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OA1. Numerical results in real networks

The message of Section 4 is that signal diversity enables good aggregation, and signal homogeneity
obstructs it. The theoretical results in that section, however, were asymptotic, and the good-
aggregation result used some assumptions on the distribution of graphs. In this section we show
that the substantive message applies to realistic networks with moderate degrees. We do this by
computing equilibria for actual social networks from the data in Banerjee, Chandrasekhar, Duflo,
and Jackson (2013a). This data set contains the social networks of villages in rural India.1 There
are 43 networks in the data, with an average network size of 212 nodes (standard deviation = 53.5),
and an average degree of 19 (standard deviation = 7.5).

Our simulation exercises measure the benefits of heterogeneity for equilibrium aggregation. For
each network, we calculate the equilibrium with 𝜌 = 0.9 for two types of environments. The first is
the homogeneous case, with all signal variances set to 2. The second is a heterogeneous case, where
half of the agents have a signal variance greater than 2 and half of villagers have a signal variance
less than 2, chosen to hold constant the total amount of information that reaches the community via
private signals. That is, we set the signal variances so that the average precision in each village
is 1

2 , as in the homogeneous case. This signal assignment holds fixed the average utility when all
villagers are autarkic, or equivalently holds fixed the average utility when all villagers know the state
𝜃𝑡−1 in the previous period exactly. At the same time, it varies the level of heterogeneity in signal
endowments. Villagers are randomly assigned to better or worse private signals, and the simulation
results do not depend substantially on the realized random assignment. Our outcomes will be the
average social signal error variance in each village and the average social signal error variance across
all villages.

It is useful to begin by looking at the equilibrium average aggregation errors, i.e., social signal
variances, in the case of homogeneous signals. This is the horizontal coordinate in Figure OA1.1(a);
each village is a data point, and the points have a standard deviation of 0.013. In this case,
differences in learning outcomes are due only to differences in the network structure, and we will
call this number the network-driven variation. Now we introduce some private signal diversity. In

Date: March 2, 2023.
1We take the networks that were used in the estimation in Banerjee, Chandrasekhar, Duflo, and Jackson (2013b). As in
their work, we take every reported relationship to be reciprocal for the purposes of sharing information. This makes the
graphs undirected.

1



LEARNING FROM NEIGHBORS ABOUT A CHANGING STATE: ONLINE APPENDIX 2

0.35 0.4 0.45 0.5 0.55 0.6 0.65

Average Aggregation Error (Heterogeneous Signals)

0.35

0.4

0.45

0.5

0.55

0.6

0.65

A
ve

ra
ge

 A
gg

re
ga

tio
n 

E
rr

or
 (

H
om

og
en

eo
us

 S
ig

na
ls

)

(a)

45 Degree Line
Average

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

Private Signal Variance

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

A
ve

ra
ge

 A
gg

re
ga

tio
n 

E
rr

or

(b)

Figure OA1.1. Social signal variance in Indian villages. (a) The average social signal variance
of agents in each village, in the homogeneous and heterogeneous cases. In the homogeneous case all
agents have private signal variance 2. In the heterogeneous case, half of agents have private signal
variance 3

2 and half of agents have private signal variance 3. (b) The average social signal variance for
all agents as we vary the worse private signal variance from 2 to 4 and hold fixed the average precision
of private signals.

our first exercise, we change the variance of the worse private signal from 2 (homogeneous signals)
to 3 (heterogeneous signals), and adjust the other variance as discussed above to hold fixed the total
amount of information coming into the network. The vertical coordinate in Figure OA1.1(b) depicts
the equilibrium aggregation error in each village. The average of this number across all villages
falls to 0.470, compared to 0.555 (in the homogeneous case). Therefore, adding heterogeneity by
increasing the private signal variance for half of the agents by 50% changes social signal error
variance by 6.5 times the network-driven variation. Learning is much better with some private
signal heterogeneity than in villages with very favorable networks (i.e., those that achieve the best
aggregation under homogeneous signals).

In Figure OA1.1(b), rather than working with the particular choice of 3 for the variance of the
private signal, we look across all choices of this variance between 2 and 4 and plot the average
equilibrium social signal variance across all villages.

Figure OA1.1(b) also sheds light on the value of a small amount of heterogeneity. The results in
Section 4 can be summarized as saying that, to achieve the aggregation benchmark of essentially
knowing the previous period’s state, there need to be at least two different private signal variances
in the network. Formally, this is a knife-edge result: As long as private signal variances differ
at all, then as 𝑛 → ∞, aggregation errors vanish; with exactly homogeneous signal endowments,
aggregation errors are much higher. The figure shows that the transition from the first regime to
the second is actually gradual. In particular, a very small amount of heterogeneity provides little
benefit in finite networks, as there is not enough diversity of signal endowments for villagers to anti-
imitate. However, a 50% change in the variance of one of the signals (equivalently, a 22% change
in its standard deviation) makes the community much better able to use the same total amount of
information.
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OA2. Identification and testable implications

One of the main advantages of the parametrization we have studied is that standard methods can
easily be applied to estimate the model and test hypotheses within it. The key feature making the
model econometrically well-behaved is that, in the solutions we focus on, agents’ actions are linear
functions of the random variables they observe. Moreover, the evolution of the state and arrival
of information creates exogenous variation. We briefly sketch how these features can be used for
estimation and testing.

Assume the following. The analyst obtains noisy measurements 𝑎𝑖,𝑡 = 𝑎𝑖,𝑡 + 𝜉𝑖,𝑡 of agent’s actions
(where 𝜉𝑖,𝑡 are i.i.d., mean-zero error terms). He knows the parameter 𝜌 governing the stochastic
process, but may not know the network structure or the qualities of private signals (𝜎𝑖)𝑛𝑖=1. Suppose
also that the analyst observes the state 𝜃𝑡 ex post (perhaps with a long delay).2 For example, agents
may be trying to forecast the current state of an economic variable such as GDP or employment,
which is later measured.

Now, consider any steady state in which agents put constant weights 𝑊𝑖 𝑗 on their neighbors and
𝑤𝑠
𝑖

on their private signals over time. We will discuss the case of 𝑚 = 1 to save on notation, though
all the statements here generalize readily to arbitrary 𝑚.

We first consider how to estimate the weights agents are using, and to back out the structural
parameters of our model when it applies. The strategy does not rely on uniqueness of equilibrium.
We can identify the weights agents are using through standard vector autoregression methods. In
steady state,

𝑎𝑖,𝑡 =
∑︁
𝑗

𝑊𝑖 𝑗 𝜌𝑎 𝑗 ,𝑡−1 + 𝑤𝑠𝑖 𝜃𝑡 + 𝜁𝑖,𝑡 , (OA-1)

where 𝜁𝑖,𝑡 = 𝑤𝑠
𝑖
𝜂𝑖,𝑡 −

∑
𝑗 𝑊𝑖 𝑗 𝜌𝜉 𝑗 ,𝑡−1 + 𝜉𝑖,𝑡 are error terms i.i.d. across time. The first term of this

expression for 𝜁𝑖,𝑡 is the error of the signal that agent 𝑖 receives at time 𝑡. The summation combines
the measurement errors from the observations 𝑎 𝑗 ,𝑡−1 from the previous period.3 Thus, we can obtain
consistent estimators𝑊𝑖 𝑗 and 𝑤𝑠

𝑖
for𝑊𝑖 𝑗 and 𝑤𝑠

𝑖
, respectively.

We now turn to the case in which agents are using equilibrium weights. First, and most simply,
our estimates of agents’ equilibrium weights allow us to recover the network structure. If the weight
𝑊𝑖 𝑗 is nonzero for any 𝑖 and 𝑗 , then agent 𝑖 observes agent 𝑗 . Generically the converse is true: if
𝑖 observes 𝑗 then the weight 𝑊𝑖 𝑗 is nonzero. Thus, network links can generically be identified by
testing whether the recovered social weights are nonzero. For such tests (and more generally) the
standard errors in the estimators can be obtained by standard techniques.4

Now we examine the more interesting question of how structural parameters can be identified
assuming an equilibrium is played, and also how to test the assumption of equilibrium.

The first step is to compute the empirical covariances of action errors from observed data; we
call these 𝑉 𝑖 𝑗 . Under the assumption of equilibrium, we now show how to determine the signal
variances using the fact that equilibrium is characterized by Φ(V̂ ) = V̂ and recalling the explicit

2We can instead assume that the analyst observes (a proxy for) the private signal 𝑠𝑖,𝑡 of agent 𝑖; we mention how below.
3This system defines a VAR(1) process (or generally VAR(𝑚) for memory length 𝑚).
4Methods involving regularization may be practically useful in identifying links in the network. Manresa (2013)
proposes a regularization (LASSO) technique for identifying such links (peer effects). In a dynamic setting such as
ours, with serial correlation, the techniques required will generally be more complicated.
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formula (3.3) for Φ. In view of this formula, the signal variances 𝜎2
𝑖

are uniquely determined by the
other variables:

𝑉𝑖𝑖 =
∑︁
𝑗

∑︁
𝑘

𝑊𝑖 𝑗𝑊𝑖𝑘

(
𝜌2𝑉 𝑗 𝑘 + 1

)
+ (𝑤𝑠𝑖 )2𝜎2

𝑖 . (OA-2)

Replacing the model parameters other than 𝜎2
𝑖

by their empirical analogues, we obtain a consistent
estimate �̃�2

𝑖
of 𝜎𝑖. This estimate could be directly useful—for example, to an analyst who wants to

identify the best-informed “expert” from the network and ask about her private signals.
Note that our basic VAR for recovering the weights relies only on constant linear strategies and

does not assume that agents are playing any particular strategy within this class. Thus, if agents are
using some other behavioral rule (e.g., optimizing in a misspecified model) we can replace (OA-2)
by a suitable analogue that reflects the bounded rationality in agents’ inference. If such a steady
state exists, and using the results in this section, one can create a statistical test of how agents are
behaving. For instance, we can test the hypothesis that they are Bayesian against the naive alternative
of our Section 5.1.

OA3. Details of definitions

OA3.1. Exogenous random variables. Fix a probability space (Ω, F , P). Let (𝜈𝑡 , 𝜂𝑖,𝑡)𝑡∈Z,𝑖∈𝑁 be
normal, mutually independent random variables, with 𝜈𝑡 having variance 1 and 𝜂𝑖,𝑡 having variance
𝜎2
𝑖

. Also take a stochastic process (𝜃𝑡)𝑡∈Z, such that for each 𝑡 ∈ Z, we have (for 0 < |𝜌 | ≤ 1)

𝜃𝑡 = 𝜌𝜃𝑡−1 + 𝜈𝑡 .

Such a stochastic process exists by standard constructions of the AR(1) process or, in the case of
𝜌 = 1, of the Gaussian random walk on a doubly infinite time domain. Define 𝑠𝑖,𝑡 = 𝜃𝑡 + 𝜂𝑖,𝑡 .

OA3.2. Formal definition of game and stationary linear equilibria. We now fill in the details of
our Bayesian game.
Players and strategies. The set of players (or agents) is A = {(𝑖, 𝑡) : 𝑖 ∈ 𝑁, 𝑡 ∈ Z}. The set of
(pure) responses of an agent (𝑖, 𝑡) is defined to be the set of all Borel-measurable functions 𝜉(𝑖,𝑡) :
R × (R|𝑁 (𝑖) |)𝑚 → R, mapping her own signal and her neighborhood’s actions,

(
𝑠𝑖,𝑡 , (a𝑁𝑖 ,𝑡−ℓ)𝑚ℓ=1

)
, to

a real-valued action 𝑎𝑖,𝑡 . We call the set of these functions Ξ̃(𝑖,𝑡) . Let Ξ̃ =
∏

(𝑖,𝑡)∈A Ξ̃(𝑖,𝑡) be the set
of response profiles. We now define the set of (unambiguous) strategy profiles, Ξ ⊂ Ξ̃. We say that
a response profile 𝜉 ∈ Ξ̃ is a strategy profile if the following two conditions hold

1. There is a tuple of real-valued random variables (𝑎𝑖,𝑡)𝑖∈𝑁,𝑡∈Z on (Ω, F , P) such that for each
(𝑖, 𝑡) ∈ A, we have

𝑎𝑖,𝑡 = 𝜉(𝑖,𝑡)
(
𝑠𝑖,𝑡 , (a𝑁𝑖 ,𝑡−ℓ)𝑚ℓ=1

)
.

2. Any two tuples of real-valued random variables (𝑎𝑖,𝑡)𝑖∈𝑁,𝑡∈Z satisfying Condition 1 are equal
almost surely.

That is, a response profile is a strategy profile if there is an essentially unique specification of behavior
that is consistent with the responses: i.e., if the responses uniquely determine the behavior of the
population, and hence payoffs.5 Note that if 𝜉 ∈ Ξ, then it can be checked that 𝜉 = (𝜉′(𝑖,𝑡) , 𝜉−(𝑖,𝑡)) ∈ Ξ

5Condition 1 is necessary to rule out response profiles such as the one given by 𝜉𝑖,𝑡
(
𝑠𝑖,𝑡 , 𝑎𝑖,𝑡−1

)
= |𝑎𝑖,𝑡−1 | + 1. This

profile, despite consisting of well-behaved functions, does not correspond to any specification of behavior for the whole
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whenever 𝜉′(𝑖,𝑡) ∈ Ξ̃(𝑖,𝑡) . Thus, if we start with a strategy profile and consider agent (𝑖, 𝑡)’s deviations,
they are unrestricted: she may consider any response.
Payoffs. The payoff of an agent (𝑖, 𝑡) under any strategy profile 𝜉 ∈ Ξ is

𝑢𝑖,𝑡 (𝜉) = −E
[
(𝑎𝑖,𝑡 − 𝜃𝑡)2] ∈ [−∞, 0],

where the actions 𝑎𝑖,𝑡 are taken according to 𝜉(𝑖,𝑡) and the expectation is taken in the probability
space we have described. This expectation is well-defined because inside the expectation there is
a nonnegative, measurable random variable, for which an expectation is always defined, though it
may be infinite.
Equilibria. A (Nash) equilibrium is defined to be a strategy profile 𝜉 ∈ Ξ such that, for each
(𝑖, 𝑡) ∈ A and each 𝜉 ∈ Ξ such that 𝜉 = (𝜉′(𝑖,𝑡) , 𝜉−(𝑖,𝑡)) for some 𝜉′(𝑖,𝑡) ∈ Ξ(𝑖,𝑡) , we have

𝑢𝑖,𝑡 (𝜉) ≤ 𝑢𝑖,𝑡 (𝜉).

For 𝑝 ∈ Z, we define the shift operator 𝔗𝑝 to translate variables to time indices shifted 𝑝 steps
forward. This definition may be applied, for example, to Ξ.6 A strategy profile 𝜉 ∈ Ξ is stationary
if, for all 𝑝 ∈ Z, we have 𝔗𝑝𝜉 = 𝜉.

We say 𝜉 ∈ Ξ is a linear strategy profile if each 𝜉𝑖 is a linear function. Our analysis focuses on
stationary, linear equilibria.

OA4. Remaining proofs

OA4.1. Details of calculations for equation (3.1) for best-response actions. Let𝑃 = N(𝜇prior, 𝜎
2
prior)

be a normal prior over 𝜃𝑡 .
First, we will establish that for any ℓ ≥ 0 we have

E𝑃 [𝜃𝑡 | 𝜌ℓ𝑎𝑖,𝑡−ℓ] = 𝜌ℓ𝑎𝑖,𝑡−ℓ . (OA-1)

Note that

𝜃𝑡 = 𝜌
ℓ𝜃𝑡−ℓ +

ℓ∑︁
𝑘=1

𝜌ℓ−𝑘𝜈𝑡−ℓ+𝑘 .

Take conditional expectations E𝑃 [ · | 𝜌ℓ𝑎𝑖,𝑡−ℓ] on both sides and note that the summation makes no
contribution, since the innovations 𝜈𝑡−ℓ+𝑘 are independent of 𝑎𝑖,𝑡−ℓ and have mean zero. Now we
will show that E𝑃 [𝜃𝑡−ℓ | 𝑎𝑖,𝑡−ℓ] = 𝑎𝑖,𝑡−ℓ:

E𝑃 [𝜃𝑡−ℓ | 𝑎𝑖,𝑡−ℓ] = E𝑃 [E𝑃 [𝜃𝑡−ℓ | z𝑖,𝑡−ℓ] | 𝑎𝑖,𝑡−ℓ] tower property
= E𝑃 [𝑎𝑖,𝑡−ℓ | 𝑎𝑖,𝑡−ℓ] eq. (2.3) in the paper.

This completes the proof of (OA-1).

Now we turn to the updating formula (3.1). We will transform the updating problem into a
canonical form to apply standard results on Bayesian conditioning with normal distributions.7 Since
the updating formula is important, we will spell out most of the details.

population (because time extends infinitely backward). Condition 2 is necessary to rule out response profiles such has
the one given by 𝜉𝑖,𝑡

(
𝑠𝑖,𝑡 , 𝑎𝑖,𝑡−1

)
= 𝑎𝑖,𝑡−1, which have many satisfying action paths, leaving payoffs undetermined.

6I.e., 𝜎′ = 𝔗𝑝𝜎 is defined by 𝜎(𝑖,𝑡 ) = 𝜎(𝑖,𝑡−𝑝) .
7This turns out to be a bit involved because, under a proper prior, we cannot write z𝑖,𝑡 as 𝜃𝑡1 plus noise independent of
𝜃𝑡 , which is the case where the formulas for E[𝜃𝑡 | z𝑖,𝑡 ] would be most straightforward.
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Fix an agent (𝑖, 𝑡) and write z := z𝑖,𝑡 . Define the (random) vector v to consist of the time-𝑡 state
𝜃𝑡 and the recent innovations 𝜈𝑡′ for 𝑡′ ∈ {𝑡, 𝑡 − 1, . . . , 𝑡 − 𝑚 + 1}. The agent’s information z can be
written as z = Hv +w where H is a known matrix (depending on parameters of the environment)
and w is a vector of Gaussian errors, independent of v and of one another. Then standard results on
Gaussian updating (Kay, 1993, Theorem 10.3) imply that, fixing some prior 𝑃 over 𝜃𝑡 , the posterior
mean of 𝜃𝑡 can be expressed as

𝑌 := E𝑃 [𝜃𝑡 | z] = 𝛽𝜇prior + (1 − 𝛽)λ∗z, (OA-2)

where 𝜇prior is the prior mean of 𝜃𝑡 , the vector λ∗ sums to 1, and 𝛽 ∈ R.8
We will now give a self-contained calculation of λ∗. A conditional expectation 𝑌 minimizes
E𝑃 [(𝑌 − 𝜃𝑡)2] among measurable functions of z, so, fixing 𝛽, the vector λ∗ must minimize the error
E[(λz − 𝜃𝑡)2] among λ summing to 1. We use this fact to characterize λ∗. Note that the following
equations hold whenever λ1 = 1.

E[(λz − 𝜃𝑡)2] = Var

[∑︁
𝑘

𝜆𝑘 (𝑧𝑘 − 𝜃𝑡)
]

=
∑︁
𝑘,𝑘 ′

𝜆𝑘𝜆𝑘 ′ Cov [𝑧𝑘 − 𝜃𝑡 , 𝑧𝑘 ′ − 𝜃𝑡]

= λCλ⊤,

where C is the covariance matrix on the second line (denoted by C𝑖,𝑡−1 in Section 3.1 of the paper).
Thus λ∗ may be characterized as minimizing λCλ⊤ subject to λ1 = 1. The first-order conditions
give that λ∗C = 𝛾1 for some 𝛾 ∈ R, and then using the constraint gives the solution

λ∗ =
1⊤C−1

1⊤C−11
.

Note this does not depend on the prior 𝑃.
Finally, by standard results on Bayes’ rule with Gaussian distributions, as the prior becomes

diffuse (i.e., the precision 𝜎−2
prior tends to 0) we have 𝛽 → 0.9

Putting everything together, we have that in the diffuse-prior limit,

E𝑃 [𝜃𝑡 | z] →
1⊤C−1

1⊤C−11
z.

OA4.2. Proof of Proposition 2. We first check there is a unique equilibrium and then prove the
remainder of Proposition 2.

Lemma OA1. Suppose 𝐺 has symmetric neighbors. Then there is a unique equilibrium.

8The cited result states E𝑃 [𝜃𝑡 | z] = 𝛽𝜇prior + 𝛾λ∗z for a λ∗ we can normalize to sum to 1, and some 𝛽, 𝛾 ∈ R. Take
unconditional expectations on both sides to obtain 𝜇prior = 𝛽𝜇prior+𝛾𝜇prior, using

∑
𝑘 𝜆𝑘 = 1 andE𝑃 [𝑧𝑘] = 𝜇prior for every

𝑘 . (For the last assertion, by (OA-1) and the law of iterated expectations, we have E𝑃 [𝑧𝑘] = E𝑃 [E𝑃 [𝜃𝑡 | 𝑧𝑘]] = E𝑃 [𝜃𝑡 ].)
This can hold for all priors 𝑃 only if 𝛾 = 1 − 𝛽.
9The vector (𝜃𝑡 ,λ∗z) is jointly Gaussian, and in the diffuse-prior limit the error λ∗z − 𝜃𝑡 has mean zero and is
uncorrelated with 𝜃𝑡 . Thus, in that limit, the formula (Kay, 1993, Theorem 10.2) for E𝑃 [𝜃𝑡 | λ∗z] converges to an
average of 𝜇prior and λ∗z, weighted in proportion to their precisions. Finally, we have E𝑃 [𝜃𝑡 | z] = E𝑃 [𝜃𝑡 | λ∗z] by
(OA-2).
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Proof of Lemma OA1. We will show that when the network satisfies the condition in the proposition
statement, Φ induces a contraction on a suitable space. For each agent, we can consider the variance
of the best estimator for yesterday’s state based on observed actions. We can analyze these variances
using the envelope theorem. Moreover, the space of these variances is a sufficient statistic for
determining all agent strategies and action variances.

Let 𝑟𝑖,𝑡 be 𝑖’s social signal—the best estimator of 𝜃𝑡−1 based on the period 𝑡 − 1 actions of agents
in 𝑁𝑖—and let 𝜅2

𝑖,𝑡
be the variance of 𝑟𝑖,𝑡 − 𝜃𝑡−1.

We claim that Φ induces a map Φ̃ on the space of variances 𝜅2
𝑖,𝑡

, which we denote Ṽ. We
must check the period 𝑡 variances (𝜅2

𝑖,𝑡
)𝑖 uniquely determine all period 𝑡 + 1 variances (𝜅2

𝑖,𝑡+1)𝑖: The
variance V𝑖𝑖,𝑡 of agent 𝑖’s action, as well as the covariances V𝑖𝑖′,𝑡 of all pairs of agents 𝑖, 𝑖′ with
𝑁𝑖 = 𝑁𝑖′ , are determined by 𝜅2

𝑖,𝑡
. Moreover, by the condition on our network, these variances and

covariances determine all agents’ strategies in period 𝑡 + 1, and this is enough to pin down all period
𝑡 + 1 variances 𝜅2

𝑖,𝑡+1.
The proof proceeds by showing Φ̃ is a contraction on Ṽ in the sup norm.
For each agent 𝑗 , we have 𝑁𝑖 = 𝑁𝑖′ for all 𝑖, 𝑖′ ∈ 𝑁 𝑗 . So the period 𝑡 actions of an agent 𝑖′ in 𝑁 𝑗

are

𝑎𝑖′,𝑡 =
(𝜌2𝜅2

𝑖,𝑡
+ 1)−1

𝜎−2
𝑖′ + (𝜌2𝜅2

𝑖,𝑡
+ 1)−1

· 𝑟𝑖,𝑡 +
𝜎−2
𝑖′

𝜎−2
𝑖′ + (𝜌2𝜅2

𝑖,𝑡
+ 1)−1

· 𝑠𝑖′,𝑡 (OA-3)

where 𝑠𝑖′,𝑡 is agent (𝑖′)’s signal in period 𝑡 and 𝑟𝑖,𝑡 the social signal of 𝑖 (the same one that 𝑖′ has). It
follows from this formula that each action observed by 𝑗 is a linear combination of a private signal
and a common estimator 𝑟𝑖,𝑡 , with positive coefficients which sum to one. For simplicity we write

𝑎𝑖′,𝑡 = 𝑏0 · 𝑟𝑖,𝑡 + 𝑏𝑖′ · 𝑠𝑖′,𝑡 (OA-4)

(where 𝑏0 and 𝑏𝑖′ depend on 𝑖′ and 𝑡, but we omit these subscripts). We will use the facts 0 < 𝑏0 < 1
and 0 < 𝑏𝑖′ < 1.

We are interested in how 𝜅2
𝑗 ,𝑡+1 = Var(𝑟 𝑗 ,𝑡+1 − 𝜃𝑡) depends on 𝜅2

𝑖,𝑡
= Var(𝑟𝑖,𝑡 − 𝜃𝑡−1). The estimator

𝑟 𝑗 ,𝑡+1 is a linear combination of observed actions 𝑎𝑖′,𝑡 , and therefore can be expanded as a linear
combination of signals 𝑠𝑖′,𝑡 and the estimator 𝑟𝑖,𝑡 . We can write

𝑟 𝑗 ,𝑡+1 = 𝑐0 · (𝜌𝑟𝑖,𝑡) +
∑︁
𝑖′
𝑐𝑖′𝑠𝑖′,𝑡 (OA-5)

and therefore (taking variances of both sides)

𝜅2
𝑗 ,𝑡+1 = Var(𝑟 𝑗 ,𝑡+1 − 𝜃𝑡) = 𝑐2

0Var(𝜌𝑟𝑖,𝑡 − 𝜃𝑡) +
∑︁
𝑖′
𝑐2
𝑖′𝜎

2
𝑖′

= 𝑐2
0(𝜌

2𝜅2
𝑖,𝑡 + 1) +

∑︁
𝑖′
𝑐2
𝑖′𝜎

2
𝑖′

The desired result, that Φ̃ is a contraction, will follow if we can show that the derivative
𝑑𝜅2

𝑗 ,𝑡+1
𝑑𝜅2

𝑖,𝑡

=

𝑐2
0𝜌

2 ∈ [0, 𝛿] for some 𝛿 < 1. By the envelope theorem, when calculating this derivative, we can
assume that the weights placed on actions 𝑎𝑖′,𝑡 by the estimator 𝑟 𝑗 ,𝑡+1 do not change as we vary 𝜅2

𝑖,𝑡
,

and therefore 𝑐0 and the 𝑐𝑖′ above do not change. So it is enough to show the coefficient 𝑐0 is in
[0, 1].
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The intuition for the lower bound is that anti-imitation (agents placing negative weights on
observed actions) only occurs if observed actions put too much weight on public information. But if
𝑐0 < 0, then the weight on public information is actually negative so there is no reason to anti-imitate.
This is formalized in the following lemma.

Lemma OA2. Suppose 𝑗 has symmetric neighbors. Then the social signal of an agent at node 𝑗
places nonnegative weight on a neighbor 𝑖’s social signal from the previous period, i.e., 𝑐0 ≥ 0.

Proof. To check this formally, suppose that 𝑐0 is negative. Then the social signal 𝑟 𝑗 ,𝑡+1 puts negative
weight on some observed action—say the action 𝑎𝑘,𝑡 of agent 𝑘 . We want to check that the covariance
of 𝑟 𝑗 ,𝑡+1 − 𝜃𝑡 and 𝑎𝑘,𝑡 − 𝜃𝑡 is negative. Using (OA-4) and (OA-5), we compute that

Cov(𝑟 𝑗 ,𝑡+1 − 𝜃𝑡 , 𝑎𝑘,𝑡 − 𝜃𝑡 ) = Cov ©­«𝑐0 (𝜌𝑟𝑖,𝑡 − 𝜃𝑡 ) +
∑︁
𝑖′∈𝑁 𝑗

𝑐𝑖′ (𝑠𝑖′ ,𝑡 − 𝜃𝑡 )), 𝑏0 (𝜌𝑟𝑖,𝑡 − 𝜃𝑡 ) + 𝑏𝑘 (𝑠𝑘,𝑡 − 𝜃𝑡 )ª®¬
= 𝑐0𝑏0Var(𝜌𝑟𝑖,𝑡 − 𝜃𝑡 ) + 𝑐𝑘𝑏𝑘Var(𝑠𝑘,𝑡 − 𝜃𝑡 )

because all distinct summands above are mutually independent. We have 𝑏0, 𝑏𝑘 > 0, while 𝑐0 < 0 by
assumption and 𝑐𝑘 < 0 because the estimator 𝑟 𝑗 ,𝑡+1 puts negative weight on 𝑎𝑘,𝑡 . So the expression
above is negative. Therefore, it follows from the usual Gaussian Bayesian updating formula that the
best estimator of 𝜃𝑡 given 𝑟 𝑗 ,𝑡+1 and 𝑎𝑘,𝑡 puts positive weight on 𝑎𝑘,𝑡 . However, this is a contradiction:
the best estimator of 𝜃𝑡 given 𝑟 𝑗 ,𝑡+1 and 𝑎𝑘,𝑡 is simply 𝑟 𝑗 ,𝑡+1, because 𝑟 𝑗 ,𝑡+1 was defined as the best
estimator of 𝜃𝑡 given observations that included 𝑎𝑘,𝑡 . This completes the proof of Lemma OA2. □

We now complete the proof of Lemma OA1. For the upper bound 𝑐0 ≤ 1, the idea is that 𝑟 𝑗 ,𝑡+1 puts
more weight on agents with better signals while these agents put little weight on public information,
which keeps the overall weight on public information from growing too large.

Note that 𝑟 𝑗 ,𝑡+1 is a linear combination of actions 𝜌𝑎𝑖′,𝑡 for 𝑖′ ∈ 𝑁 𝑗 , with coefficients summing
to 1. The only way the coefficient on 𝜌𝑟𝑖,𝑡 in 𝑟 𝑗 ,𝑡+1 could be at least 1 would be if some of these
coefficients on 𝜌𝑎𝑖′,𝑡 were negative and the estimator 𝑟 𝑗 ,𝑡+1 placed greater weight on actions 𝑎𝑖′,𝑡
which placed more weight on 𝑟𝑖,𝑡 .

Applying the formula (OA-3) for 𝑎𝑖′,𝑡 , we see that the coefficient 𝑏0 on 𝜌𝑟𝑖,𝑡 is less than 1 and
increasing in 𝜎𝑖′ . On the other hand, it is clear that the weight on 𝑎𝑖′,𝑡 in the social signal 𝑟 𝑗 ,𝑡+1 is
decreasing in 𝜎𝑖′ : more weight should be put on more precise individuals. So in fact the estimator
𝑟 𝑗 ,𝑡+1 places less weight on actions 𝑎𝑖′,𝑡 which placed more weight on 𝑟𝑖,𝑡 .

Moreover, the coefficients placed on private signals are bounded below by a positive constant
when we restrict to covariances in the image of Φ̃ (because all covariances are bounded as in the
proof of Proposition 1). Therefore, each agent (𝑖′, 𝑡) with 𝑖′ ∈ 𝑁 𝑗 places weight at most one on the
estimator 𝜌𝑟𝑖,𝑡−1. Agent 𝑗’s social signal 𝑟 𝑗 ,𝑡+1 is a sum of these agents’ actions with coefficients
summing to 1 and satisfying the monotonicity property above. We conclude that the coefficient on
𝜌𝑟𝑖,𝑡 in the expression for 𝑟 𝑗 ,𝑡+1 is at most one. This completes the proof of Lemma OA1. □

We now prove Proposition 2.

Proof of Proposition 2. By Lemma OA1 there is a unique equilibrium on any network 𝐺 with
symmetric neighbors. Let 𝜀 > 0.

Consider any agent (𝑖, 𝑡). Her neighbors have the same private signal qualities and the same
neighborhoods (by the symmetric neighbors assumption). So there exists an equilibrium where for
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all 𝑖, the actions of agent (𝑖, 𝑡)’s neighbors are exchangeable. By uniqueness, this in fact holds at the
sole equilibrium.

So agent (𝑖, 𝑡)’s social signal is an average of her neighbors’ actions:

𝑟𝑖,𝑡 =
1
|𝑁𝑖 |

∑︁
𝑗∈𝑁𝑖

𝑎 𝑗 ,𝑡−1.

Suppose the 𝜀-aggregation benchmark is achieved. Then all agents must place weight at least
(1+𝜀)−1

(1+𝜀)−1+𝜎−2 on their social signals. So at time 𝑡, the social signal 𝑟𝑖,𝑡 places weight at least (1+𝜀)−1

(1+𝜀)−1+𝜎−2

on signals from 𝑡 − 2 or earlier. Let 𝑌 be any linear combination of signals from 𝑡 − 2 or earlier with
weights summing to 1. Then E[(𝑌 − 𝜃𝑡−1)2] ≥ 1.10 It follows that for 𝜀 sufficiently small the social
signal 𝑟𝑖,𝑡 is bounded away from a perfect estimate of 𝜃𝑡−1. This gives a contradiction. □

OA4.3. Proof of Corollary 1. Consider a complete graph in which all agents have signal variance
𝜎2 and memory 𝑚 = 1. By Proposition 2, as 𝑛 grows large the variances of all agents converge to
𝐴 > (1 + 𝜎−2)−1.

Choose 𝜎2 large enough such that 𝐴 > 1. To see that we can do this, note that as 𝜎2 grows large,
the weight each agent places on their private signal vanishes. So the weight on signals from at least
𝑘 periods ago approaches one for any 𝑘 . Taking 𝜎2 such that this holds for 𝑘 sufficiently large, we
have 𝐴 > 1.

Now suppose that we increase 𝜎2
1 to ∞. Then 𝑎1,𝑡 = 𝑟1,𝑡 in each period, so all agents can infer all

private signals from the previous period. As 𝑛 grows large, the variance of agent 1 converges to 1
and the variances of all other agents converge to (1+𝜎−2)−1. By our choice of 𝜎2, this gives a Pareto
improvement. We can see by continuity that the same argument holds for 𝜎2

1 finite but sufficiently
large.

OA4.4. Proof of Corollary 2. Our goal is to estimate Var(𝑎𝑖,𝑡 − 𝜃𝑡).
First, observe that

𝑎𝑖,𝑡 = 𝑤𝑠𝑠𝑖,𝑡 + (1 − 𝑤𝑠)
1
𝑛

∑︁
𝑗

𝑎 𝑗 ,𝑡−1

= 𝑤𝑠 (𝜃𝑡 + 𝜀𝑖,𝑡) + (1 − 𝑤𝑠)
1
𝑛

∑︁
𝑗

𝑎 𝑗 ,𝑡−1.

This implies, inductively, that

𝑎𝑖,𝑡 − 𝜃𝑡 = 𝑤𝑠𝜀𝑖,𝑡 +
∞∑︁
ℓ=1

(
𝑤𝑠 (1 − 𝑤𝑠)ℓ (𝜃𝑡 − 𝜃𝑡−ℓ + 𝜁𝑡)

)
,

where the 𝜁𝑡 are mean-zero random variables independent of all other random variables in the
expression. (They are linear combinations of agents’ signal noise realizations.) Thus,

Var(𝑎𝑖,𝑡 − 𝜃𝑡) ≥ Var

(
𝑤𝑠

∞∑︁
ℓ=1

(1 − 𝑤𝑠)ℓ (𝜃𝑡 − 𝜃𝑡−ℓ)
)

10This is because 𝜌𝜃𝑡−2 is a sufficient statistic and an unbiased estimator for 𝜃𝑡−1 given signals up to 𝑡 − 2, and
E[(𝜌𝜃𝑡−2 − 𝜃𝑡−1)2] = 1.



LEARNING FROM NEIGHBORS ABOUT A CHANGING STATE: ONLINE APPENDIX 10

Noting that 𝜃𝑡 =
∑∞
𝑘=0 𝜌

𝑘𝜈𝑡−𝑘 , we may write

𝜃𝑡 − 𝜃𝑡−ℓ =
ℓ−1∑︁
𝑘=0

𝜌𝑘𝜈𝑡−𝑘

and therefore

Var(𝑎𝑖,𝑡 − 𝜃𝑡) ≥ Var

(
𝑤𝑠

∞∑︁
ℓ=1

(1 − 𝑤𝑠)ℓ
ℓ−1∑︁
𝑘=0

𝜌𝑘𝜈𝑡−𝑘

)
= 𝑤2

𝑠Var

( ∞∑︁
𝑘=0

𝜈𝑡−𝑘𝜌
𝑘

∞∑︁
ℓ=𝑘+1

(1 − 𝑤𝑠)ℓ
)

= 𝑤2
𝑠Var

( ∞∑︁
𝑘=0

𝜈𝑡−𝑘

(
𝜌𝑘

∞∑︁
ℓ=𝑘+1

(1 − 𝑤𝑠)ℓ
))

= 𝑤2
𝑠

∞∑︁
𝑘=0

(
𝜌𝑘

∞∑︁
ℓ=𝑘+1

(1 − 𝑤𝑠)ℓ
)2

=
(1 − 𝑤𝑠)2

1 − (1 − 𝑤𝑠)2𝜌2 .

This proves the bound

Var(𝑎𝑖,𝑡 − 𝜃𝑡) ≥
(1 − 𝑤𝑠)2

1 − (1 − 𝑤𝑠)2𝜌2 .

It remains to show the variances diverge to infinity as 𝜎2 → ∞ and 𝜌 → 1 from below. Choose a
sequence of pairs (𝜎2, 𝜌) → (∞, 1). If 𝑤𝑠 → 0 along any subsequence of this sequence, then along
the subsequence we have (1−𝑤𝑠)2

1−(1−𝑤𝑠)2𝜌2 → ∞ and so Var(𝑎𝑖,𝑡 − 𝜃𝑡) → ∞ as well. If 𝑤𝑠 is nonvanishing,
then Var(𝑎𝑖,𝑡 − 𝜃𝑡) → ∞ since the action variance is at least 𝑤2

𝑠𝜎
2 and 𝜎2 → ∞. Finally, note that

these bounds are both independent of 𝑛, so Var(𝑎𝑖,𝑡 − 𝜃𝑡) → ∞ uniformly in 𝑛.

OA4.5. Proof of Theorem 2. Suppose that all private signals have variance𝜎2 > 0. Fix a sequence
of networks 𝐺𝑛 and an equilibrium on each 𝐺𝑛. We will show that given any constant C > 0 and
any sequence of equilibria, the fraction of agents 𝑖 such that

�̂�2
𝑖 ≤

𝐶

𝑑

is bounded away from one.
We first prove the result in the case 𝑚 = 1. For each 𝑛, let 𝒢𝑛 be the set of agents 𝑖 satisfying

�̂�2
𝑖 ≤

𝐶

𝑑
,

i.e., the set of agents who do learn well. Assume for the sake of contradiction that |𝒢𝑛 |
𝑛

→ 1 as
𝑛→ ∞ along some subsequence and pass to that subsequence.
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For each 𝑗 , we can express the action 𝑎 𝑗 ,𝑡 as a weighted sum of innovations and signal errors,11
with all terms on the right-hand side conditionally independent:

𝑎 𝑗 ,𝑡 = 𝜃𝑡 −
∞∑︁
𝑙=0

𝑤 𝑗 ,𝑡 (𝜈𝑡−𝑙) (𝜌𝑙𝜈𝑡−𝑙) +
∑︁
𝑙, 𝑗 ′

𝑤 𝑗 ,𝑡 (𝜂 𝑗 ′,𝑡−𝑙) (𝜌𝑙𝜂 𝑗 ′,𝑡−𝑙).

Here we use arguments on 𝑤 to indicate the exogenous random variable that the coefficient pertains
to. The coefficients in the expression above are uniquely determined.

Lemma OA3. For all 𝑗 ∈ 𝒢𝑛 we must have

𝑤 𝑗 ,𝑡 (𝜈𝑡) ∈
(

1
𝜎−2 + 1

− 𝐶
′

𝑑
,

1
𝜎−2 + 1

)
for some 𝐶′ > 0 (independent of 𝑗 and 𝑛).

Proof. By the standard updating formula, the optimal weight 𝑤 𝑗 ,𝑡 (𝜈𝑡) is
(𝜌2𝜅2

𝑗 ,𝑡
+1)−1

(𝜌2𝜅2
𝑗 ,𝑡
+1)−1+𝜎−2 , where 𝜅2

𝑗 ,𝑡

is the variance of the best estimator of 𝜃𝑡−1 based on ( 𝑗 , 𝑡)’s social observations. The upper bound
follows because this is minimized when 𝜅2

𝑗 ,𝑡
= 0. For the lower bound,

𝑤 𝑗 ,𝑡 (𝜈𝑡) =
(𝜌2𝜅2

𝑗 ,𝑡
+ 1)−1

(𝜌2𝜅2
𝑗 ,𝑡
+ 1)−1 + 𝜎−2

=
1

(1 + 𝜎−2) + 𝜎−2𝜌2𝜅2
𝑗 ,𝑡

=
1

1 + 𝜎−2 − 𝜎−2𝜌2

(1 + 𝜎−2)2 𝜅
2
𝑗 ,𝑡 +𝑂 (𝜅4

𝑗 ,𝑡).

For 𝜅2
𝑗 ,𝑡

in any neighborhood of zero, we can choose 𝐶′′ such that the nonconstant terms in the
final expression are bounded below by −𝐶′′𝜅2

𝑗 ,𝑡
. Since by assumption we have 𝜅2

𝑗 ,𝑡
≤ 𝐶

𝑑
, the lemma

follows with 𝐶′ = 𝐶 · 𝐶′′. □

There are at most (𝑛 − |𝒢𝑛 |)𝑑 links directed to to agents outside 𝒢𝑛. Each agent who observes at
least 2(𝑛−|𝒢𝑛 |)

𝑛
· 𝑑 agents outside 𝒢𝑛 accounts for at least 2(𝑛−|𝒢𝑛 |)

𝑛
· 𝑑 of those links, so there can be at

most 𝑛2 such agents. Since |𝒢𝑛 |
𝑛

→ 1, there is an agent 𝑖 ∈ 𝒢𝑛 who observes fewer than 2(𝑛−|𝒢𝑛 |)
𝑛

· 𝑑
agents outside 𝒢𝑛.

Consider the action of such an agent 𝑖 ∈ 𝒢𝑛 in period 𝑡 + 1. Since

𝜅2
𝑖,𝑡+1 ≤ 𝐶

𝑑
,

the weight on the innovation 𝜈𝑡 from the previous period 𝑡 satisfies(
𝑤𝑖,𝑡+1(𝜈𝑡)𝜌

)2 ≤ 𝐶

𝑑
. (OA-6)

11To simplify calculations, we write this expression with a negative coefficient on the first sum so that the terms𝑤 𝑗 ,𝑡 (𝜈𝑡−𝑙)
are positive. The weight that 𝑗 places on 𝜈𝑡−𝑙 is in fact −𝑤 𝑗 ,𝑡 (𝜈𝑡−𝑙).
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On the other hand, we can express this weight in terms of neighbors’ weights as

𝑤𝑖,𝑡+1(𝜈𝑡) =
∑︁
𝑗

𝜌𝑤𝑖 𝑗 ,𝑡+1𝑤 𝑗 ,𝑡 (𝜈𝑡).

We will show that if this weight 𝑤𝑖,𝑡+1(𝜈𝑡) vanishes, then the contribution of private signal errors to
𝜅𝑖,𝑡+1 must grow asymptotically faster than 1/𝑑.

We can split this summation as

𝑤𝑖,𝑡+1(𝜈𝑡) = 𝜌
∑︁
𝑗∈𝒢𝑛

𝑤𝑖 𝑗 ,𝑡+1𝑤 𝑗 ,𝑡 (𝜈𝑡) + 𝜌
∑︁
𝑗∉𝒢𝑛

𝑤𝑖 𝑗 ,𝑡+1𝑤 𝑗 ,𝑡 (𝜈𝑡).

We now consider two cases, depending on whether
∑
𝑗∉𝒢𝑛

|𝑤𝑖 𝑗 ,𝑡+1 | → 0, i.e., whether the sum of
the absoulte values of the weights on agents outside 𝒢𝑛 is vanishing.

Case 1: lim inf𝑛
∑
𝑗∉𝒢𝑛

|𝑤𝑖 𝑗 ,𝑡+1 | = 0. We can pass to a subsequence along which
∑
𝑗∉𝒢𝑛

|𝑤𝑖 𝑗 ,𝑡+1 | →
0.

We claim that it follows from the bounds on 𝑤 𝑗 ,𝑡 (𝜈𝑡) in Lemma OA3 that this can only occur if∑
𝑗 |𝑤𝑖 𝑗 ,𝑡+1 | → ∞. If

∑
𝑗 |𝑤𝑖 𝑗 ,𝑡+1 | is bounded,

𝑤𝑖,𝑡+1(𝜈𝑡) = 𝜌
∑︁
𝑗∈𝒢𝑛

𝑤𝑖 𝑗 ,𝑡+1𝑤 𝑗 ,𝑡 (𝜈𝑡) + 𝜌
∑︁
𝑗∉𝒢𝑛

𝑤𝑖 𝑗 ,𝑡+1𝑤 𝑗 ,𝑡 (𝜈𝑡) = 𝜌
∑︁
𝑗∈𝒢𝑛

𝑤𝑖 𝑗 ,𝑡+1𝑤 𝑗 ,𝑡 (𝜈𝑡) + 𝑜(1).

The second equality holds because
∑
𝑗∉𝒢𝑛

|𝑤𝑖 𝑗 ,𝑡+1 | → 0 and 𝑤 𝑗 ,𝑡 (𝜈𝑡) ∈ [0, 1] for all 𝑗 . Therefore,

𝑤𝑖,𝑡+1(𝜈𝑡) = 𝜌
∑︁
𝑗∈𝒢𝑛

𝑤𝑖 𝑗 ,𝑡+1𝑤 𝑗 ,𝑡 (𝜈𝑡) + 𝑜(1) ≥
(
𝜌

1
1 + 𝜎−2

𝜎−2

𝜎−2 + 1
− 𝑜 (1)

)
+ 𝑜(1),

and the right-hand side is nonvanishing. Here the first term on the right-hand side is the limit of
the sum if all of the terms 𝑤 𝑗 ,𝑡 (𝜈𝑡) were equal to the upper bound 𝜎−2

𝜎−2+1 . The first 𝑜(1) error term
corresponds to the variation in 𝑤 𝑗 ,𝑡 (𝜈𝑡) across 𝑗 , which is 𝑂 ( 1

𝑑
) by Lemma OA3 and has bounded

coefficients. Thus 𝑤𝑖,𝑡+1(𝜈𝑡) is nonvanishing, but this contradicts the inequality (OA-6). We have
proven the claim.

The contribution to 𝜅2
𝑖,𝑡+1 from signal errors 𝜂 𝑗 ,𝑡 is

∑
𝑗 |𝑤𝑖 𝑗 ,𝑡+1 |2(𝑤𝑠𝑗 ,𝑡)2𝜎2. Since𝑤𝑠

𝑗 ,𝑡
= 1−𝑤 𝑗 ,𝑡 (𝜈𝑡)

converge uniformly to a constant 𝜎−2

𝜎−2+1 , we can bound this contribution below by an expression that
is proportional to ∑︁

𝑗

|𝑤𝑖 𝑗 ,𝑡+1 |2.

The summation has at most 𝑑 nonzero terms. Applying the standard bound ∥𝑣∥1 ≤
√
𝑛∥𝑣∥2 on 𝐿𝑝

norms on R𝑛, ∑︁
𝑗

|𝑤𝑖 𝑗 ,𝑡+1 |2 ≥ 1
𝑑

(∑︁
𝑗

|𝑤𝑖 𝑗 ,𝑡+1 |
)2

.

The right-hand side of this inequality grows at a rate faster than 1
𝑑

by the claim
∑
𝑗 |𝑤𝑖 𝑗 ,𝑡+1 | → ∞,

and so the social signal error grows at a rate faster than 1
𝑑

. This gives a contradiction.
Case 2: lim inf𝑛

∑
𝑗∉𝒢𝑛

|𝑤𝑖 𝑗 ,𝑡+1 | > 0.
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As in Case 1, the contribution to signal errors from neighbors 𝑗 ∉ 𝒢𝑛 is proportional to∑︁
𝑗∉𝒢𝑛

|𝑤𝑖 𝑗 ,𝑡+1 |2.

By our choice of the agent 𝑖, she observes at most 2(𝑛−|𝒢𝑛 |)
𝑛

· 𝑑 agents outside 𝒢𝑛. The same standard
bound on 𝐿𝑝 norms gives∑︁

𝑗∉𝒢𝑛

|𝑤𝑖 𝑗 ,𝑡+1 |2 ≥ 1
𝑑
· 𝑛

2(𝑛 − |𝒢 |𝑛)
©­«
∑︁
𝑗∉𝒢𝑛

|𝑤𝑖 𝑗 ,𝑡+1 |ª®¬
2

.

By assumption, the cardinality 𝑛 − |𝒢𝑛 | of the complement of 𝒢𝑛 is 𝑜(𝑛) and (∑ 𝑗∉𝒢𝑛
|𝑤𝑖 𝑗 ,𝑡+1 |)2 is

nonvanishing. So the right-hand side grows at a rate faster than 1
𝑑

. Thus the social signal error
grows at a rate faster than 1

𝑑
, which again gives a contradiction. This completes the proof in the case

𝑚 = 1, and we next turn to the general argument.
Now, suppose 𝑚 ≥ 1 is arbitrary. As before, for each agent ( 𝑗 , 𝑡),we can write:

𝑎 𝑗 ,𝑡 = 𝜃𝑡 −
∞∑︁
𝑙=0

𝑤 𝑗 ,𝑡 (𝜈𝑡−𝑙) (𝜌𝑙𝜈𝑡−𝑙) +
∑︁
𝑙, 𝑗 ′

𝑤 𝑗 ,𝑡 (𝜂 𝑗 ′,𝑡−𝑙) (𝜌𝑙𝜂 𝑗 ′,𝑡−𝑙).

For each 𝑛, let 𝒢𝑛 be the set of 𝑖 satisfying

�̂�2
𝑖 ≤

𝐶

𝑑
.

Suppose lim sup𝑛 |𝒢𝑛 |/𝑛 = 1. Passing to a subsequence, we can assume that lim𝑛 |𝒢𝑛 |/𝑛 = 1, i.e.,
the fraction of agents in 𝒢𝑛 converges to one.

As in the 𝑚 = 1 proof above, we can choose 𝑖 ∈ 𝒢𝑛 who observes fewer than 2(𝑛−|𝒢𝑛 |)
𝑛

· 𝑑 agents
outside 𝒢𝑛. Choose any such 𝑖 and consider the agent (𝑖, 𝑡) with 𝑖 ∈ 𝒢𝑛, who observes neighbors’
actions in periods 𝑡 − 1, . . . , 𝑡 − 𝑚. For each 1 ≤ 𝑙 ≤ 𝑚, we will write 𝑤 (𝑖,𝑡),( 𝑗 ,𝑡−𝑙) for the weight
that agent (𝑖, 𝑡) places on the action of agent ( 𝑗 , 𝑡 − 𝑙). By the same argument as in Case 2 of the
𝑚 = 1 proof above, lim inf𝑛

∑
𝑗∉𝒢𝑛

|𝑤 (𝑖,𝑡),( 𝑗 ,𝑡−𝑙) | = 0 for each 𝑙 (since the fraction of agents outside
𝒢𝑛 is vanishing). Passing to a subsequence, we can assume that lim𝑛

∑
𝑗∉𝒢𝑛

|𝑤 (𝑖,𝑡),( 𝑗 ,𝑡−𝑙) | = 0.
We can express agent (𝑖, 𝑡)’s action:

𝑎𝑖,𝑡 =
∑︁

1≤𝑙≤𝑚

©­«
∑︁
𝑗∈𝒢𝑛

𝑤 (𝑖,𝑡),( 𝑗 ,𝑡−𝑙)𝜌
𝑙𝑎 𝑗 ,𝑡−𝑙 +

∑︁
𝑗∉𝒢𝑛

𝑤 (𝑖,𝑡),( 𝑗 ,𝑡−𝑙)𝜌
𝑙𝑎 𝑗 ,𝑡−𝑙

ª®¬ .
We will show that this expression places nonvanishing weight on the innovation 𝜈𝑡−𝑙 for some 𝑙 ≥ 1.
This will contradict our assumption that 𝑖 ∈ 𝒢𝑛.

Since lim𝑛

∑
𝑗∉𝒢𝑛

|𝑤 (𝑖,𝑡),( 𝑗 ,𝑡−𝑙) | = 0 and the weight each agent places on 𝜈𝑡−𝑙 is bounded, it is
sufficient to show that ∑︁

1≤𝑙≤𝑚

∑︁
𝑗∈𝒢𝑛

𝑤 (𝑖,𝑡),( 𝑗 ,𝑡−𝑙)𝜌
𝑙𝑎 𝑗 ,𝑡−𝑙

places nonvanishing weight on the innovation 𝜈𝑡−𝑙 for some 𝑙 ≥ 1.
For each ( 𝑗 , 𝑡′) such that 𝑗 ∈ 𝒢𝑛, we have
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𝑎 𝑗 ,𝑡′ =
𝜃𝑡′−1 + 𝜎−2𝑠 𝑗 ,𝑡′

1 + 𝜎−2 + 𝜖 𝑗 ,𝑡′ ,

where Var(𝜖 𝑗 ,𝑡′) → 0. This is because

𝑎 𝑗 ,𝑡′ =
(𝜌2𝜅2

𝑖,𝑡
+ 1)−1𝑟𝑖,𝑡 + 𝜎−2𝑠 𝑗 ,𝑡′

(𝜌2𝜅2
𝑖,𝑡
+ 1)−1 + 𝜎−2

,

and we have 𝜅2
𝑖,𝑡
= Var(𝑟𝑖,𝑡 − 𝜃𝑡−1) → 0.

Using this expression for 𝑎 𝑗 ,𝑡′ , we obtain∑︁
1≤𝑙≤𝑚

∑︁
𝑗∈𝒢𝑛

𝑤 (𝑖,𝑡),( 𝑗 ,𝑡−𝑙)𝜌
𝑙𝑎 𝑗 ,𝑡−𝑙 =

∑︁
1≤𝑙≤𝑚

∑︁
𝑗∈𝒢𝑛

𝑤 (𝑖,𝑡),( 𝑗 ,𝑡−𝑙)𝜌
𝑙

(
𝜃𝑡−𝑙−1 + 𝜎−2𝑠 𝑗 ,𝑡−𝑙

1 + 𝜎−2 + 𝜖 𝑗 ,𝑡−𝑙

)
By the same argument as in Case 1 of the 𝑚 = 1 proof above,∑︁

1≤𝑙≤𝑚

∑︁
𝑗∈𝒢𝑛

|𝑤 (𝑖,𝑡),( 𝑗 ,𝑡−𝑙) |

must be bounded (or else the contributions of signal errors to �̂�2
𝑖

would be too large to have 𝑖 ∈ 𝒢𝑛).
Therefore, it is sufficient to show that∑︁

1≤𝑙≤𝑚

∑︁
𝑗∈𝒢𝑛

𝑤 (𝑖,𝑡),( 𝑗 ,𝑡−𝑙)𝜌
𝑙 ·
𝜃𝑡−𝑙−1 + 𝜎−2𝑠 𝑗 ,𝑡−𝑙

1 + 𝜎−2

places nonvanishing weight on the innovation 𝜈𝑡−𝑙 for some 𝑙 ≥ 1.
This holds for the largest 𝑙 such that

∑
𝑗∈𝒢𝑛

𝑤 (𝑖,𝑡),( 𝑗 ,𝑡−𝑙) is nonvanishing. Such an 𝑙 must exist,
because ∑︁

1≤𝑙≤𝑚

∑︁
𝑗∈𝒢𝑛

𝑤 (𝑖,𝑡),( 𝑗 ,𝑡−𝑙) →
1

1 + 𝜎−2

since 𝑖 ∈ 𝒢𝑛.

OA4.6. Proof of Proposition 3. For each agent 𝑖, we can write

𝑎𝑖,𝑡 = 𝑤
𝑠
𝑖 𝑠𝑖,𝑡 +

∑︁
𝑗

𝑊𝑖 𝑗 𝜌𝑎 𝑗 ,𝑡−1 = 𝑤𝑠𝑖 𝑠𝑖,𝑡 +
∑︁
𝑗

𝑊𝑖 𝑗

(
𝜌𝑤𝑠𝑗 𝑠 𝑗 ,𝑡 +

∑︁
𝑗 ′
𝑊 𝑗 𝑗 ′𝜌𝑎 𝑗 ′,𝑡−2

)
.

Because we assume 𝑤𝑠
𝑖
< 𝑤 < 1 and 𝑤𝑠

𝑗
< 𝑤 < 1 for all 𝑗 , the total weight

∑
𝑗 , 𝑗 ′𝑊𝑖 𝑗𝑊 𝑗 𝑗 ′𝜌 on

terms 𝑎 𝑗 ′,𝑡−2 is bounded away from zero. Because the error variance of each of these terms is greater
than 1, this implies agent 𝑖 fails to achieve the 𝜀-aggregation benchmark for 𝜀 > 0 sufficiently small.

OA4.7. Proof of Proposition 4. We prove the following statement, which includes the proposition
as special cases.

Proposition OA1. Suppose the network 𝐺 is strongly connected.12 Consider weights W and w𝑠

and suppose they are all positive, with an associated steady state V𝑡 . Suppose either
(1) there is an agent 𝑖 whose weights are a Bayesian best response to V𝑡 , and some agent observes

that agent and at least one other neighbor; or

12That is, there is a directed path from each node to each other node.
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(2) there is an agent whose weights are a naive best response to V𝑡 , and who observes multiple
neighbors.
Then the steady state V𝑡 is Pareto-dominated by another steady state.

We provide the proof in the case 𝑚 = 1 to simplify notation. The argument carries through with
arbitrary finite memory.

Case (1): Consider an agent 𝑙 who places positive weight on a rational agent 𝑘 and positive
weight on at least one other agent. Define weights 𝑊 by 𝑊 𝑖 𝑗 = 𝑊𝑖 𝑗 and 𝑤𝑠𝑖 = 𝑤𝑠

𝑖
for all 𝑖 ≠ 𝑘 ,

𝑊 𝑘 𝑗 = (1 − 𝜖)𝑊𝑘 𝑗 for all 𝑗 ≤ 𝑛, and 𝑤𝑠𝑘 = (1 − 𝜖)𝑤𝑠
𝑘
+ 𝜖, where 𝑊𝑖 𝑗 and 𝑤𝑠

𝑖
are the weights at the

initial steady state. In words, agent 𝑘 places weight (1 − 𝜖) on her equilibrium strategy and extra
weight 𝜖 on her private signal. All other players use the same weights as at the steady state.

Suppose we are at the initial steady state until time 𝑡, but in period 𝑡 and all subsequent periods
agents instead use weights 𝑊 . These weights give an alternate updating function Φ on the space
of covariance matrices. Because the weights 𝑊 are positive and fixed, all coordinates of Φ are
increasing, linear functions of all previous period variances and covariances. Explicitly, the diagonal
terms are

[Φ(V𝑡)]𝑖𝑖 = (𝑤𝑠𝑖 )2𝜎2
𝑖 +

∑︁
𝑗 , 𝑗 ′≤𝑛

𝑊 𝑖 𝑗𝑊 𝑖 𝑗 ′ (𝜌2𝑉 𝑗 𝑗 ′,𝑡 + 1)

and the off-diagonal terms are

[Φ(V𝑡)]𝑖𝑖′ =
∑︁
𝑗 , 𝑗 ′≤𝑛

𝑊 𝑖 𝑗𝑊 𝑖′ 𝑗 ′ (𝜌2𝑉 𝑗 𝑗 ,𝑡′ + 1).

So it is sufficient to show the variances Φℎ (V𝑡) after applying Φ for ℎ periods Pareto dominate the
variances in V𝑡 for some ℎ.

In period 𝑡, the change in weights decreases the covariance 𝑉 𝑗 𝑘,𝑡 of 𝑘 and some other agent 𝑗 ,
who 𝑙 also observes, by 𝑓 (𝜖) of order Θ(𝜖). By the envelope theorem, the change in weights only
increases the variance 𝑉𝑘𝑘 by 𝑂 (𝜖2). Taking 𝜖 sufficiently small, we can ignore 𝑂 (𝜖2) terms.

There exists a constant 𝛿 > 0 such that all initial weights on observed neighbors are at least 𝛿.
Then each coordinate [Φ(V )]𝑖𝑖 is linear with coefficient at least 𝛿2 on each variance or covariance
of agents observed by 𝑖.

Because agent 𝑙 observes 𝑘 and another agent, agent 𝑙’s variance will decrease below its equilib-
rium level by at least 𝛿2 𝑓 (𝜖) in period 𝑡 + 1. Because Φ is increasing in all entries and we are only
decreasing covariances, agent 𝑙’s variance will also decrease below its initial level by at least 𝛿2 𝑓 (𝜖)
in all periods 𝑡′ > 𝑡 + 1.

Because the network is strongly connected and finite, the network has a diameter. After 𝑑 + 1
periods, the variances of all agents have decreased by at least 𝛿2𝑑+2 𝑓 (𝜖) from their initial levels.
This gives a Pareto improvement.

Case (2): Consider a naive agent 𝑘 who observes at least two neighbors. We can write agent 𝑘’s
period 𝑡 action as

𝑎𝑘,𝑡 = 𝑤
𝑠
𝑘 𝑠𝑖,𝑡 +

∑︁
𝑗∈𝑁𝑖

𝑊𝑘 𝑗 𝜌𝑎 𝑗 ,𝑡−1.

Define new weights 𝑊 as in the proof of case (1). Because agent 𝑘 is naive and the summation∑
𝑗∈𝑁𝑖

𝑊𝑘 𝑗 𝜌𝑎 𝑗 ,𝑡−1 has at least two terms, she believes the variance of this summation is smaller
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than its true value. So marginally increasing the weight on 𝑠𝑘,𝑡 and decreasing the weight on this
summation decreases her action variance. This deviation also decreases her covariance with any
other agent. The remainder of the proof proceeds as in case (1).

OA4.8. Proof of Proposition 5. Suppose the social influence

SI(𝑖) =
∑︁
𝑗∈𝑁

∞∑︁
𝑘=1

(
𝜌𝑘Ŵ 𝑘

)
𝑗𝑖
𝑤𝑠𝑖 =

[
1′

(
𝐼 − 𝜌Ŵ

)−1
− 1′

]
𝑖

𝑤𝑠𝑖

does not converge for some 𝑖. Then in particular, there exists 𝑗 such that
∑∞
𝑘=0

(
𝜌ℓ𝑊

) 𝑘
𝑗𝑖
𝑤𝑠
𝑖

does not
converge. We can write

𝑎 𝑗 ,𝑡 =

∞∑︁
ℓ=0

∑︁
𝑗 ′∈𝑁

(
𝜌ℓŴ ℓ

)
𝑗 𝑗 ′
𝑤𝑠𝑗 ′𝑠 𝑗 ′,𝑡−ℓ .

This expression is the sum of
∞∑︁
ℓ=0

(
𝜌Ŵ ℓ

)
𝑗𝑖
𝑤𝑠𝑖 𝜂𝑖,𝑡−ℓ

and independent terms corresponding to signal errors of agents other than 𝑖 and changes in the state.
Because

∑∞
ℓ=0

(
𝜌ℓŴ ℓ

)
𝑗𝑖
𝑤𝑠
𝑖

does not converge, the payoff to action 𝑎 𝑗 ,𝑡 must therefore be −∞. But

we showed in the proof of Proposition 1 that agent 𝑗’s equilibrium payoff is at least −𝜎2
𝑗
, which

gives a contradiction.
Given convergence, the expression for SI(𝑖) follows from the Neumann series identity

∞∑︁
𝑘=0

M 𝑘 = (I −M )−1.

OA4.9. Proof of Proposition 6. The social signal 𝑟𝑖,𝑡 is the same for all agents, and we will refer
to it as 𝑟𝑡 . We can express the social signal as

𝑟𝑡 = 𝑤𝐴

∑︁
𝑖:𝜎𝑖=𝜎𝐴

𝑎𝑖,𝑡−1 + 𝑤𝐵
∑︁

𝑖:𝜎𝑖=𝜎𝐵

𝑎𝑖,𝑡−1 (OA-7)

for some weights 𝑤𝐴 and 𝑤𝐵.
We can rewrite the actions 𝑎𝑖,𝑡−1 for 𝑖 with signal variance 𝜎2

𝐴
as

𝑎𝑖,𝑡−1 =
𝐾

𝐾 + 𝜎−2
𝐴

𝜌𝑟𝑖,𝑡−1 +
𝜎𝐴−2
𝐾 + 𝜎−2

𝐴

𝑠𝑖,𝑡−1,

where 𝐾 = 𝜌2𝜅2
𝑡−1 + 1 is the equilibrium variance of 𝜌𝑟𝑡−1 about the state 𝜃𝑡−1. The analogous

formula holds for agents 𝑖 with signal variance 𝜎2
𝐵

.
Substituting the formulas for 𝑎𝑖,𝑡−1 into equation (OA-7) and taking variances,
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𝜅2
𝑡 = Var(𝑟𝑡 − 𝜃𝑡−1)

= Var

(
𝑛𝐾

2

(
𝑤𝐴

𝐾 + 𝜎−2
𝐴

+ 𝑤𝐵

𝐾 + 𝜎−2
𝐵

)
(𝑟𝑡−1 − 𝜃𝑡−1)

)
+ Var

(
𝑤𝐴

∑︁
𝑖∈𝑆𝐴

𝜎−2
𝐴

𝐾 + 𝜎−2
𝐴

(𝑠𝑖,𝑡−1 − 𝜃𝑡−1)
)

+ Var

(
𝑤𝐵

∑︁
𝑖∈𝑆𝐵

𝜎−2
𝐵

𝐾 + 𝜎−2
𝐵

(𝑠𝑖,𝑡−1 − 𝜃𝑡−1)
)

=
𝑛2𝐾

4

(
𝑤𝐴

𝐾 + 𝜎−2
𝐴

+ 𝑤𝐵

𝐾 + 𝜎−2
𝐵

)2

+ 𝑛
2
·

𝑤2
𝐴
𝜎−2
𝐴

(𝐾 + 𝜎−2
𝐴
)2

+ 𝑛
2
·

𝑤2
𝐵
𝜎−2
𝐵

(𝐾 + 𝜎−2
𝐵
)2
.

The equilibrium weights 𝑤𝐴 and 𝑤𝐵 minimize this expression. Using the fact that 𝑤𝐴 + 𝑤𝐵 = 2
𝑛
,

we have that 𝑤𝐴 satisfies

(𝜅2)′𝑡+1(𝑤𝐴) =
𝑛2𝐾

2

(
𝑤𝐴

𝐾 + 𝜎−2
𝐴

+ 𝑤𝐵

𝐾 + 𝜎−2
𝐵

) (
1

𝐾 + 𝜎−2
𝐴

− 1
𝐾 + 𝜎−2

𝐵

)
+

𝑛𝑤𝐴𝜎
−2
𝐴

(𝐾 + 𝜎−2
𝐴
)2

−
𝑛𝑤𝐵𝜎

−2
𝐵

(𝐾 + 𝜎−2
𝐵
)2

= 0.

This equation, along with 𝑤𝐴 + 𝑤𝐵 = 2
𝑛
, allows us to explicitly solve for 𝑤𝐴 and 𝑤𝐵 in terms of 𝑘

and exogenous variables. In particular, we get that

𝑤𝐴

𝑤𝐵
=

(
𝐾 + 𝜎−2

𝐴

𝐾 + 𝜎−2
𝐵

) (
2 + 𝐾𝑛𝜎2

𝐵
− 𝐾 (𝑛 − 2)𝜎2

𝐴

2 + 𝐾𝑛𝜎2
𝐴
− 𝐾 (𝑛 − 2)𝜎2

𝐵

)
. (OA-8)

We now turn to analyzing social influences. Recall that

SI(𝑖) =
𝑛∑︁
𝑗=1

∞∑︁
𝑘=1

(
𝜌𝑊

) 𝑘
𝑖 𝑗
𝑤𝑠𝑖 . (OA-9)

On the complete graph, this expression is proportional to the product of the weight placed on agent
𝑖 by the social signal 𝑟𝑡 and agent 𝑖’s self-weight 𝑤𝑠

𝑖
. Therefore, we compute

SI(𝐴)
SI(𝐵) =

𝑤𝐴

𝑤𝐵
·

𝜎−2
𝐴

𝐾+𝜎−2
𝐴

𝜎−2
𝐵

𝐾+𝜎−2
𝐵

.

Substituting from equation (OA-8),

SI(𝐴)
SI(𝐵) =

(
𝜎−2
𝐴

𝜎−2
𝐵

) (
2 + 𝐾𝑛𝜎2

𝐵
− 𝐾 (𝑛 − 2)𝜎2

𝐴

2 + 𝐾𝑛𝜎2
𝐴
− 𝐾 (𝑛 − 2)𝜎2

𝐵

)
.

We want to show that the left-hand side is greater than 𝜎−2
𝐴

𝜎−2
𝐵

whenever 𝜎−2
𝐴

> 𝜎−2
𝐵
, which is

equivalent to showing
2 + 𝐾𝑛𝜎2

𝐵
− 𝐾 (𝑛 − 2)𝜎2

𝐴

2 + 𝐾𝑛𝜎2
𝐴
− 𝐾 (𝑛 − 2)𝜎2

𝐵

> 1
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whenever 𝜎−2
𝐴
> 𝜎−2

𝐵
and this fraction is positive.

To see this, note that the difference between the numerator and denominator of the fraction is(
𝐾𝑛𝜎2

𝐵 − 𝐾 (𝑛 − 2)𝜎2
𝐴

)
−

(
𝐾𝑛𝜎2

𝐴 − 𝐾 (𝑛 − 2)𝜎2
𝐵

)
= 2𝐾 (𝑛 − 1) (𝜎2

𝐵 − 𝜎2
𝐴)

> 0

as desired.

OA5. Model with a starting time

In introducing the model (Section 2), we made the set of time indices T equal to Z, the set of
all integers. Here we study the variant with an initial time period, 𝑡 = 0: thus, we take T to be
Z≥0, the nonnegative integers. This section shows that there is a unique equilibrium outcome. In
large networks, a suitable analogue of Theorem 1 holds, with both aggregation quality and outcomes
similar to those obtained there. Similarly, the negative result of Proposition 2 also has a counterpart
in this model.

Let 𝜃0 be drawn according to the stationary distribution of the state process: 𝜃0 ∼ N
(
0, 1

1−𝜌

)
.

After this, the state random variables 𝜃𝑡 satisfy the AR(1) evolution

𝜃𝑡+1 = 𝜌𝜃𝑡 + 𝜈𝑡+1,

where 𝜌 is a constant with 0 < |𝜌 | < 1 and 𝜈𝑡+1 ∼ N(0, 𝜎2
𝜈 ) are independent innovations. Actions,

payoffs, signals, and observations are the same as in the main model, with the obvious modification
that in the initial periods, 𝑡 < 𝑚, information sets are smaller as there are not yet prior actions to
observe.13 To save on notation, we write actions as if agents had an improper prior, understanding
that the adjustment for actions taken under the natural prior 𝜃𝑡 ∼ N

(
0, 1

1−𝜌

)
is immediate.

In this model, there is a straightforward prediction of behavior. A Nash equilibrium here refers to
an equilibrium of the game involving all agents (𝑖, 𝑡) for all time indices in T .

Fact OA1. In the model with T = Z≥0, there is a unique Nash equilibrium, and it is in linear
strategies. The initial generation (𝑡 = 0) plays a linear strategy based on private signals only. In any
period 𝑡 > 0, given linear strategies from prior periods, players’ best responses are linear. For time
periods 𝑡 > 𝑚, we have

V𝑡 = Φ(V𝑡−1).

This fact follows from the observation that the initial (𝑡 = 0) generation faces a problem of
forming a conditional expectation of a Gaussian state based on Gaussian signals, so their optimal
strategies are linear. From then on, the analysis of Section 3.1 characterizes best-response behavior
inductively. Note that for arbitrary environments, the fact does not imply that V𝑡 must converge.

Our main purpose in this section is to give analogues of the main results on learning in large
networks. We use the same definition of an environment—in terms of the distribution of networks
and signals—as in Section 4.3. For simplicity, we work with 𝑚 = 1, though the arguments for our
positive result extend straightforwardly.

The analogue of Theorem 1 is:

13The actions for 𝑡 < 0 can be set to arbitrary (commonly known) constants.
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Theorem OA1. Consider the T = Z≥0 model. If an environment satisfies signal diversity, there is
𝐶 > 0 such that asymptotically almost surely �̂�2

𝑖,𝑡
< 𝐶/𝑛 for all 𝑖 at all times 𝑡 ≥ 1 in the unique

Nash equilibrium.

In particular, this implies that the covariance matrix in each period 𝑡 ≥ 1 is very close (in the
Euclidean norm) to the good-learning equilibrium from Theorem 1. We sketch the proof, which
uses the material we developed in Appendix B. We define 𝐴𝑡 as in that proof (Section B.1). Take a
𝛽 > 0, to be specified later, and consider

W = W𝛽

𝑛
, 1
𝑛

∪ Φ̃

(
W𝛽

𝑛
, 1
𝑛

)
.

First, for large enough 𝛽, we have that 𝐴1 ∈ W: In the unique Nash equilibrium, at 𝑡 = 1, agents
simply take weighted averages of their neighbors’ signals, weighted by their precisions. So 𝐴1 ∈ W
by the central limit theorem for 𝛽 sufficiently large. Second, we use the previously established fact
(recall Section B.2) that Φ̃(W) ⊂ W to deduce that 𝐴𝑡 ∈ W at all future times. Finally, we observe
that W ⊆ W𝛽

𝑛
, 1
𝑛

by construction.
Without signal diversity, the unique equilibrium can feature bad learning forever. The analogue of

Proposition 2 is immediate. In graphs with symmetric neighbors, Φ is a contraction when𝑚 = 1. So
iteration of it arrives at the unique fixed point, and thus a learning outcome far from the benchmark.

OA6. Naive Agents

In this section we provide rigorous detail for the analysis given in 5.1. We will describe outcomes
with two signal types, 𝜎2

𝐴
and 𝜎2

𝐵
.14 We use the same random network model as in Section 4.4 and

assume each network type contains equal shares of agents with each signal type.
We can define variances

𝑉∞
𝐴 =

𝜌2𝜅2
𝑡 + 1 + 𝜎−2

𝐴(
1 + 𝜎−2

𝐴

)2 , 𝑉∞
𝐵 =

𝜌2𝜅2
𝑡 + 1 + 𝜎−2

𝐵(
1 + 𝜎−2

𝐵

)2 (OA-1)

where

𝜅−2
𝑡 = 1 − 1

(𝜎−2
𝐴

+ 𝜎−2
𝐵
)

(
𝜎−2
𝐴

1 + 𝜎−2
𝐴

+
𝜎−2
𝐵

1 + 𝜎−2
𝐵

)
.

Naive agents’ equilibrium variances converge to these values.

Proposition OA2. Under the assumptions in this subsection:
(1) There is a unique equilibrium on 𝐺𝑛.
(2) Given any 𝛿 > 0, asymptotically almost surely all agents’ equilibrium variances are within 𝛿

of 𝑉∞
𝐴

and 𝑉∞
𝐵

.
(3) There exists 𝜀 > 0 such that asymptotically almost surely the 𝜀-aggregation benchmark is not

achieved, and when 𝜎2
𝐴
= 𝜎2

𝐵
asymptotically almost surely all agents’ variances are larger than V∞.

Aggregating information well requires a sophisticated response to the correlations in observed
actions. Because naive agents completely ignore these correlations, their learning outcomes are

14The general case, with many signal types, is similar.
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poor. In particular their variances are larger than at the equilibria we discussed in the Bayesian case,
even when that equilibrium is inefficient (𝜎2

𝐴
= 𝜎2

𝐵
).

When signal qualities are homogeneous (𝜎2
𝐴
= 𝜎2

𝐵
), we obtain the same limit on any network

with enough observations. That is, on any sequence (𝐺𝑛)∞𝑛=1 of (deterministic) networks with the
minimum degree diverging to ∞ and any sequence of equilibria, the equilibrium action variances of
all agents converge to 𝑉∞

𝐴
.

OA6.1. Proof of Proposition OA2. We first check that there is a unique naive equilibrium. As in
the Bayesian case, covariances are updated according to equations (3.3):

V𝑖𝑖,𝑡 = (𝑤𝑠𝑖,𝑡)2𝜎2
𝑖 +

∑︁
𝑊𝑖𝑘,𝑡𝑊𝑖𝑘 ′,𝑡 (𝜌2V𝑘𝑘 ′,𝑡−1 + 1) and V𝑖 𝑗 ,𝑡 =

∑︁
𝑊𝑖𝑘,𝑡𝑊𝑖′𝑘 ′,𝑡 (𝜌2V𝑘𝑘 ′,𝑡−1 + 1).

The weights𝑊𝑖𝑘,𝑡 and𝑤𝑠
𝑖,𝑡

are now all positive constants that do not depend onV𝑡−1. So differentiating
this formula, we find that all partial derivatives are bounded above by 1 − 𝑤𝑠

𝑖,𝑡
< 1. So the updating

map (which we call Φnaive) is a contraction in the sup norm on V. In particular, there is at most one
equilibrium.

The remainder of the proof characterizes the variances of agents at this equilibrium. We first
construct a candidate equilibrium with variances converging to 𝑉∞

𝐴
and 𝑉∞

𝐵
, and then we show that

for 𝑛 sufficiently large, there exists an equilibrium nearby in V.
To construct the candidate equilibrium, suppose that each agent observes the same number of

neighbors of each signal type. Then there exists an equilibrium V̂ sym where covariances depend
only on signal types, i.e., V̂ sym is invariant under permutations of indices that do not change signal
types. We now show variances of the two signal types at this equilibrium converge to 𝑉∞

𝐴
and 𝑉∞

𝐵
.

To estimate 𝜃𝑡−1, a naive agent combines observed actions from the previous period with weight
proportional to their precisions 𝜎−2

𝐴
or 𝜎−2

𝐵
. The naive agent incorrectly believes this gives an almost

perfect estimate of 𝜃𝑡−1. So the weight on older observations vanishes as 𝑛 → ∞. The naive agent
then combines this estimate of 𝜃𝑡−1 with her private signal, with weights converging to the weights
she uses if the estimate is perfect.

Agent 𝑖 observes |𝑁𝑖 |
2 neighbors of each signal type, so her estimate 𝑟naive

𝑖,𝑡
of 𝜃𝑡−1 is approximately:

𝑟naive
𝑖,𝑡 =

2
|𝑁𝑖 | (𝜎−2

𝐴
+ 𝜎−2

𝐵
)

𝜎
−2
𝐴

∑︁
𝑗∈𝑁𝑖 ,𝜎

2
𝑗
=𝜎2

𝐴

𝑎 𝑗 ,𝑡−1 + 𝜎−2
𝐵

∑︁
𝑗∈𝑁𝑖 ,𝜎

2
𝑗
=𝜎2

𝐵

𝑎 𝑗 ,𝑡−1

 .
The actual variance of this estimate converges to:

Var(𝑟naive
𝑖,𝑡 − 𝜃𝑡−1) =

1
(𝜎−2

𝐴
+ 𝜎−2

𝐵
)
[
𝜎−4
𝐴 Cov∞𝐴𝐴 +𝜎

−4
𝐵 Cov∞𝐵𝐵 +2𝜎−2

𝐴 𝜎
−2
𝐵 Cov∞𝐴𝐵

]
(OA-2)

where Cov∞
𝐴𝐴

is the covariance of two distinct agents of signal type 𝐴 and Cov∞𝐵𝐵 and Cov∞
𝐴𝐵

are
defined similarly.

Since agents believe this variance is close to 1, the action of any agent with signal variance 𝜎2
𝐴

is
approximately:
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𝑎𝑖,𝑡 =
𝑟naive
𝑖,𝑡

+ 𝜎−2
𝐴
𝑠𝑖,𝑡

1 + 𝜎−2
𝐴

.

We can then compute the limits of the covariances of two distinct agents of various signal types
to be:

Cov∞𝐴𝐴 =
𝜌2𝜅2

𝑡 + 1(
1 + 𝜎−2

𝐴

)2 ; Cov∞𝐵𝐵 =
𝜌2𝜅2

𝑡 + 1(
1 + 𝜎−2

𝐵

)2 ; Cov∞𝐴𝐵 =
𝜌2𝜅2

𝑡 + 1(
1 + 𝜎−2

𝐴

) (
1 + 𝜎−2

𝐵

) .
Plugging into OA-2 we obtain

𝜅−2
𝑡 = 1 − 1

(𝜎−2
𝐴

+ 𝜎−2
𝐵
)

(
𝜎−2
𝐴

1 + 𝜎−2
𝐴

+
𝜎−2
𝐵

1 + 𝜎−2
𝐵

)
.

Using this formula, we can check that the limits of agent variances in V̂ sym match equations
OA-1.

We must check there is an equilibrium near V̂ sym with high probability. Let 𝜁 = 1/𝑛. Let 𝐸 be
the event that for each agent 𝑖, the number of agents observed by 𝑖 with private signal variance 𝜎2

𝐴
is

within a factor of [1− 𝜁2, 1 + 𝜁2] of its expected value, and similarly the number of agents observed
by 𝑖 with private signal variance 𝜎2

𝐵
is within a factor of [1 − 𝜁2, 1 + 𝜁2] of its expected value. This

event implies that each agent observes a linear number of neighbors and observes approximately the
same number of agents with each signal quality. We can show as in the proof of Theorem 1 that for
𝑛 sufficiently large, the event 𝐸 occurs with probability at least 1 − 𝜁 . We condition on 𝐸 for the
remainder of the proof.

Let V𝜀 be the 𝜀-ball around in V̂ sym the sup norm. We claim that for 𝑛 sufficiently large, the
updating map preserves this ball: Φnaive(V𝜀) ⊂ V𝜀. We have Φnaive(V̂ sym) = V̂ sym up to terms
of 𝑂 (1/𝑛). As we showed in the first paragraph of this proof, the partial derivatives of Φnaive are
bounded above by a constant less than one. For 𝑛 large enough, these facts imply Φnaive(V𝜀) ⊂ V𝜀.
We conclude there is an equilibrium in V𝜀 by the Brouwer fixed point theorem.

Finally, we compare the equilibrium variances to the 𝜀-aggregation benchmark and to V∞. It is
easy to see these variances are worse than the 𝜀-aggregation benchmark for 𝑛 large for some 𝜀 > 0,
and therefore by Theorem 1 also asymptotically worse than the Bayesian case when 𝜎2

𝐴
≠ 𝜎2

𝐵
.

In the case 𝜎2
𝐴
= 𝜎2

𝐵
, it is sufficient to show that Bayesian agents place more weight on their

private signals (since asymptotically action error comes from past changes in the state and not signal
errors). Call the private signal variance 𝜎2. For Bayesian agents, we showed in Theorem 1 that the
weight on the private signal is equal to 𝜎−2

𝜎−2+(𝜌2 Cov∞ +1)−1 where Cov∞ solves

Cov∞ =
(𝜌2 Cov∞ +1)−1

[𝜎−2 + (𝜌2 Cov∞ +1)−1]2 .

For naive agents, the weight on the private signal is equal to 𝜎−2

𝜎−2+1 , which is smaller since Cov∞ > 0.



LEARNING FROM NEIGHBORS ABOUT A CHANGING STATE: ONLINE APPENDIX 22

1 1.5 2 2.5 3

B
2

0

0.1

0.2

0.3

0.4

0.5

G
ro

up
 A

 A
gg

re
ga

tio
n 

E
rr

or

Equilibrium
Optimal

Figure OA7.1. Social planner’s optimum and Bayesian learning. The red curve shows equilibrium
aggregation errors on a complete graph with 𝑛 = 600 agents, split into two equally-sized groups with
private signal variances 𝜎2

𝐴
= 2 and 𝜎2

𝐵
varying. The blue curve plots the aggregation errors when

weights are chosen by a social planner the sum of agents’ steady-state action variances.

OA7. Socially optimal learning outcomes with non-diverse signals

In this section, we show that a social planner can achieve vanishing aggregation errors even when
signals are non-diverse. Thus, slower rate of learning at equilibrium with non-diverse signals is a
consequence of individual incentives rather than a necessary feature of the environment.

Let 𝐺𝑛 be the complete network with 𝑛 agents. Suppose that 𝜎2
𝑖
= 𝜎2 for all 𝑖 and 𝑚 = 1.

Proposition OA3. Let 𝜀 > 0. Under the assumptions in this section, for 𝑛 sufficiently large there
exist weights weightsW andw𝑠 such that at the corresponding steady state on𝐺𝑛, the 𝜀-aggregation
benchmark is achieved.

Proof. An agent with a social signal equal to 𝜃𝑡−1 would place weight 𝜎−2

𝜎−2+1 on her private signal
and weight 1

𝜎−2+1 on her social signal. Let 𝑤𝑠
𝐴
= 𝜎−2

𝜎−2+1 + 𝛿 and 𝑤𝑠
𝐵
= 𝜎−2

𝜎−2+1 − 𝛿, where we will take
𝛿 > 0 to be small.

Assume that the first ⌊𝑛/2⌋ agents place weight 𝑤𝑠
𝐴

on their private signals and weight 1 − 𝑤𝑠
𝐴

on a common social signal 𝑟𝑡 we will define, while the remaining agents place weight 𝑤𝑠
𝐵

on their
private signals and weight 1 − 𝑤𝑠

𝐵
on the social signal 𝑟𝑡 . As in the proof of Theorem 2,

1
⌊𝑛/2⌋

⌊𝑛/2⌋∑︁
𝑗=1

𝑎 𝑗 ,𝑡−1 = 𝑤𝑠𝐴𝜃𝑡−1 + (1 − 𝑤𝑠𝐴)𝑟𝑡−1 +𝑂 (𝑛−1/2),

1
⌈𝑛/2⌉

𝑛∑︁
𝑗=⌊𝑛/2⌋+1

𝑎 𝑗 ,𝑡−1 = 𝑤𝑠𝐵𝜃𝑡−1 + (1 − 𝑤𝑠𝐵)𝑟𝑡−1 +𝑂 (𝑛−1/2).

There is a linear combination of these summations equal to 𝜃𝑡−1 + 𝑂 (𝑛−1/2), and we can take 𝑟𝑡
equal to this linear combination. Taking 𝛿 sufficiently small and then 𝑛 sufficiently large, we find
that 𝜀-perfect aggregation is achieved. □
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In Figure OA7.1, we consider equilibrium and socially optimal outcomes with 𝑛 = 600. Half of
agents are in group A, with signal variance 𝜎2

𝐴
= 2, while the other half are in group B, with signal

variance 𝜎2
𝐵

changing. In blue we plot average equilibrium aggregation errors for group A. In green
we plot the average aggregation errors of group 𝐴 when a social planner minimizes the total action
variance (of both groups). The weights that each agent puts on her own private signal and the other
agents are set to depend only on the groups. Under these socially optimal weights agents learn very
well, and heterogeneity in signal variances only has a small impact.
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