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A B S T R A C T

Bolletta (2021) studies a model in which a network is strategically formed and then agents play a linear
best-response investment game in it. The model is motivated by an application in which people choose both
their study partners and their levels of educational effort. Agents have different one-dimensional types – private
returns to effort. A main result claims that (pairwise Nash) stable networks have a locally complete structure
consisting of possibly overlapping cliques: if two agents are linked, they are part of a clique composed of all
agents with types between theirs. A counterexample shows that the claimed characterization is incorrect. We
specify where the analysis errs and discuss implications for network formation models.
Bolletta (2021) studies the joint strategic choice of network links
and productive effort, motivated by applications in the economics of
education. The theoretical findings are used in interpreting empirical
studies on peer effects, such as Carrell et al. (2013). This fits into a
literature on network games1 and games on endogenous networks –
see, e.g., König et al. (2014), Hiller (2017), and Badev (2021).

The paper examines a stylized network formation process. At each
time, starting from a status quo network, two (random) agents 𝑖 and
𝑗 can form a new link between them by mutual consent; alternatively,
either can unilaterally sever any of their own existing links. After each
such stage, agents play the static Nash equilibrium of a coordination
game in the current network: each wants to match an average of a pri-
vate ideal effort (its ‘‘type’’) and average behavior in its neighborhood.
Higher types are inclined to make higher efforts in the effort game,
holding spillovers fixed. In assessing the consequences of their decisions
in the formation stage, players anticipate equilibrium behavior in the
action-choice game on the resulting network. The process is said to
reach an equilibrium if no pair of agents wish to change their linking
decisions at the formation stage. In the leading application, links are
study-partner relationships and the action is educational efforts.

A basic theoretical question is: which networks can be equilibrium
outcomes? A main claim of Bolletta (2021), stated in its Proposition
1, is that equilibrium networks have a specific structure, called locally
complete. This means that, at any equilibrium, if two agents are con-
nected, they and all agents with types between theirs form a clique – a
completely connected subnetwork.

✩ We are grateful to Ugo Bolletta for helpful conversations; all errors are our own.
∗ Corresponding author.
E-mail addresses: benjamin.golub@northwestern.edu (B. Golub), yuchi.hsieh@kellogg.northwestern.edu (Y.-C. Hsieh), es3668@columbia.edu (E. Sadler).

1 For surveys, see Bramoullé and Kranton (2016) and Jackson and Zenou (2015).

The purpose of this note is to point out that this proposition is false.
We do this by providing an explicit counterexample: an equilibrium
outcome that is not locally complete. We also show that this outcome
can be reached by the dynamic process studied in Bolletta (2021)
starting from the empty network. It is thus a natural outcome reachable
from a ‘‘neutral’’ status quo. Our note also examines arguments that
underlie the proposition in order to highlight where the analysis errs.

We give a brief roadmap. In Section 1, we establish key notation and
review Bolletta’s model as well as some definitions relevant both to Bol-
letta’s and our analyses. In Section 2, we present our counterexample
to Proposition 1 in Bolletta (2021); we also discuss the key errors in the
proof. Section 3 shows that the counterexample network to Bolletta’s
Proposition 1 is a natural outcome of the dynamic process, not just an
equilibrium of it. Section 4 concludes.

1. The model and a main result of Bolletta (2021)

In this section, we review Bolletta (2021)’s model setup and state
the result that we focus on. We mostly work within the same notation,
but in some cases, we make slight modifications.

1.1. Model

There are 𝑁 agents. All networks discussed are undirected, un-
weighted graphs without self-edges on the nodes [𝑁] ∶= {1, 2,… , 𝑁}.
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Agent 𝑖 has a type 𝜃𝑖, a neighborhood 𝑔𝑖 ⊆ [𝑁], and an action 𝑦𝑖. Given
a network 𝑔, the degree of player 𝑖 is 𝑑𝑖 = |𝑔𝑖|, the number of links 𝑖
has. The vector of efforts for all players is denoted by 𝑦 = (𝑦1,… , 𝑦𝑁 ).
The payoff of player 𝑖 is given by

𝑈𝑖 = 𝑢
(

𝐲, 𝜃𝑖, 𝑔
)

= (1 − 𝛼)𝜃𝑖𝑦𝑖 −
𝑦2𝑖
2

+
∑

𝑗∈𝑔𝑖

(

𝛿 +
𝛼𝑦𝑖𝑦𝑗
𝑑𝑖

)

if player 𝑖 has a non-empty neighborhood, and 𝑈𝑖 = 𝜃𝑖𝑦𝑖−
𝑦2𝑖
2 otherwise.

The value 𝛿 represents an exogenous positive benefit that a player
receives from each link. The parameter 𝛼 ∈ [0, 1) captures the weight
that players put on matching their own type versus the average of their
neighbors’ actions. We assume that 𝜃𝑖 can take on any positive real
value. By standard results on network games, if 𝛼 ∈ [0, 1), then fixing a
network 𝑔, the game of effort choice has a unique equilibrium (Bolletta,
2021, Lemma 1).

The paper proceeds to introduce a dynamic process of network
volution and an equilibrium concept, which defines points at which
he process can come to rest. The main claims of Bolletta’s paper apply
o the equilibrium outcome, so we can present our counterexample
sing only the definitions above. Later, in Section 3, we discuss the
ynamic process leading to equilibrium outcomes and discuss our
ounterexample in light of it.

.2. Equilibria

Given a specification of payoffs in each possible network, an equi-
ibrium network is defined to be one in which no pair of agents
utually wishes to create an additional link, and no agent wants to
nilaterally sever any subset of her existing links. This equilibrium
oncept corresponds to the standard notion of pairwise Nash stability.
rucially, the payoffs of any network 𝑔′ (contemplated by agents at the
tatus quo and in their deviations) are determined by equilibrium effort
hoices 𝑦∗(𝑔′) given the network 𝑔′. We denote these payoffs by 𝑈𝑖(𝑔′).

efinition (Pairwise Nash Stability (Jackson (2010))). A network 𝑔 is
airwise Nash stable if

1. For all 𝑖𝑗 ∉ 𝑔, if 𝑈𝑖(𝑔 + 𝑖𝑗) > 𝑈𝑖(𝑔) then 𝑈𝑗 (𝑔 + 𝑖𝑗) < 𝑈𝑗 (𝑔).
2. For all 𝑖 ∈ 𝑁 and any set 𝐿 of edges involving 𝑖, we have

𝑈𝑖(𝑔) ≥ 𝑈𝑖(𝑔 − 𝐿).2

The specification of what payoffs agents anticipate when contem-
lating deviations from 𝑔 is an important modeling choice. We have
ade the same one as Bolletta (2021, Definition 1) (and we have

onfirmed in correspondence with the author that our interpretation
s the intended one). An alternative assumption would be that effort
hoices 𝑦 are fixed at the current levels (equilibrium efforts given 𝑔).3
ome further discussion of this can be found in Section 2.1, where we
how that some of the key arguments of Bolletta (2021) do not hold
nder either modeling choice.

Next, we define a locally complete network, which is a notion
entral to Proposition 1 of Bolletta (2021). This definition is adapted
o the present setting from Dutta and Jackson (2013).

efinition (Locally Complete Network). Let 𝑖 ↔ 𝑗 ∶= {𝑘 ∈ [𝑁] ∣ 𝜃𝑖 ≤
𝑘 ≤ 𝜃𝑗} be the set of all agents 𝑘 such that 𝜃𝑘 is in the interval [𝜃𝑖, 𝜃𝑗 ]
including 𝑖 and 𝑗 themselves). A network 𝑔 is called locally complete if,
henever 𝜃𝑖 ≤ 𝜃𝑗 and 𝑖𝑗 ∈ 𝑔, the graph 𝑔 contains the complete graph
n 𝑖 ↔ 𝑗.

2 Equivalently, the network 𝑔 is a Nash equilibrium of the Myerson link
announcement game, in which all agents simultaneously announce a desired
set of links, and the link 𝑖𝑗 forms if both 𝑖 and 𝑗 announced it.

3 There are also other possibilities, involving more farsighted anticipation
of where further deviations may lead, but Bolletta (2021) does not consider
2

this possibility, and we will not, either. w
1.3. Result

The main result of Bolletta (2021) asserts a characterization of
pairwise Nash stable outcomes as defined above. The result is stated
as Proposition 1:

Every stable network is a locally complete network.

2. A counterexample to Bolletta’s proposition 1

In this section, we provide a counterexample to Proposition 1
in Bolletta (2021). We consider three-player networks with the param-
eters, agents’ equilibrium actions (𝑦∗𝑖 , in black) and utilities (in blue,
italicized) shown in Fig. 1.We will show network 𝑔 = {{1, 2}, {1, 3}} is
airwise Nash stable. Note this network is not locally complete: agent
with the middle type is not linked to agent 3.4

To show pairwise stability, we consider all networks in ({1, 2, 3})
hat can be reached by a deviation considered in the definition of
airwise Nash stability. As shown in Fig. 1, no deviation that can be
ffected unilaterally or by a pair of agents is profitable. Thus, 𝑔 is
pairwise Nash stable network but, as we have said, not a locally

omplete one. This contradicts Bolletta’s Proposition 1.
It is worth commenting on the proof of Proposition 1 and where

t goes wrong when applied to the counterexample. A key step in the
roof asserts (without argument) that if there are three agents with
istinct types ordered 𝜃3 < 𝜃2 < 𝜃1, and agent 1 is connected to both
gents 2 and 3, then agent 2 must also want to link with agent 3. It may
eem intuitive that if even the high type wants to link with the low
ype, then the medium type would also want to. Our counterexample
hows that this need not be so: in the move 𝑔 → 𝑔′ in Fig. 1, agent 2 is
onnected with agent 1 but prefers not to link with agent 3. Intuitively,
he flaw in the claim is that it overlooks the high- and medium-type
gents’ different neighborhoods and the impact of adding link {1, 3} on
ctions.

.1. A key monotonicity lemma and a counterexample

Beyond the error we have just discussed, a key building block in
olletta’s proof of Proposition 1 is a lemma – potentially of independent

nterest – asserting that agents’ preferences over partners are monotonic
n their peers’ types. More precisely, the paper’s Lemma 2 states:

Consider the well-ordered set of agents 𝛩 ∶=
{

𝜃1,… , 𝜃𝑖,… , 𝜃𝑛 ∣
𝜃1 < ⋯ < 𝜃𝑖 < ⋯ < 𝜃𝑛

}

. For all agents 𝑖, 𝑈𝑖(𝑦, 𝑔 + 𝑖𝑘) > 𝑈𝑖(𝑦, 𝑔 + 𝑖𝑗)
for all 𝜃𝑘 > 𝜃𝑗 . Moreover, 𝑦∗𝑖 (𝑔 + 𝑖𝑘) > 𝑦∗𝑖 (𝑔 + 𝑖𝑗), for each 𝛼 ∈ [0, 1).

n the proof, a hypothetical violation of local completeness branches
nto two cases, with the erroneous analysis we have discussed above
ealing with one case, and Lemma 2 dealing with the other case.

It is intuitive that this lemma should be useful in deducing a lot
f structure in equilibrium networks: each agent wants to link with all
hose above a certain exogenous type, which helps in ruling out ‘‘gaps’’
n neighborhoods. However, in this section, we show that this lemma
s also false. As we will discuss more later, this suggests that imposing
he right amount of order on the formation process is trickier than it
ay appear.

To give the counterexample, we examine an equilibrium (called the
riginal equilibrium) of a four-player network with the parameters and
quilibrium actions shown in Fig. 2.

Consider agent 5, an outside agent with no pre-existing links and a
ype of 𝜃5 = 19. Using the notation from Lemma 2, let 𝑗 = 2 and 𝑘 = 3,
nd compare the two equilibria depicted in Fig. 3. Agent 5 would have
higher utility if it linked only with agent 2 (𝑦∗5 ≈ 15.5) rather than if

4 More precisely, note agent 1 and agent 3 are linked and 𝜃2 ∈ (𝜃1, 𝜃3),
hile agent 2 and agent 3 are not linked.
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Fig. 1. A counterexample to Bolletta’s Proposition 1. The payoffs of all agents (under equilibrium actions) are shown in blue, italicized text. Crossed-out, red arrows indicate
moves that at least one pivotal agent (indicated in the arrow label) does not benefit from. These are used to check stability. Green arrows that are not crossed out are moves (link
creations) from which the involved agents both weakly benefit. They are important to the reachability of 𝑔 and are discussed in Section 3.2. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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it linked only with agent 3 (𝑦∗5 = 15). This contradicts the statement of
he lemma.

We believe that the issue in the proof of Lemma 2 lies in the final
hree lines (p. 9).5

Now call 𝑦′𝑖 the term such that 𝑘 ∈ 𝑔𝑖 and 𝑗 ∉ 𝑔𝑖 and 𝑦𝑖 the term such
that 𝑗 ∈ 𝑔𝑖 and 𝑘 ∉ 𝑔𝑖. The simple observation that 𝑦

′
𝑖 > 𝑦𝑖 completes

the proof.

In this proof, 𝑦′𝑖 and 𝑦𝑖 refer to the average equilibrium actions in
𝑖’s neighborhood in the new networks; in more detail, these averages
are equal to 1

𝑑𝑖

∑

𝑗∈𝑔𝑖 𝑦𝑗 , for different specifications of the neighborhood
𝑔𝑖. According to this interpretation, the claim that ‘‘𝜃𝑘 > 𝜃𝑗 implies
𝑦′𝑖 > 𝑦𝑖 and thus 𝑦∗𝑖 (𝑔 + 𝑖𝑘) > 𝑦∗𝑖 (𝑔 + 𝑖𝑗)’’ is shown to be false by our
counterexample.

2.1.1. An alternative specification
The model we have worked with throughout defines 𝑈𝑖 by positing

that agents correctly anticipate equilibrium actions in the new network
following any deviation. We have shown the lemma is false under this
specification of 𝑈𝑖. But another specification that seems reasonable is
one where agents make linking decisions myopically, assuming others’
actions remain the same as before the link change. (This interpretation
is suggested by the quoted lines of proof above, which do not seem
to consider changes in equilibrium actions after link changes.) Our
counterexample disproves the lemma under this interpretation, as well.
Consider the original equilibrium in Fig. 2: Agent 5 would prefer to link
with agent 2 (𝑦∗2 = 14) rather than with agent 3 (𝑦∗3 = 11), even though
𝜃3 > 𝜃2. Thus, linking incentives are not monotonic in opponent types.

3. A dynamic process

The main claims of Bolletta (2021) can be considered solely in the
context of stable outcomes, as we have done so far. However, the paper
also spends considerable time on a dynamic process where a network
is formed by successive rounds of (pairwise consensual) link formation
and (unilateral) link deletion. Natural outcomes of such a process are
ones that are not only stable once formed, but reachable through the
dynamic process. This section formalizes a notion of reachability and
shows that our counterexample network to Bolletta’s Proposition 1
satisfies it. This strengthens our main result.

5 Note 𝑁𝑖 is used in Bolletta’s proof for 𝑔𝑖; we have replaced 𝑁𝑖 by 𝑔𝑖 in
he quotation to avoid confusion.
3

Fig. 2. The original equilibrium (with 𝛼 = 2
3

and 𝛿 = 75).

3.1. A network formation process

Bolletta (2021) adopts a process from Watts (2001), as described in
Definition 2:

Players meet over time 𝑇 = 1, 2,… , 𝑡,…. At each period, a pair 𝑖𝑗 is
selected to decide whether to form a link or sever one that already exists.
Players selected this way can simultaneously sever any existing links with
all 𝑘 ∈ 𝑔𝑖 and ℎ ∈ 𝑔𝑗 .

The timing of each stage of the process (as presented in the paper) is:

1. Agents form the network,
2. Outcomes are determined as the solution of a system of best re-
sponses.

We remark that there is some ambiguity in the definition of the
ormation process because it does not specify which network agents
hink will be in effect for the purpose of determining effort choices.

ill it be the network formed immediately after their deviation, or do
hey anticipate further deviations by others? We now fully specify the
etwork formation process, choosing the same specification of 𝑈𝑖 as in

the stability analysis. This resolution is based on our correspondence
with the author of Bolletta (2021).

Network formation process. Time proceeds in discrete instants in-
dexed by the nonnegative integers, and (𝐺𝑡)𝑇

′

𝑡=1 is a sequence of 𝑁-
player networks indexed by time 𝑡. We let uppercase 𝐺 denote networks
appearing in the formation process, whereas lowercase 𝑔 stands for
arbitrary networks. We set the initial network 𝐺0 to be the empty
network. At time 𝑡, starting from network 𝐺𝑡, the following steps occur.

1. A pair of players 𝑖 and 𝑗 is (randomly) selected to act. If either

player can strictly benefit by unilaterally severing some subset of



Mathematical Social Sciences xxx (xxxx) xxxB. Golub et al.

h
c

r
g
c
d
s

Fig. 3. A counterexample to Bolletta’s Lemma 2.
her links, she does so.6 In this case, the round ends. Otherwise,
𝑖 and 𝑗 form a link if doing so weakly benefits both and strictly
benefits at least one.

2. A Nash equilibrium effort profile in the network 𝐺𝑡+1 is played
and players receive payoffs 𝑈𝑖(𝐺𝑡+1); these are the payoffs used
in determining which deviations are profitable in (1).

We say the sequence of networks {𝐺𝑡} reaches an equilibrium 𝑔 at
some finite time 𝑇 if 𝐺𝑡 = 𝑔 for all 𝑡 ≥ 𝑇 . We call such equilibrium
networks reachable.

3.2. The counterexample network is reachable

In order to prove that the counterexample network 𝑔 is reachable,
we reason as follows. Starting from the empty network, both agent 1
and agent 2 are better off by forming the link {1, 2}. Then, similarly,
both agent 1 and agent 3 are better off by forming the link {1, 3}.
Therefore, the network 𝑔 = {{1, 2}, {1, 3}} is reachable through the
network formation process 𝐺0 = {} → 𝐺1 = {{1, 2}} → 𝐺2 = 𝑔,
illustrated by the two green arrows in Fig. 1.

4. Concluding discussion

Bolletta (2021) examines a model of endogenous network formation
combined with subsequent effort choice, and the paper’s Proposition 1
claims equilibria necessarily involve locally complete networks. In this
note, we have presented a counterexample to that claim and identified
an error in a crucial lemma used in the proof of the proposition.

More broadly, our analysis highlights that in a setting with endoge-
nous network formation and endogenous effort choice, clean charac-
terizations of equilibrium outcomes are difficult to obtain. Sadler and
Golub (2022) makes progress on this problem, identifying conditions
that are sufficient to ensure locally complete networks. In fact, some of
the key arguments there work in a similar way to the above-discussed
proof of Bolletta’s Lemma 2, but the analysis has to be different in
several ways to make these arguments valid. For example, the ordering
in Sadler and Golub’s definition of locally complete networks is based
on agents’ equilibrium actions, not their types.

Equally importantly, the qualitative properties of incentives in Bol-
letta (2021) are very different from those used by Sadler and Golub
to deduce a locally complete structure. Under the separable spillovers
studied in the latter paper, externalities on an agent from a neighbor’s
effort do not depend on the agent’s degree. In Bolletta’s coordina-
tion game, spillovers are averaged and do depend on one’s degree.7

6 In contemplating deletions, the player assumes the network is otherwise
eld fixed. If there are multiple subsets that a player can profitably sever, one
an be chosen arbitrarily.

7 The distinction between total and average spillovers shows up in other
elated problems as well. For instance, Galeotti et al. (2010) study network
ames of strategic complements and substitutes, and they obtain much stronger
omparative statics results in examples with additive spillovers. For more on
istinctions between ‘‘local aggregate’’ and ‘‘local average’’ network games –
4

ee Liu et al. (2014) and Boucher et al. (2022). t
That degree-dependence makes it hard to deduce a locally complete
structure. Even if we make the definition of local completeness based
on equilibrium actions, rather than types (sidestepping the lack of
a monotonic relationship between actions and types that we have
discussed in connection with Lemma 2), Fig. 1 nevertheless shows that
in Bolletta’s model, stable networks are not locally complete. That is,
two linked agents need not be part of a clique consisting of all the
agents taking actions between theirs.8

In short, when links and behavior are both endogenous, the relation-
ship between payoff structure and network structure is subtle. Local-
average settings present considerable complications, while progress
can be made under different assumptions. Though some of the results
in Bolletta (2021) are incorrect, in our view his paper highlights both
the importance and the difficulty of the kind of problem it studies.

Data availability

No data was used for the research described in the article.

References

Badev, A., 2021. Nash equilibria on (un)stable networks. Econometrica 89 (3),
1179–1206.

Bolletta, U., 2021. A model of peer effects in school. Math. Social Sci. 114, 1–10.
Boucher, V., Rendall, M., Ushchev, P., Zenou, Y., 2022. Toward a General Theory of

Peer Effects. CEPR Discussion Paper No. DP17315.
Bramoullé, Y., Kranton, R., 2016. Games played on networks. In: The Oxford Handbook

of the Economics of Networks. Oxford University Press.
Carrell, S.E., Sacerdote, B.I., West, J.E., 2013. From natural variation to optimal

policy? the importance of endogenous peer group formation. Econometrica 81 (3),
855–882.

Dutta, B., Jackson, M.O., 2013. Networks and Groups: Models of Strategic Formation.
Springer.

Galeotti, A., Goyal, S., Jackson, M., Vega-Redondo, F., Yariv, L., 2010. Network games.
Rev. Econom. Stud. 77 (1), 218–244.

Hiller, T., 2017. Peer effects in endogenous networks. Games Econom. Behav. 105,
349–367.

Jackson, M.O., 2010. Social and Economic Networks. Princeton University Press.
Jackson, M.O., Zenou, Y., 2015. In: Young, H.P., Zamir, S. (Eds.), Games on networks.

In: Handbook of Game Theory with Economic Applications, vol. 4, Elsevier, pp.
95–163.

König, M., Tessone, C., Zenou, Y., 2014. Nestedness in networks: a theoretical model
and some applications. Theor. Econ. 9 (3), 695–752.

Liu, X., Patacchini, E., Zenou, Y., 2014. Endogenous peer effects: local aggregate or
local average? J. Econ. Behav. Organ. 103, 39–59.

Sadler, E., Golub, B., 2022. Games on endogenous networks. arXiv preprint arXiv:
2102.01587.

Watts, A., 2001. A dynamic model of network formation. Games Econom. Behav. 34
(2), 331–341.

8 Agent 1 and 3 are linked, and agent 2’s action is between theirs, but the
hree do not form a clique.

http://refhub.elsevier.com/S0165-4896(23)00088-4/sb1
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb1
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb1
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb2
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb3
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb3
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb3
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb4
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb4
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb4
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb5
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb5
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb5
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb5
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb5
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb6
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb6
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb6
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb7
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb7
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb7
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb8
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb8
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb8
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb9
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb10
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb10
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb10
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb10
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb10
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb11
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb11
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb11
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb12
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb12
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb12
http://arxiv.org/abs/2102.01587
http://arxiv.org/abs/2102.01587
http://arxiv.org/abs/2102.01587
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb14
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb14
http://refhub.elsevier.com/S0165-4896(23)00088-4/sb14

	On the difficulty of characterizing network formation with endogenous behavior
	The model and a main result of Bolletta (2021)
	Model
	Equilibria
	Result

	A Counterexample to Bolletta's Proposition 1
	A key monotonicity lemma and a counterexample
	An alternative specification


	A dynamic process
	A network formation process
	The counterexample network is reachable

	Concluding discussion
	Data availability
	References


