
2) is less useful to every principal than seeing (X1, X2) if and only

if (X ′1, X
′
2) is a garbling of (X1, X2), in the sense of Blackwell (1953).

It will also be helpful to introduce the concept of “cross-dominated” information im-

provements. Let γ∗
′
i be i’s cutoff in an equilibrium after the information improvement. This

information improvement is cross-dominated for this equilibrium if i = 1, 2 makes both more

Type I errors more Type II errors after the information improvement than j 6= i did be-

fore: 1 − γ∗
′
i > 1 − γ∗j and Gi(γ

∗′
i ) > Gj(γ

∗
j ), for i, j ∈ {1, 2} and i 6= j. An information

improvement is strongly cross-dominated if it is cross-dominated in all equilibria and weakly

cross-dominated if it is cross-dominated in an equilibrium.

Lemma 1. The experts’ information improvements are weakly (respectively, strongly) per-

verse if they are weakly (respectively, strongly) cross-dominated.

The proof of Lemma 1 is in the Appendix. It can be shown, by example, that cross-

dominated information improvements are not necessary for perverse information improve-

ments – it is possible to have other perverse information improvements. In the next section

we will focus on cross-dominated information improvements. Perversity is, however, more

prevalent than this analysis alone suggests.

4 Perversity with Independent Experts

To identify conditions under which information improvements can be perverse, we consider

first the case of independent experts, by which we mean experts whose payoffs do not depend

on each other’s predictions. We do this to emphasize that perversity is not an artifact of

strategic interaction between experts.

It will be helpful to define a new condition on experts’ preferences. Given a strategy

profile of the game, an expert i is envious of j if i would strictly prefer to have j’s Type I

and Type II error rates over any error rates on i’s own error avoidance frontier.

Theorem 1. Assume experts are independent and fix any equilibrium of the game. Then

there exists a strongly cross-dominated information improvement at that equilibrium if and

only if both experts are envious of each other. Consequently, if both experts are envious of

each other, there exists a strongly perverse information improvement.

The final sentence of the theorem follows by Lemma 1.

The proof of Theorem 1 is in the Appendix, but intuition can be gained from Figure

5. Figures 5a and 5b depict two envious experts. Expert 1 chooses point 1 on her error
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avoidance frontier but would prefer the error rates at point 2. Expert 2 chooses point 2 on

her error avoidance frontier but would prefer the error rates at point 1.

Information improvements for experts 1 and 2 can then be constructed so that, for each

expert, the other expert’s initial Type I and Type II error rate become just feasible. This is

shown in Figures 5c and 5d. Expert 1’s information improvement is constructed by finding

the convex hull of 1’s initial error avoidance frontier and 2’s initial Type I and Type II error

rates. As expert 1 was envious of expert 2, after her information improvement, expert 1 will

choose expert 2’s original point in the space of error rates. The analogous exercise can be

done for expert 2. The experts therefore “switch places” given the information improvements

shown in Figures 5b and 5c.

It is easy to adjust the constructed information improvements slightly so that the ex-

perts’ optimal Type I and Type II error rates after the information improvements are cross-

dominated – i.e., so that each expert after the information improvement is doing strictly

worse than the other expert before the improvement. Strongly cross-dominated and there-

fore strongly perverse improvements have been constructed for experts who are envious of

each other.

Cross-dominated information improvements with independent experts are only possible if

the experts are both envious of each other. However, there do exist other types of information

improvements that are also perverse. For this reason, independent experts being envious of

each other is a sufficient but not necessary condition for a strongly perverse information

improvement.

4.1 Information Improvements due to Technology Transfer

Theorem 1 only identifies conditions under which perverse information improvements are

possible and is silent on which types of information improvements are perverse. A partic-

ular concern is that very specific and strange types of information improvements may be

necessary for perversity. We show now that even natural, simple information improvements

can be perverse. Consider two experts who have access to a fixed set of data but different

technologies for analyzing the data. We will now consider information improvements that

can result from the experts learning each other’s technologies. We will say an information

improvement arises from technology transfer to expert i if, loosely speaking, expert i’s new

17
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(c) 1’s information improvement.
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(d) 2’s information improvement

Figure 5: The constructed improvements in the two envious experts’ information results in
them swapping positions – expert 1 makes Type I and Type II errors at the rate expert 2
did before the information improvements and expert 2 makes Type I and Type II errors at
the rate expert 1 did before the information improvements.

error avoidance frontier lies within the convex hull17 of her and the other expert’s old fron-

tiers. More formally, an information improvement arises from technology transfer to expert

i if, for every point on expert i’s new error avoidance frontier, there exists a point in the

convex hull of i’s own initial error avoidance frontier (the curve γ 7→ 1−Gi(γ)) and expert

j’s initial error avoidance frontier (the curve γ 7→ 1−Gj(γ)) with weakly fewer type I errors

and weakly fewer type II errors. We say an information improvement arises from technology

17An expert that has access to two technologies for predicting the event can always achieve the convex
hull of the error rates the two technologies can separately achieve – the expert simply randomizes between
the predictions of one technology with one cut-off and the prediction of the other technology with a different
cut-off.
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transfer if it arises from technology transfer to either expert, or both.

Technology transfer may seem to be of limited value, since in some sense it does not add

any new information, but merely shares information that was already present. Nevertheless,

it is possible to characterize some circumstances in which such information improvements

make it possible for both experts to reduce both their type I and type II errors – although

they may not choose to do so.

Proposition 1. There exist information improvements that arise from technology transfer

and permit both experts to lower their rates of type I and type II errors if and only if both

experts are envious of each other.

This result is straightforward and we omit a proof. The typical case is shown in Figures

6a and 6b, in which we start with two experts who strictly prefer each other’s points in error

space. Consider the convex hull of both experts’ possible error combinations. As experts

are envious of each other, they prefer each other’s error rates; the indifference curve of each

expert passes below the other expert’s combination of error rates. As can be seen in Figures

6a and 6b, this implies that the convex hull of the experts’ initial error avoidance frontiers

will contain, in its interior, both expert’s initial error rates.

We now state a proposition describing how technology transfer can have unambiguously

harmful effects.

Proposition 2. If the experts are independent and envious of each other, then there exist

information improvements which arise from technology transfer and are strongly perverse.

To gain intuition for this result, consider Figure 6. Figure 6a shows the initial error

avoidance frontiers for experts 1 and 2. The convex hull of the curves γ 7→ 1 − Gi(γ) and

γ 7→ 1 − Gj(γ) is then constructed in Figure 6b to illustrate the scope for information

improvements for expert 1 that can be attributed to technology transfer. In Figure 6c the

error avoidance rates dominated by expert 2’s initial error avoidance rates of (γ∗2 , 1−G2(γ
∗
2))

are shown. Figure 6d shows an information improvement that arises from technology transfer

to expert 1 such that the new point of tangency between 1’s indifference curves and 1’s new

error avoidance frontier is dominated by expert 2’s initial error avoidance rates. Expert 1

will then choose these new error rates after her information improvement. Constructing a

similar information improvement for expert 2 would make these information improvements

perverse.
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(a) Error avoidance frontiers.
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(b) The convex hull.
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(c) Region for new tangency point.
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(d) A possible information improvement for 1.

Figure 6: An example of how to construct information improvements that can be attributed
to technology transfer and are perverse. Here only the information improvement of expert 1
is shown. For perversity a similar information improvement is also required for expert 2.

5 Perversity with Dependent Expert Preferences

We now focus on extending the results above to situations where experts’ payoffs are not

necessarily independent – that is, where there is a direct payoff effect on one expert when the

other changes her prediction. This can occur in a multitude of ways – for example, an expert

correctly predicting a crisis when she was the only one to do so. There are then incentives

to strategically manipulate predictions, depending on what the other expert is doing.

To extend Theorem 1 to permit strategic experts, a condition on the experts’ initial

equilibrium strategies called playing to their strengths is helpful. Expert i’s prediction cannot

be dominated by expert j if there is no cutoff strategy j can play that would result in j making
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both weakly fewer Type I errors and weakly fewer Type II errors than i. When, in a given

equilibrium, an expert i is making predictions that cannot be dominated by expert j, we say

that expert i is playing to her strengths in that equilibrium.

When the experts are playing to their strengths in an equilibrium (γ∗1 , γ
∗
2), expert j’s

equilibrium avoidance of Type I and Type II errors (γ∗j , 1 − Gj(γ
∗
j )) will lie outside of i’s

error avoidance frontier. As in the proof of Theorem 1, we can then construct the convex hull

of the point (γ∗j , 1 − Gj(γ
∗
j )) and i’s error avoidance frontier (see Figure 5 throughout this

discussion). Suppose for now that the error avoidance frontiers are continuously differentiable

(see the proof of Proposition 3 for the general case, including more general definitions of

γ̂i,a and γ̂i,b). First construct lines tangent with i’s error avoidance frontier and passing

through the point (γ∗j , 1 − Gj(γ
∗
j )). Let these points of tangency be (γ̂i,a, 1 − Gi(γ̂i,a)) and

(γ̂i,b, 1−Gi(γ̂i,b)) where γ̂i,a < γ∗j < γ̂i,b. In other words, the numbers γ̂i,a and γ̂i,b are defined

to be the two values of x that solve 1−Gi(x) + gi(x)(x− γ∗j ) = 1−Gj(γ
∗
j ).

Given her preferences, expert i may find that some of her possible cutoffs are dominated

in the sense that she would not want to play them regardless of what expert j choose to

do. Thus, we can define, in the usual way, the rationalizable cutoff strategies Ri and Rj by

iteratively eliminating strictly dominated cutoff strategies for each expert (Bernheim, 1984).

Proposition 3. There exist weakly perverse information improvements over the initial in-

formation structure (G1, G2) at an initial equilibrium (γ∗1 , γ∗2) if:

(i) experts are playing to their strengths at (γ∗i , γ
∗
j ); and

(ii) were the experts to swap error rates, each expert i’s indifference curve would have a

slope between the slopes of her frontier at the points of tangency18: for each i, we have19

βi(γ
∗
i ) ∈ (−G′i(γ̂i,b),−G′(γ̂i,a)).

These information improvements are also strongly perverse if:

(iii) all γi ≤ γ̂i,a and all γi ≥ γ̂i,b are not rationalizable for i (i.e., all such γi are not in

Ri), for each player i ∈ {1, 2}.

The proof of Proposition 3 is constructive and is in the Appendix.

Although the economic interpretation of condition (ii) in Proposition 3 is somewhat

opaque, it is implied by a condition more closely related to the envious experts condition

18Recall from Section 3.1 that the slope of a given expert’s indifference curve is a function of the other
expert’s cutoff; thus, the usual thing to write would be βi(γ

∗
j ). But here we are envisioning the experts

switching places, with j playing γ∗i , and thus the slope of interest is βi(γ
∗
i ).

19The negative signs arise because the frontier of expert i is 1−Gi.
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from Theorem 1. The difficulty of extending the concept of envious experts to a setting in

which experts’ payoffs depend on each other’s predictions is now each expert’s preferences

and trade-offs depend on the cut-off played by the other expert. The concept of an expert

being envious of another expert must therefore specify what the other expert is doing. We

will say an expert i is robustly envious of j if i would strictly prefer to have j’s equilibrium

Type I and Type II error rates (before the information improvements), over any error rates

on i’s error avoidance frontier (i) holding j’s error rates constant and (ii) if j switched to

making Type I and Type II errors at i’s current error rates.

Corollary 1. There exist weakly perverse information improvements if both the experts

are robustly envious of each other.

The proof of Corollary 1 is omitted. It can be verified that the construction of perverse

information improvements in the proof of Proposition 3 goes through with robustly envious

experts. Without restricting the experts’ preferences further, multiple equilibria are possible

with experts whose payoffs depend on each other. This is why Corollary 1 only identifies

conditions for weakly perverse information improvements.

Proposition 2 can also be extended to environments with strategic experts.

Corollary 2. If both the experts are robustly envious of each other, then there exist infor-

mation improvements that arise from technology transfer and are weakly perverse.

Corollary 2 follows immediately from Corollary 1 and the information improvements

constructed in Proposition 3.

5.1 Cases in which Perversity Occurs Only If Experts’ Payoffs

are Dependent

Given that we are able to give tighter (i.e., if and only if) conditions for perversity in

the case where experts’ payoffs are independent, it might be tempting to conclude that

dependence of experts’ payoffs on each others’ predictions reduces the scope for perverse

information improvements. This is not the case. In the following example, a perverse

outcome is possible only when experts’ payoffs depend on each other. Indeed, more generally,

information improvements that affect only a single expert can be perverse only if the expert

who does not receive the information improvement is strategic.
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(a) Expert 1’s information improves.
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(b) Expert 2’s error trade-off.
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(c) Predictions become less informative.

Figure 7: An improvement in expert 1’s information leads to less informative predictions.

Suppose expert 1 receives an information improvement as shown in Figure 7a. Without

any strategic interaction expert 1 would then make fewer Type I errors and fewer Type II

errors than before the improvement (moving from the point labeled “a” to the white circle).

Her prediction would then be unambiguously more informative than her initial prediction.

However, letting the experts’ payoffs be dependent, each expert’s optimal choice of cutoff

can depend on what she expects the other expert’s cutoff to be. If expert 2 expects expert 1

to increase her cutoff and make fewer Type I errors, then expert 2 may wish to differentiate

herself from expert 1 by reducing her cutoff and making fewer Type II errors (but more Type

I errors). Alternatively, expert 2 may want to herd with expert 1 and also increase her cutoff

so she also makes fewer Type I errors (but more Type II errors).
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In Figure 7 expert 1’s movement out to the white circle changes expert 2’s optimal choice

of cutoff. At the new equilibrium, expert 2 moves along her error avoidance frontier from the

point labeled “a” in Figure 7b to the point labeled “b”, while expert 1 also moves along her

new error avoidance frontier from the white circle (where she would be holding expert 2’s

cutoff fixed) to the point labeled “b” in Figure 7a.20 In the new equilibrium, expert 1 chooses

a higher cutoff and makes fewer Type I errors but more Type II errors. In contrast, expert 2

chooses a lower cutoff, so she makes fewer Type II errors but more Type I errors. Overall, the

experts’ collective predictions then become strictly less informative to the principal. If expert

2’s payoffs did not depend on the other expert’s, she would have kept chosing error rates at

point labeled “a” in Figure 7b and expert 1 would have chosen error rates corresponding to

the white circle in Figure 7a. Instead of being perverse, the information improvement would

then have made any principal better off.

Although in this example a single information improvement was sufficient to generate a

perverse outcome, perversity is, nevertheless, a multiple-expert phenomenon. If the principal

listened to a single expert, then after an information improvement the expert would make

fewer Type I errors or fewer Type II errors, or both. There would then exist some principal

who traded off Type I errors and Type II errors in such a way as to be made better off by

the information improvement, and the information improvement would not be perverse.

6 Less Coarse Recommendations

In this section, we extend the baseline binary prediction model by expanding the choice sets

of the experts. Each expert can now choose one of n possible predictions, xi ∈ {1, . . . , n}.
Letting ∆n be the n-dimensional simplex, the strategy of each expert is a Borel-measurable

function σi : [0, 1]→ ∆n, with σi,k(s) describing the probability with which i plays xi = k, for

k ∈ {1, . . . , n} upon observing the signal Si = s. If expert i chooses a prediction xi and the

other expert chooses a prediction xj, then i’s payoff is denoted by πi(xi, xj) ≡ πi(xi, xj|E)

when E occurs and by πi(xi, xj) ≡ πi(xi, xj|E) when E does not occur. We assume that the

principal interprets a prediction k′ > k′′ as a statement warning more strongly of the event

E than prediction k′′ and again assume that both experts dislike making Type I and Type

II errors. It follows that if k′ > k′′ then πi,k′,k > πi,k′′,k and πi,k′,k < πi,k′′,k.

20We omit the details of solving for an equilibrium here because the key conceptual point concerns the
changes in error rates, not the details of how they come about.
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6.1 Cutoff Strategies

If, in a given strategy, expert i chooses to make m different predictions with positive prob-

ability we will say that i’s strategy has support of size m. For any strategy with support

of size m we can label the predictions made with positive probability x1, . . . , xm while pre-

serving their order. Suppose we can find a sequence γ(x1,x2), γ(x2,x3), . . . , γ(xm−1,xm) so that

expert i makes the prediction xk if and only if s1 ∈ [γ(xk−1,xk), γ(xk,xk+1)), where we interpret

γ(x0,x1) to mean 0 and γ(xm,xm+1) to mean 1. Then we will say cutoff strategies are played

in equilibrium. It is shown in Appendix A.2 that equilibria exist and that in all equilibria

cutoff strategies are played. In fact, something a little stronger is shown. Each expert will

want to play a cutoff strategy regardless of the strategy chosen by the other expert.

6.2 Further Endogenous Coarsening

Proposition 4. Under the maintained assumptions, there exist payoffs such that in all

equilibria both experts only make predictions in the set {1, n}.

To gain intuition for Proposition 4, consider the payoff expert 1 receives from making a

prediction h ∈ {1, . . . , n} as a function of her signal. From Equation 3 in Appendix A.2, it

follows that expert 1’s payoff from choosing prediction h is linear in her expected probability

of the event occurring conditional on her signal (P1[E|s1]):

u1(h) =

[
n∑
k=1

P[x2 = k|E]π1(h, k)

]

+ P1[E|s1]

[
n∑
k=1

(
P[x2 = k|E]π1(h, k)−P[x2 = k|E]π1(h, k)

)]

To see how expert 1 will change her reports for different signals, we can plot equation 1

for expert 1’s different possible predictions.21 When P1[E|s1] = 0, expert 1’s highest possible

payoff comes from making her weakest prediction of event E (x1 = 1). When P1[E|s1] = 1,

expert 1’s highest possible payoff comes from making her strongest prediction of event E

(x1 = n). An example of expert 1’s possible prediction choices for different signals is shown

in Figure 8 for n = 4.

21In Figure 8 we put P1[E|s1] on the x-axis, but as P1[E|s1] is monotonic in s we could instead have used
s.
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Figure 8: Expert 1’s payoffs from different predictions.

In Figure 8, expert 1 uses each of her available predictions for some signals. However,

this need not be the case. If the value to expert 1 of making the extreme predictions and

being correct is increased, then expert 1 may endogenously choose only to ever report two

predictions. Such a further endogenous coarsening of information is shown in Figure 9.
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Figure 9: Expert 1 uses only her extreme predictions.

6.3 Perverse Information Improvements

An immediate implication of Proposition 4 is that Proposition 3 extends to cases in which

experts are able to make multiple possible predictions but choose to make only binary pre-

dictions. There are many other ways in which the sufficient conditions already identified for

perverse information improvements can be extended to a setting of n predictions. However,
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in this section we focus on how information improvements can generate an endogenous coars-

ening of predictions that also results in information improvements being perverse. While this

coarsening is not necessary for perverse information improvements, it is instructive to con-

sider how coarsening can further inhibit a principal from extracting the potential benefits

from information improvements. An example of perverse information improvements with

endogenous coarsening is shown in Figure 10.
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(a) Initial equilibrium (cutoffs shown as circles).

P
ro

b
ab

il
it

y
 o

f 
av

o
id

in
g

 a
 t

y
p

e 
II

 e
rr

o
r 

Probability of avoiding a type I error 

(b) Information improvements.
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(c) New predictions for expert 1 (new single cut-
off shown as star).
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(d) New predictions for expert 2 (new single cut-
off shown as star).

Figure 10: An improvement in the experts’ information can result in both experts providing
coarser and collectively less informative predictions (as shown by the stars, which represent
the equilibrium cutoffs after an information improvement).

27



The example in Figure 10 works in much the same way as the proof of Theorem 3. The

main difference is that after the information improvement, the kink in the experts’ error

avoidance frontier causes the experts to make just two predictions, with a cutoff point at

the star (rather than the many predictions, and correspondingly many cutoffs, that were

being used before). After this endogenous coarsening of their reports, with probability 1

both experts make one of the two extreme predictions.

7 Concluding Remarks

The problem of aggregating information from experts is increasingly important for society.

With ever more data available, it is important to understand how this can best inform

decisions, whether they are taken in a company, a government department, or in some

other organization. We have provided some first steps towards a systematic analysis of

situations in which information improvements can lead experts to make predictions that are

less useful to every possible user of the predictions. While we have identified the existence

of what we consider to be natural and simple information improvements that are perverse,

starting from a wide range of parameter values, we have not systematically studied how

“likely” perverse improvements are as a subset of all the possible improvements. There are

substantial challenges to formalizing this question, but it may present an interesting avenue

for further analysis.

Nevertheless, we believe the basic phenomena identified in the model have important

substantive implications. Most importantly, understanding the impact of improvements in

information quality requires not only an understanding of the information technology itself,

but also of its effect on the optimizing behavior of the multiple experts who use it. Changes

that are ambiguous when considering an individual expert (causing more of some kinds of

errors and less of others) can result in experts becoming strictly less useful as a group.

Because of this phenomenon, better econometric tools need not lead to better economic

counsel; better diagnostic technology need not lead to better diagnoses; and better spying

need not imply better military decisions. In each of these cases, the optimal use of the

experts’ recommendations can give society less value than society got before information

improved.

Introducing a principal raises a natural question. Can society contract with the experts

to eliminate perverse outcomes? While it is beyond the scope of this paper to undertake a full

analysis of this problem, we note two difficulties with contracting. First, the value to society

of correct predictions may be very large, which can make aligning the experts’ incentives
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through a VCG type mechanism very expensive or else likely to run into limited liability

problems. Second, experts are likely to have private information about their individual

preferences over making Type I and Type II errors, as well as what signal they have received.

Since this is a problem with multidimensional private information, the optimal contracting

problem becomes quite difficult to solve, both for the principal and for the analyst.
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A Equilibrium

We work in the setting of Section 6, where each expert can choose recommendations from

the set {1, 2, . . . , n}.

A.1 Existence

The solution concept we use is Bayes-Nash equilibrium.

Proposition 5. A Bayes-Nash equilibrium of the game exists.

Remark 1. This result uses no assumptions beyond the basic structure of the game: in

particular all the signal distributions and payoffs are completely arbitrary.

Proof of Proposition 5

Proof. The strategy of each expert is a measurable function σi : [0, 1]→ ∆n, where ∆n is the

n dimensional simplex and σi(s) describes the probability with which i plays xi = k upon

observing the signal Si = s. The space of these functions is a convex, compact space and

the utility function of each expert is an affine function of her own strategy, so the standard

existence theorem applies (Fudenberg and Tirole, 1991, Theorem 1.2).

A.2 Cutoff Strategies

Particularly natural strategies for the expert are cutoff strategies: they involve experts mak-

ing lower predictions for lower signals and higher predictions for higher signals.

Proposition 6. Cutoff strategies are played by both experts in all equilibria. More specif-

ically, for each expert i and for any strategy σj played by the other expert, any strategy σi

that is not a cutoff strategy is dominated by a cutoff strategy. Cutoffs are always interior.

Proof of Proposition 6

Proof. Consider, without loss of generality, expert 1, and fix any strategy σ2 for expert 2.

Given S1 = s, expert 1 assesses some conditional probability r(s) of the event E,

r(s) = P1(E |S1 = s) =
p · g(s)

p · g(s) + (1− p)
Let the probability that x2 = k conditional on E be zk and the probability that x2 = k

conditional on E be zk:
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zk =

∫ 1

0

σ2,k(s2)g(s2) ds2 (1)

zk =

∫ 1

0

σ2,k(s2) ds2 (2)

These definitions follow from the definition of σ2,k and the fact that S2 is uniformly

distributed under the null event E. The expected utility to expert 1 of playing h is then:

ui(h) = r(s)

[
n∑
k=1

zkπ1(h, k)

]
+ (1− r(s))

[
n∑
k=1

zkπ1(h, k)

]
. (3)

Thus,

∂(ui(h)− ui(h− 1))

∂s
=

n∑
k=1

r′(s) [zk(π1(h, k)− π1(h− 1, k)) + zk(π1(h− 1, k)− π1(h, k))] .

(4)

We know that zk ∈ [0, 1] and zk ∈ [0, 1] for all k as they are probabilities. We also

know that π1(h, k) > π1(h − 1, k) and π1(h − 1, k) > π1(h, k) because the experts dislike

making errors. Finally, by our monotone likelihood ratio assumption, r is strictly increasing

in s. Equation 4 is therefore always positive. It follows that expert 1 plays a cutoff strategy

regardless of expert 2’s strategy. The argument for expert 2 is symmetric.

The fact that cutoffs are interior follows from the fact that gi(γ) → 0 as γi → 0 and

gi(γ)→∞ as γi → 1, so the optimal actions near Si = 0 and Si = 1 are different.

An important implication of Proposition 6 is that without loss of generality we can

take the strategy space to be the set [0, 1]n−1, instead of the unwieldy space of functions

σi : [0, 1] → ∆n. The only ambiguity this reduction leaves is what happens in the event

{Si = γ∗i }, but since this event is of measure 0 and thus never affects expected payoffs or

best responses, we ignore the issue.

It is also straightforward to establish that all equilibria are interior. As an expert’s

posterior probability of the event E approaches 1 for sufficiently high signals and approaches

0 for sufficiently low signals (r(s) → 1 as s → 1 and r(s) → 0 as s → 0), there exist

sufficiently high signals for an expert to have a dominant strategy to make her strongest

possible prediction of the event E by choosing xi = n and sufficiently low signals for the

expert to make her weakest possible prediction xi = 1. Thus, the predictions xi = n and
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xi = 1 are always in the support of the experts’ strategies.

B Proofs of Main Results

B.1 Lemma 1

The experts’ information improvements are weakly (respectively, strongly) perverse if they

are weakly (respectively, weakly) cross-dominated.

Proof. Let Uq be the principal’s utility under a decision rule q before the information im-

provement, and let U ′q be the principal’s utility under decision rule q after the information

improvement. Denote the principal’s optimal decision rule after a cross-dominated informa-

tion improvements by q∗. We now construct a decision rule, q̂ which behaves like q∗, but

with the roles of the experts’ predictions reversed: q̂(x1, x2) = q∗(x2, x1). As the information

improvement is cross-dominated, expert 1 makes both more Type I and Type II errors after

the information improvement than expert 2 made before the information improvements, and

expert 2 makes both more Type I and Type II errors after the information improvement than

expert 1 made before. Therefore, Uq̂ > U ′q∗ : the principal is better off using q̂ before the

information improvement than q∗ after it. As the principal could have chosen the rule q̂ be-

fore the information improvement, the principal’s equilibrium payoff before the improvement

must have been even higher than Uq∗ .

B.2 Proposition 3

We present the proof of Proposition 3 here, since several of the subsequent results follow

from it.

There exist weakly perverse information improvements over the initial information struc-

ture (G1, G2) at an initial equilibrium (γ∗1 , γ∗2) if:

(i) experts are playing to their strengths at (γ∗i , γ
∗
j ); and

(ii) were the experts to swap error rates, each expert i’s indifference curve would have a

slope between the slopes of her frontier at the points of tangency: for each i, we have

βi(γ
∗
i ) ∈ (−G′i(γ̂i,b),−G′(γ̂i,a)).

These information improvements are also strongly perverse if:

(iii) all γi ≤ γ̂i,a and all γi ≥ γ̂i,b are not rationalizable for i (i.e., all such γi are not in

Ri), for each player i ∈ {1, 2}.
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Proof. Weak Perversity: We will construct an information improvement for each expert

i by shifting out her error avoidance frontier. Figure 5 provides an example of what this

information improvement might look like.

Fix a small δ > 0 and for each i consider a pair of error avoidance probabilities, zi =

(γi, ρi), with γi ∈ (γ∗j − δ, γ∗j ] and ρi ∈ (1 − Gj(γ
∗
j ) − δ, 1 − Gj(γ

∗
j )]. Our goal is to show

that if δ is chosen small enough, then given any such z1 and z2, there exists an information

improvement (G̃z1
1 , G̃

z2
2 ) such that (γ1, γ2) is an equilibrium under the new information, where

(G̃z1
1 , G̃

z2
2 ) is a pair of convex cumulative distribution functions. This clearly establishes the

desired result.

Fix (z1, z2) so that, for each i, we have zi ∈ (γ∗j − δ, γ∗j ] × (1 − Gj(γ
∗
j ) − δ, 1 − Gj(γ

∗
j )].

Now fix i, and let j be the other agent.

Define22

Hzi
i (γi) := gi(γi)(γi − γi)− (Gi(γi)− ρi) . (5)

We will show that Hi(γi) is positive when γi is near 0, negative at γi = γ∗j , and positive

when γi is near 1. Recall that as γi → 0, we have both Gi(γi) → 0 and (by assumption)

gi(γi) → 0. As γi → 1, we have both Gi(γi) → 1 and (again by assumption) gi(γi) → ∞.

Since experts are playing to their strengths, we have that H
(γ∗j ,1−Gj(γ

∗
j ))

i (γ∗j ) < 0; otherwise,

i could achieve j’s equilibrium error rates. It follows by continuity of Hzi
i in zi, that if δ is

small enough, then for all zi ∈ (γ∗j −δ, γ∗j ]×(1−Gj(γ
∗
j )−δ, 1−Gj(γ

∗
j )], we have Hzi

i (γ∗j ) < 0.

Set γ̂i,a = inf{γi : Hzi
i (γi) ≤ 0} and γ̂i,b = sup{γi : Hzi

i (γi) ≤ 0}.
By the above argument, it follows that γ̂i,a and γ̂i,b are in (0, 1), and so gi is well-defined

at these points.23

Using the numbers γ̂i,a and γ̂i,b, we can construct a new error-avoidance frontier for i by

setting:

1− G̃zi
i (γi) ≡


1−Gi(γi) if γi ∈ [0, γ̂i,a)

1−Gi(γ̂i,a)− gi(γ̂i,a)(γi − γ̂i,a) if γi ∈ [γ̂i,a, γi)

1−Gi(γ̂i,b) + gi(γ̂i,b)(γ̂i,b − γi) if γi ∈ [γi, γ̂i,b)

1−Gi(γi) if γi ∈ [γ̂i,b, 1]

We claim that, assuming δ was chosen small enough, (γi, γj) is an equilibrium in cutoff

strategies for the information structure given by (G̃z1
1 , G̃

z2
2 ). Suppose that j plays γj. By the

22Heuristically, what we are doing in this part of the proof is showing that there are two uniquely deter-
mined lines intersecting the point (γi, ρi) that are tangent to the curve γ 7→ 1−Gi(γ); see Figure 5. These
lines will be used to construct the information improvement.

23Recall that gi(1) is not well defined.
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argument of Proposition 6, agent i has a cutoff strategy best response. If δ is small enough,

we will argue that this best response cannot be anywhere except at γi. For small enough δ,

the slope βi(γj) of i’s indifference curve given j’s strategy is, by continuity of βi (recall Section

3.1, and footnote 13 in particular) arbitrarily close to βi(γ
∗
i ), which is in (−G′i(γ̂i,b),−G′(γ̂i,a))

by assumption (ii). Thus, for sufficiently small δ, we have βi(γj) ∈ (−G′i(γ̂i,b),−G′(γ̂i,a)) also.

But at any γi ∈ (γ̂i,a, γi), the curve γ 7→ 1− G̃zi
i (γ) has a slope weakly less than −G′i(γ̂i,a),

which is strictly shallower than βi(γj) so there is a strict local improvement available by

increasing γi slightly. Similarly, at any γi ∈ (γi, γ̂i,a), the curve γ 7→ 1 − G̃zi
i (γ) has a slope

strictly steeper than βi(γj), so there is a strict local improvement available by decreasing

γi slightly. Thus, these cannot be best responses, and by the proof of Proposition 6, more

extreme cutoffs cannot be best responses, either. This completes the proof.

Strong perversity:

If γi ≤ γ̂i,a and γi ≥ γ̂i,b are not rationalizable for expert i, then any equilibrium choice

γi must lie in (γ̂i,a, γ̂i,b). By the last paragraph in the proof of the weak perversity part, this

establishes that the equilibrium must be at (γi, γj).

B.3 Proposition 2

If the experts are independent and envious of each other, then there exist information im-

provements that arise from technology transfer and are strongly perverse.

Proof. Consider the information improvements constructed in the proof of Proposition 3.

This information improvement for i involved taking the convex hull of the point (γ∗j , 1 −
Gj(γ

∗
j )) and i’s initial error avoidance frontier, the curve γ 7→ 1 − Gi(γ). By the proof of

Theorem 1, these perverse information improvements can also be constructed for indepen-

dent and envious experts. As the error avoidance rates (γ∗j , 1 − Gj(γ
∗
j )) are on j’s initial

error avoidance frontier and the experts are envious of each other, every point on i’s new

(constructed) error avoidance frontier is weakly dominated by some error avoidance rates on

the convex hull of the curves γ 7→ 1−Gi(γ) and γ 7→ 1−Gj(γ). The perverse information

improvements constructed in the proof of Proposition 3 can therefore arise from technology

transfer.

B.4 Theorem 1

If the experts are independent, there exists a strongly cross-dominated information improve-

ment if and only if both experts are envious of each other.
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Proof. If: This is a special case of Proposition 3. We show only that conditions (i), (ii)

and (iii) of Proposition 3 are satisfied if both experts are envious of each other. First, if

expert j is envious of expert i at the initial cutoff choices (γ∗1 , γ
∗
2), then expert i must be

playing to her strengths. Otherwise, by revealed preference, expert j would be choosing a

suboptimal cutoff. To verify (ii): as i is envious of j, it follows that24 γ̂i,a < γ∗i < γ̂i,b, and

so by the concavity of the error avoidance frontiers, we have βi(γ
∗
i ) ∈ (−G′i(γ̂i,b),−G′i(γ̂i,a)).

Finally, we verify (iii): since the experts are independent, βi does not actually depend on its

argument, so we may drip it. It follows immediately from βi ∈ (−G′i(γ̂i,b),−G′i(γ̂i,a)) that

all cutoff choices γi outside the interval [γ̂i,a, γ̂i,b] are dominated.

Only if: Suppose expert i is not envious of expert j. This implies that i prefers error

avoidance rates (γ∗i , 1−Gi(γ
∗
i )) to error avoidance rates (γ∗j , 1−Gj(γ

∗
j )). Consider any error

avoidance rates (e1, e2) strictly dominated by (γ∗j , 1 − Gj(γ
∗
j )) – that is, satisfying e1 < γ∗j

and e2 < 1−Gj(γ
∗
j ). We then have that (γ∗i , 1−Gi(γ

∗
i )) �i (γ∗j , 1−Gj(γ

∗
j )) �i (e1, e2). After

her information improvement, by revealed preference, expert i must prefer her new error

rates: (γ∗
′
i , 1− G̃i(γ

∗′
i )) �i (γ∗i , 1−Gi(γ

∗
i )). This establishes that (γ∗

′
i , 1− G̃i(γ

∗′
i )) �i (e1, e2)

and so a cross-dominated information improvement is not possible.

B.5 Proposition 4

Under the maintained assumptions, there exist payoffs such that in all equilibria both experts

only make predictions in the set {1, n}.

Proof. Let γ(1,n) be the signal at which expert 1 would be indifferent between making pre-

diction 1 and n. By playing this cutoff, expert 1 receives a payoff of

ui(1) =r(γ(1,n))

[
n∑
k=1

qk(γ(1,n))π1(1, k)

]
+ (1− r)

[
n∑
k=1

qk(γ(1,n))π1(1, k)

]

=r(γ(1,n))

[
n∑
k=1

qk(γ(1,n))π1(n, k)

]
+ (1− r)

[
n∑
k=1

qk(γ(1,n))π1(n, k)

]
= ui(n)

Suppose now that we increased π1(1, k) by the same constant for all k and π1(n, k) by

the same constant for all k such that the above equations continued to hold. This increase

does not violate the assumption that experts dislike both Type I and Type II errors. This

change increases the value of ui(1) = ui(n) at si = γ(1,n) and does not change the payoff

24The numbers γ̂i,a and γ̂i,b are defined in Section 5.
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of ui(k) for k = 2, . . . , n − 1 at any si. Furthermore, as ui(1) and ui(n) increase linearly

in π1(1, k) and π1(n, k) respectively for all k, there always exist such increases that make

ui(1) = ui(n) > ui(k) at si = γ(1,n) for all k ∈ {2, . . . , n− 1}. Applying Proposition 6 this is

sufficient to ensure that expert 1 only ever makes the predictions 1 and n.
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