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Abstract. Workers contribute effort toward a team output. Each worker’s
effort is complementary to the efforts of specific collaborators. A principal
motivates workers by paying them shares of the output. We characterize the
principal’s optimal allocation of shares. It satisfies a balance condition: for any
agent exerting effort, the (complementarity-weighted) sum of shares held by
that agent’s collaborators is equal. Moreover, the subset of agents induced to
work have tight-knit complementarities: any two members are collaborators or
share a common collaborator. We apply our results to study how compensation
and output depend on the exogenously given network of complementarities.

1. Introduction

A popular method of motivating the members of a team to work toward a
common goal is giving them shares of the returns of their project—equity pay.
How should the design of such incentives depend on the structure of the team?
What kinds of teams work best under equity pay?

We examine these questions in a model of a team working to produce a joint
output. Each worker chooses a level of effort, represented as a nonnegative real
number, at an increasing marginal cost. The contribution of a worker’s effort
to the joint output is increasing in the efforts of specific other, complementary,
workers—that agent’s collaborators. The network of collaboration relationships—
which can be arbitrarily heterogeneous in their configuration and strength—is
exogenously given. We adapt a canonical model of the network game, in which
equilibrium efforts are uniquely determined by tractable formulas once agents’
incentives for effort are specified (Ballester, Calvó Armengol, and Zenou, 2006).

Our study is about the design of these incentives. Because efforts cannot be
directly contracted on, the principal motivates the agents to work by giving each
worker an equity stake—a certain share of the project output. This allocation
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of shares determines the payoffs of the network game described above and thus
the equilibrium levels of effort. The principal decides how much equity in the
project to use for incentive pay, as well as how to divide that amount among the
workers. We show that the contract shapes both a worker’s “direct” incentive for
effort—the part independent of others’ actions—and the strategic linkages among
the agents. An agent who is given more equity becomes more directly motivated
to contribute to the project, and also more strategically responsive to collabo-
rators’ efforts, because the agent cares more about the contribution to project
success arising from complementarities with them. Our results characterize the
principal’s optimal equity allocation.

The results can be divided into three categories. The first set concerns the
intensive margin: among those agents who receive equity, how much should they
get? How do their positions in the network of exogenously given complementar-
ities determine their optimal equity pay? The second set concerns the extensive
margin. It turns out that the optimal team motivated by equity pay may be a
subset of the potential contributors. We study the principal’s problem of choos-
ing this optimal team. The third set of results focuses on some implications
of applied interest, examining how equity shares and equilibrium outcomes vary
with the network structure and the strength of complementarities.

Intensive margin. We first study the intensive margin of the principal’s con-
tracting problem. Active agents in a certain allocation are defined as those who re-
ceive equity shares; these are precisely those who exert effort in equilibrium, since
the incentive to work in our model comes only from equity pay. Our first results
characterize the optimal allocation among these agents in terms of a weighted
network. The links in this network are collaborations and the weight of a link
is the strength of the associated complementarity. Linked agents are also called
neighbors. We show the optimal equity allocation satisfies a neighborhood balance
condition: For any active agent, adding up equity holdings across his neighbors,
weighted by the strengths of their links with the agent, gives the same number.

The optimal allocation also features balanced neighborhood actions : each active
agent faces the same weighted sum of neighbor actions (with the weighting done as
just described). We show the balanced neighborhood equity and action conditions
are together equivalent to the principal’s first-order conditions. Satisfying the
balance conditions turns out to equalize the spillover effects, and ultimately the
value to the principal, of inducing any active agent to work more.

The endogenous equalization of incentives and activity across active neighbor-
hoods is notable. In standard models of games with network complementarities
(see below for a brief discussion of the literature), a theme is that more central
agents and communities have higher incentives and higher neighborhood activity
in equilibrium. In our setting, within the set of active agents, this inequality is
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muted in the optimal equity contract: the principal has incentives to allocate eq-
uity so as to balance out both incentives and activity at the neighborhood level in
the way we have described. In our discussion of the literature below, we comment
on how this changes the analysis relative to canonical studies of network games.

The neighborhood balance result permits an explicit characterization of the
share of equity each agent receives under the optimal allocation. The result
can be reformulated as stating that an agent’s share is proportional to a certain
measure of that agent’s centrality in the subnetwork of active agents. A vector
x is called an equity centrality vector for a network with weight matrix W if
Wx = 1, where 1 is the column vector of all ones. Equity centralities exist
and are uniquely determined (x = W−11) whenever W is invertible—a property
that holds generically. Our results also imply that, at the prinicipal’s optimal
allocation, active agents’ equilibrium actions are proportional to their equity
centralities within the subnetwork of active agents.

Extensive margin. The above results solve for optimal equity allocations given
an active set, i.e., a set of agents receiving positive equity shares. To characterize
optimal contracts fully, however, we must also optimally choose the active set,
which need not contain all agents. This discrete optimization problem requires
new insights beyond the intensive margin analysis.

We make progress by first reducing the principal’s problem to a simple-to-
state quadratic program. The reduction allows us to deduce two results implying
considerable structure on the active set. Substantively, we find that highly con-
nected subnetworks are optimal for the principal. Our first result on this is
that under any optimal allocation, any two active agents have a direct comple-
mentarity or both have complementarities with some shared active neighbor. In
graph-theoretic terms, this says that the active set has a diameter of at most two
in the complementarity network. A way of summarizing this result is that an
optimal active set should be sufficiently “tight-knit.” We give a rough intuition.
When equity is given to members of a tight-knit group, the incentives given to
one member also motivate effort by the others due to spillovers. On the other
hand, if a fixed amount of equity is allocated to two subsets of agents that are
not tightly linked in the complementarity network, then the equity allocated to
one subset dilutes the incentives of the other without a strong counteracting ben-
eficial effect of spillovers. Thus, a principal prefers to “concentrate” incentives
and focus them on a single highly complementary group. This force is seen even
more sharply in our second main result in this section, when we restrict attention
to the standard benchmark of unweighted networks—in which all non-zero com-
plementarities have the same strength. In this case, any maximum clique (the
largest subnetwork that can be found where there are complementarities between
all pairs of agents) is an optimal active set.
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Our overall interpretation of these results is that when a firm bases incentives
on a single joint outcome, teams with dense complementarities outperform more
dispersed teams. A further implication is that the principal often prefers to
make a small team exert large efforts in order to best leverage complementarities,
rather than eliciting less per-capita effort from a larger group with more diffuse
complementarities (even if those complementarities are stronger in many other
senses). Under convex effort costs, we will see that this can entail a considerable
loss in agent welfare compared with other policies yielding somewhat less output.

Implications. Our final set of results explores some implications motivated by
applied questions about the structure of teams and their compensation.

An important set of questions concerns how optimal equity pay and team per-
formance depend on the network and the strength of complementarities. Our
expression for equity centrality lets us calculate explicitly how the optimal shares
vary as the network changes. These comparative statics show that equity central-
ity can behave quite differently from measures such as Bonacich centrality that
characterize outcomes in network games with exogenous incentives. In particular,
monotonicity properties, whereby strengthening one’s network links necessarily
increases centrality, do not hold for equity centrality. We illustrate this non-
monotonicity and others in examples of three-agent networks. An implication is
that investments which strengthen complementarities, though they may be bene-
ficial for aggregate output, are not necessarily in agents’ own interests—and this
can occur even if the investments are not costly for the agents.

Questions of network design are interesting more generally. Which links are
most valuable to the principal? To make some progress toward understanding this
issue, we ask how strengthening links between agents affects the team’s probabil-
ity of a successful outcome. This comparative static takes a surprisingly simple
form: the increase in expected output from strengthening a link is proportional
to the product of the equity shares allocated to the two agents involved. So if the
principal can strengthen some complementarities, it is most valuable to focus on
connections between agents who are already (equity) central.

A final, practically important, question is how much equity a firm should devote
to compensation. The trade-off is that allocating more equity to the team elicits
more effort from them, but the principal gets a smaller share of the resulting pie.
How a principal manages this trade-off depends on the environment, including the
network and the strength of complementarities. Our last result gives conditions
under which a principal wants to distribute more shares to agents when com-
plementarities are stronger. Intuitively, stronger complementarities make team
performance more responsive to the total amount of equity compensation, since
each share now drives more additional effort through spillovers. This force pushes
toward allocating more equity toward compensation, and we give conditions un-
der which it is the dominant one.
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Literature. We close with a brief discussion of relevant literature and the nature
of our contribution. The literature on network games is extensive, going back to
seminal papers including Goyal and Joshi (2003), Ballester et al. (2006), and
Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv (2010). Models with linear
best responses have become a focal point due to their tractability, connections to
network centrality measures that are of independent interest, and amenability to
empirical work. Considerable progress has occurred since the last major surveys,
such as Jackson and Zenou (2015), Bramoullé and Kranton (2016), and Zenou
(2016).1 However, the study of how network complementarities interact with
the design of incentive schemes—while a topic of obvious theoretical interest and
practical relevance—is in its early stages. For example, Belhaj and Deröıan (2018)
studies a problem where the principal is constrained to target a single agent and
offer a contract. Shi (2022) studies a model in which the network affects output
via a distinct “helping effort” that agents can exert to change others’ marginal
costs of effort (rather than direct complementarities as in our model).

We contribute to this literature both by posing a tractable optimal contracting
problem in a canonical network game model and by deriving a sharp descrip-
tion of incentives and behavior at the optimum (in arbitrary networks) quite
different from any appearing in the works just mentioned. At a technical level,
our problem has an interesting complication. Most network game analyses have
a fixed network of strategic spillovers, describing how an agent’s best-response
action (or some other analogous variable) depends on others’ actions. When a
planner intervenes to change nodes’ incentives in these models—as for example
in Galeotti, Golub, and Goyal (2020), Leister, Zenou, and Zhou (2022), or Parise
and Ozdaglar (2023)—the interventions typically affect a node’s “individual” or
“standalone” incentive, and do not change the spillover network. However, in
our setting, when a principal varies the equity stakes that different agents hold,
the effective network of spillovers determining equilibrium behavior also changes.
For example, when an agent receives a larger share of the group output, he cares
more about the contribution to team performance due to the complementarity
with each of his neighbors. This makes him more strategically sensitive to those
neighbors’ efforts. The resulting endogeneity makes the principal’s optimization
problem substantially richer than it would be with a fixed spillover network. It is
therefore interesting that the model nevertheless affords a simple characterization
of optimal interventions in terms of the exogenous complementarity network.

Our work also ties into a large literature on the design of incentives, going
back to Holmstrom’s (1982) seminal contribution on incentives for teams when
individual effort is not observable or not contractible. Within this literature

1For some recent work on this type of model and closely related ones, see, e.g., Bramoullé and
Ghiglino (2022), Frick, Iijima, and Ishii (2022), Matouschek, Powell, and Reich (2022), and
Cerreia-Vioglio, Corrao, and Lanzani (2023).
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we are closest to Bernstein and Winter (2012), which analyzes optimal incen-
tives to induce all agents to exert effort in a binary-action game with network
spillovers.2 We note two differences. First, the binary-action game in Bernstein
and Winter (2012) admits multiple equilibria for many parameters, and the focus
of their analysis is unique implementation of the maximal action profile across all
equilibria. We instead consider a framework with a unique equilibrium and de-
sign incentives that maximize performance at that equilibrium. Second, network
structure affects the optimal contract in Bernstein and Winter (2012) primarily
in environments where incentive spillovers are asymmetric within pairs. On undi-
rected networks like the ones we study, their model features a lot of multiplicity
in optimal contracts: the identity of the “leaders” given the strongest incentives
is not constrained by the network. In our model, by contrast, optimal contracts
on a given undirected network depend intricately on the network structure and
typically must motivate specific (network-determined) agents more than others.

2. Model

There are n agents, N = {1, 2, . . . , n}, and one principal. The agents take
real-valued actions ai ≥ 0. Denote the joint action profile by a = (a1, . . . , an). To
represent the complementarities among the agents, we define a weighted network
with adjacency matrix G, so Gij ≥ 0 is the weight of the link from i to j. The
neighborhood of agent i is N(i) = {j : Gij > 0}. We call a network unweighted
if Gij ∈ {0, 1} for all i and j.

Agents jointly work on a project which either succeeds or fails. Let S ∈ {0, 1}
be a binary random variable corresponding to project success, realized after all
choices are made. We assume the probability of success is P (Y ), where Y (a) is
called the team performance and P : R≥0 → [0, 1) is strictly increasing, concave,
and twice differentiable. The team performance depends on agents’ actions a, the
network G, and a parameter β describing the strength of complementarities. It is
the sum of a term that is linear in actions—corresponding to agents’ standalone
contributions—and a quadratic complementarity term:

(1) Y (a) =
∑
i∈N

ai +
β

2

∑
i,j∈N

Gijaiaj.

A successful project produces an output, whose value we normalize to 1, whereas
a failed project produces a value equal to zero.

Throughout, we take the matrix G to be symmetric, or equivalently the net-
work to be undirected. Because all payoffs will only depend on G through the
team performance Y (a), this assumption is without loss of generality (as we can

2Related implementation problems are studied in Halac, Kremer, and Winter (2020), who
consider heterogeneous agents without a network structure, and Lu and Song (2022), who
model network monitoring rather than network spillovers.
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replaceG with (G+GT )/2 without changing team performance). We also assume
G is not identically zero.

The principal observes the project outcome but does not observe agents’ ac-
tions. (When we use pronouns, we use “she” for the principal and “he” for an
agent.) To incentivize effort, the principal offers a contract, which specifies a non-
negative transfer ti(S) to each agent that can depend on the project outcome.
Agents maximize the expectation of the following payoff, which is quasi-linear in
monetary transfers and has a quadratic cost of effort:

ui = ti(S)−
a2i
2
.

The environment (including the network and contract) are common knowledge
among agents, and the network and complementarity parameter are known to
the principal when she is choosing the contract.

2.1. Objectives. We will see in Section 3.1 that, given any contingent payments,
there is a unique Nash equilibrium, which we call a∗. The principal optimizes
over contracts, expecting this equilibrium to be played. In this section, we define
two objectives for the principal; our results will apply to both objectives, except
where we explicitly state otherwise.

Under the residual profit objective, the principal maximizes the expected value
of project success (which is the probability of success times the value, normalized
to 1, of a successful project) minus payments to agents

P (Y (a∗))− E

[∑
i∈N

ti(S)

]
.

It turns out to be optimal to give all agents a transfer of zero when the project
fails (as we will argue formally in Section 3.1), so without loss of optimality
we can consider contracts as transfers σ = (σ1, . . . , σn) to each agent when the
project succeeds. We will interpret these payoffs as equity shares in the project’s
value. Rewriting the expected residual profit of the principal, the residual profit
maximization problem can be written as

(RP) choose σ to maximize V (σ) =

(
1−

n∑
i=1

σi

)
P (Y (a∗)).

Under the success probability objective, the principal maximizes the probability
of success P (Y (a∗)) subject to the constraint that the total transfers are no larger
than the output from the project. This constraint rules out positive transfers
when the project fails. Thus, the success probability maximization problem is

(SP) choose σ to maximize P (Y (a∗)) subject to
∑
i

σi ≤ 1.

The σi can again be interpreted as equity shares.
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Remark 1. An alternative model is the project yields a monetary output with
expectation P (Y ), where P : R≥0 → R≥0 is a strictly increasing, concave, and
twice differentiable function. Our analysis applies essentially unchanged under
either the (RP) or (SP) objective, provided that the principal is restricted to
contracts that give each agent a transfer with expectation σiP (Y ), a fixed equity
share of the expected monetary output. A simple way to implement this is to
give a share σi of the realized monetary output. The linearity induced by binary
outcomes in the main model is replaced by a restriction to linear contracts in this
version.3 In the rest of the paper, we will work with the binary-outcome model.

2.2. Discussion of modeling assumptions. There are several aspects of our
modeling assumptions that are worth commenting on. First, moral hazard is a
key part of our problem, with the project outcome being the only observable con-
sequence of any agent’s effort. Agents cannot be paid directly for their efforts ai.
The motivation behind this modeling assumption (discussed in Holmstrom (1982)
and the ensuing literature) is that many aspects of agents’ individual productive
efforts are unobservable or impossible to make binding legal commitments over.

Second, under the binary-outcome model, all the contracts available to the
principal are essentially equity schemes, in which each agent’s compensation is a
share of the output of the firm (see Tirole (2012), for example, for a similar mod-
eling technique). Equity schemes remain interesting outside this environment,
and Remark 1 notes that our analysis continues to apply. Indeed, our main mo-
tivation for being interested in equity payments is that this is a popular form
of incentive in certain types of organizations, such as startup firms, along with
closely related instruments such as options (see, e.g., Levin and Tadelis (2005)).4

The two objectives discussed above allow us to consider how this instrument
is used either by an investor or by a partnership seeking to maximize output.
Various models have been used to analyze the reasons for using equity pay as
opposed to other contracts when they are available (Holmstrom and Milgrom,
1987; Carroll, 2015; Dai and Toikka, 2022).

Our focus on a simple space of equity contracts and our parametric assumptions
about the technologies help us bring out in stark form some new forces relevant to
the optimal allocation of stakes in a joint outcome produced via complementary
efforts. After presenting the results, in Section 6 we will discuss how the main
insights would be relevant in more general models.

3If P is not bounded, this model requires an additional assumption that β is small enough so
that the principal’s feasible payoffs are bounded.
4See Hohman (1926) for a deep dive into equity compensation in the whaling industry.
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3. The intensive margin: Optimal shares for active agents

This section characterizes the optimal allocation of equity among those who
receive positive shares, as well as the induced equilibrium efforts. The first subsec-
tion describes the unique equilibrium of the network game given a fixed contract.
The second subsection presents our first main result, which describes the equity
shares under the optimal contract and the corresponding equilibrium actions.

3.1. Equilibrium of the network game. We now show equilibrium is unique
given any contract (ti)i∈N and provide a characterization of equilibrium actions.
Because agents’ incentives depend only on the difference ti(1) − ti(0) between
transfers conditional on success and failure, we can shift payments and assume
ti(0) = 0 without loss of generality for proving uniqueness. Similarly, this shift
can only improve the principal’s payoff, so it is without loss of optimality in
the principal’s problem. Thus, from now on, we will let contracts be described
by equity shares σ. Fixing such a vector (which need not be optimal for the
principal), agents’ payoffs are

Ui(a,G,σ) = P (Y )σi −
a2i
2
.

Since agents receive shares of the team’s output, their marginal returns to effort
depend on others’ actions. The first-order conditions for agents’ best responses
are

ai = P ′(Y )σi

(
β
∑
j

Gijaj + 1

)
.

The following result states that these first-order conditions characterize the unique
Nash equilibrium.

Proposition 1. Fixing σ, there exists a unique Nash equilibrium. The equilib-
rium actions a∗ and team performance Y ∗ solve the equations

(2) [I− P ′(Y ∗)βΣG]a∗ = P ′(Y ∗)σ and Y ∗ = Y (a∗),

where Σ = diag(σ) is the diagonal matrix with entries Σii = σi.

Note that the result entails a positive equilibrium action for those agents with
σi > 0, and an action of zero otherwise.

As an illustration to develop intuition, suppose that P (Y ) = αY for Y ∈ [0, Y ],
where α ∈ (0, 1/ρ(βΣG)), and Y is sufficiently large.5 Then equilibrium actions
are given by

(3) a∗ = [I− αβΣG]−1ασ.

5The notation ρ refers to the spectral radius of a matrix, and Y should be chosen such that the
production at equilibrium actions given by (3) satisfies Y (a∗) < Y .
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When all agents receive equal shares, equilibrium actions are proportional to
Bonacich centralities in G (as in Ballester et al. (2006)). For arbitrary shares,
the actions are a modified version of Bonacich centrality defined with respect to
a network ΣG.

The network ΣG reflects spillovers; its (i, j) entry is proportional to the slope
of i’s best-response in j’s action. One can see from the form of this matrix that
it is endogenous to the principal’s choice of equity compensation, as discussed
in the introduction: when an agent gets a larger share of the group output, the
agent cares more about the contribution to team performance that is due to each
of his complementarity relationships. This makes the agent more strategically
sensitive to each neighbor’s effort.

3.2. Balance conditions in the optimal contract. Our first main result char-
acterizes the optimal equity allocation and equilibrium actions among the set of
agents receiving positive shares.

We have noted that an agent exerts positive effort under a given contract if
and only if he receives positive equity. We will thus call an agent active under a
given equity allocation σ if he receives a positive equity share σi > 0 and inactive
otherwise.

Theorem 1. Suppose σ∗ is an optimal allocation and a∗ and Y ∗ are the induced
equilibrium actions and team performance, respectively. The following properties
are satisfied:

(a) Balanced neighborhood equity: There is a constant c > 0 such that
for all active agents i, we have (Gσ∗)i = c.

(b) Actions are proportional to shares: a∗ = µσ∗, where

µ =
P ′(Y ∗)

1− P ′(Y ∗)βc
.

(c) Balanced neighborhood actions: For all active agents i, (Ga∗)i = µc.

Omitted proofs are in Appendix A. The conditions in the theorem state, at a
high level, that it is optimal for the principal to equalize the spillovers motivating
various active agents to work. Below, we will give an intuition for how these
conditions relate to the principal’s optimization problem, but first, we spell out
the content of the result and some simple relationships among its parts.

The property of balanced neighborhood equity says that for each active agent
i, the sum

∑
j Gijσ

∗
j of shares given to neighbors of i, weighted by the strength of

i’s connections to those neighbors in G, is equal to the same number (i.e., does
not depend on i).
Part (b) says that under the optimal allocation, each active agent’s equilibrium

effort is a constant multiple of the agent’s equity share. This follows from part
(a), as we now explain. For a given optimal share vector σ∗ restricted to active
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agents, let us write Σ∗ = diag(σ∗); then (a) is equivalent to Gσ∗ = c1 or, which,
premultiplying by Σ∗, is Σ∗Gσ∗ = cσ∗. This equation says that σ∗ is a right-
hand eigenvector of Σ∗G with eigenvalue c. Now consider the equation we get
when we solve (2) for a∗:

a∗ = P ′(Y ∗) [I− P ′(Y ∗)βΣ∗G]
−1︸ ︷︷ ︸

M

σ∗.

Our observation about σ∗ implies that it is also an eigenvector of the matrix
M, and the expression for the matrix M makes it clear that the corresponding
eigenvalue is the µ defined in the theorem statement; that establishes (b).6

The property of balanced neighborhood actions states that for each active
agent i, the sum of actions of neighbors of i, weighted by the strength of i’s
connections to those neighbors in G, is equal to the same number, µc. This
follows immediately from (a) and (b).

The system of equations in part (a) of Theorem 1, Gσ∗ = c1 (restricted to
active agents), can be solved explicitly for the optimal shares σ∗ as long as the
relevant adjacency matrix is invertible, which holds for generic weighted networks.
Motivated by this, we define equity centrality:

Definition. Given a weighted network with non-singular adjacency matrix W,
the equity centrality of agent i is (W−11)i.

Theorem 1 then entails that under an optimal allocation, for each active agent

i, the equity share σ∗
i is proportional to i’s equity centrality in the subnetwork G̃

of active agents for that allocation; the same is true for actions, with a different
constant of proportionality.

Equity centrality behaves quite differently from standard measures such as
Bonacich centrality. In particular, the inverse W−1 changes non-monotonically
as W changes. We will see in Section 5 that this can induce non-monotonicities
in the optimal allocation and the resulting actions and utilities.

An implication of our characterization of the optimal equity is that the ratio
of shares allocated to two active agents is independent of the complementarity
parameter β, and depends only on the network G and the set of active agents.
(Our results in Section 4 will imply that the optimal active sets are also inde-
pendent of β.) Since the induced actions are proportional to shares, the ratio
between the equilibrium actions of any two active agents is independent of β as
well. This property is surprising, because in standard network games analyses
(Ballester et al., 2006), relative equilibrium actions are highly sensitive to β. This
dependence is endogenously exactly canceled out by the planner’s optimal equity
allocation.

6An alternative argument is to expand the expression for a∗ using the Neumann series to write

a∗ = P ′(Y ∗)
∑∞

k=0 P
′(Y ∗)kβk (Σ∗G)

k
σ∗; then repeatedly use balanced neighborhood equity

to rewrite this as P ′(Y ∗)
∑∞

k=0 P
′(Y ∗)kβkckσ∗, which is equal to µσ∗.
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Remark 2. The result of Theorem 1 holds under either the residual profit or
success probability objective, as will all our characterizations of optimal contracts.
In fact, the proof of Theorem 1 establishes a stronger statement: if σ∗ solves the
problem of maximizing Y (a∗) subject to the constraint

∑
i σi = s, where s is any

positive number, then σ∗ and a∗ must satisfy the conditions given in the theorem.

3.2.1. Intuition for Theorem 1. We provide some intuition for the balanced neigh-
borhood equity and action conditions by informally arguing they are sufficient for
a certain principal first-order condition that must hold at the optimal contract.

First, let us consider the principal’s value of changing agent i’s action exoge-
nously by ϵ. Each agent j’s best response is

P ′(Y ∗)σj

(
1 + β

∑
j′∈N

Gjj′aj′

)
,

so the direct effect on j’s best-response action, given by the j′ = i term, is to in-
crease it by βP ′(Y ∗)σjGjiϵ, which (by symmetry ofG), is equal to βP ′(Y ∗)σjGijϵ.
The balanced neighborhood equity condition implies that the sum of these di-
rect impacts across all j does not depend on i. That is, the direct impact on the
aggregate effort level does not depend on which agent’s action we perturbed. Iter-
ating this argument through further rounds of best-response, the indirect impact
of increasing i’s actions on the total of actions does not depend on i’s identity
either. So the balanced neighborhood equity condition implies that increasing
any agent’s action marginally has the same effect on the total of all actions.

Two gaps remain between this indifference and the principal’s first-order condi-
tion, which requires that slightly redistributing shares among active agents does
not affect output. First, some agents might increase their actions more than
others when given ϵ additional equity. (So even if a principal is indifferent be-
tween any same-sized perturbation to actions, she may be able to achieve some
of these more cheaply than others.) This problem does not arise precisely in
case all agents exert the same effort per unit of equity compensation (i.e., actions
are proportional to shares), which is implied by the combination of the balanced
neighborhood equity and action conditions. Second, output is not only the sum of
efforts; the team performance Y also includes complementarity terms that could
change the principal’s first-order condition. But it turns out the balanced neigh-
borhood action condition implies that the first-order conditions for maximizing
team performance are actually the same as for maximizing the sum of efforts.

We have discussed why the two conditions in Theorem 1 imply the principal’s
first-order condition is satisfied. It is not obvious that these two conditions—
balanced neighborhood equity and balanced neighborhood actions—can be satis-
fied simultaneously; indeed, this depends on some of the specific structure of our
model. The full proof establishes that these conditions can be jointly satisfied
and that they are also necessary conditions for an allocation to be optimal.
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4. The extensive margin: Active and inactive agents

We next ask which agents are active and which agents are inactive under op-
timal contracts for a given complementarity network. Recall an agent is defined
to be active under a given allocation if he receives positive equity.

The main results in this section show that the active sets under optimal allo-
cations are highly connected subnetworks. We first show that any optimal active
set has diameter at most two in the complementarity network G. We then show
that in the special case of unweighted networks, there is an optimal allocation
with a clique as the active set. We interpret these results as saying that, when in-
centives to exert effort are based only on global outcomes (and not local measures
of performance), smaller and more highly connected teams outperform larger and
more dispersed teams.

It is not immediate from Theorem 1 which agents are active; indeed, there can
be several candidate active sets compatible with the condition of the theorem.

(Theorem 1 implies that the candidate active sets are the subnetworks G̃ ⊆ G

such that the row sums of G̃−1 are positive.)

4.1. A simple characterization of active sets. The key to our analysis is the
fact (formalized as Lemma 3 in Appendix A) that we can reduce the principal’s
problem of optimally allocating a fixed positive amount s of equity the following
optimization problem7:

(4)

max
σ

c

subject to (Gσ)i = c whenever σi > 0∑
i

σi = s.

The reason for this reduction is that, when the balanced equity condition holds,
we can rewrite output as the following function of the total shares allocated to
agents and c, the total weighted equity in each active agent’s neighborhood:

(5) Y (a∗) =

(∑
i∈N

σi

)(
P ′(Y ∗)

1− βP ′(Y ∗)c
+

βP ′(Y ∗)2c

2(1− βP ′(Y ∗)c)2

)
.

The right-hand side is an increasing function of c. So the principal can choose an
optimal active set by maximizing the constant c in the balanced equity condition.

One important implication of this is the following invariance of the principal’s
optimization to the complementarity parameter:

7This is a quadratically constrained optimization of a linear objective, since the constraint can
be rewritten as σi(Gσ)i = 0.
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Figure 1. Three agent weighted graph with weights G12, G13, and
G23.

Proposition 2. If σ∗
0 is a solution to the principal’s problem under the comple-

mentarity parameter β0 > 0 and β1 is another complementarity parameter, then
there is a constant k > 0 so that kσ∗

0 solves the principal’s problem under β1.

This result says essentially that the active sets and the ratios in which equity is
optimally allocated within an active set are both independent of β. It follows
from observing that the optimization problem (4) does not depend on β. For the
success probability objective, the constant k is equal to 1. Under the residual
profit objective, the principal may adjust the total share of output distributed to
agents as β changes (see Section 5.2).

4.2. An illustration of how active sets depend on the network. Before
turning to other general implications of the quadratic program formulation (4),
we study the example of a three-agent network. This example, which is the
smallest interesting case of our model, shows that the active set can depend in
non-trivial ways on network structure. We describe the optimal allocation here
and provide details in Appendix B.

Example 1. Consider a weighted network with three agents without self-links
(see Figure 1). Since it is optimal to have both agents active in networks with two
agents, three-agent networks are the smallest non-trivial example of our model.

Without loss of generality, we can assume G12 ≥ G13 ≥ G23 and choose the
normalization G12 = 1, so that the adjacency matrix is

G =

 0 1 G13

1 0 G23

G13 G23 0

 .

The optimal active set consists of either agents 1 and 2 or all three agents. If
all agents are active, then Theorem 1 implies that the optimal shares must solve

σ∗
1 =

1 +G13 −G23

2G13

c, σ∗
2 =

1 +G23 −G13

2G23

c, σ∗
3 =

G23 +G13 − 1

2G23G13

c,

for some constant c. Since we must have σ∗
3 > 0 for all agents to be active, a

necessary condition for {1, 2, 3} to be an optimal active set is G13 +G23 > 1.
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This necessary condition also turns out to be sufficient; we now sketch the
argument for this. A calculation shows that distributing a total amount s of
equity consistent with these ratios gives a value of

c =
2G13G23s

2(G23 +G13)− 1− (G13 −G23)2
.

On the other hand, if a total amount s of equity is distributed among two active
agents, then c = s/2. A bit more algebra confirms that

2G13G23s

2(G23 +G13)− 1− (G13 −G23)2
>

s

2

whenever G13 +G23 > 1.
So the active set includes all three agents if and only if G13 +G23 > 1. In this

example, the principal maximizes (Gσ)i subject to the balanced equity condition
by choosing an active set that maximizes the minimum weighted degree of an
agent in the induced subnetwork. If the least connected agent’s complementarities
are too weak, the principal prefers to exclude that agent from the team and
concentrate on incentivizing the two agents with stronger complementarities.

4.3. General properties: Tight-knit active sets. Coming back to general
networks, we now state two results showing that the principal prefers a highly
connected active set. The first result on this holds for any network satisfying our
maintained assumptions. It states that the network distance between any pair
of agents in the active set is small. Recall that the diameter of a network is the
longest distance8 between any two agents in the network.

Proposition 3. The diameter of the active set under any optimal allocation is
at most 2.

The idea is that if two agents i and j are at distance larger than two from each
other, their neighborhoods are disjoint. An optimal allocation must then divide
shares between the disjoint sets {i}, {j}, N(i), and N(j) (as well as any other
agents in the active set) in a way that allocates the same amount of equity, c, to
each active agent’s neighborhood. We show that this implies an upper bound on
c in terms of the total amount of equity given out. (In an unweighted network,
the upper bound is simply that c is less than half the total equity given out.)
The proof shows that any such allocation is dominated by dividing the same total
amount of equity evenly between just two agents—ones who are connected by a
link with the largest weight in the network. This allocation gives a higher equity
in each neighborhood, and thus a higher team performance.

In the special case of unweighted networks, the message that highly connected
active sets are optimal can be sharpened: It is an optimal solution for the principal

8Shortest path consisting of links with positive weights.
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Figure 2. Ten-agent unweighted graph with each agent connected
to all other agents except the diametrically opposite one.

to choose any clique9 of maximum size and divide shares equally among the agents
in this clique.

Theorem 2. If G is an unweighted network, then any maximum clique is the
active set at an optimal allocation.

When connections are unweighted, choosing a subset that is as densely con-
nected as possible leads to at least as high a payoff as choosing a larger but more
sparsely connected subset, even if all agents in the larger subset have higher
degree.

The proof applies Lemma 3: given an optimal allocation with an arbitrary
active set, we find a clique within that active set for which the constant c is as
large as possible. We produce such a clique by sequentially constructing a series
of agents who are all connected to each other. To do so, the balanced equity
condition for the optimal allocation has to be used carefully at each step of the
construction.

In general, the active set need not be unique in unweighted networks, so there
can be other optimal allocations giving the same payoff to the principal as a
clique of maximum size. For example, in a star network, any set including the
central node and at least one peripheral node is the active set at some optimal
allocation.10 The next example shows that there can also be optimal allocations
that differ more substantially from maximum cliques.

Example 2. Consider an even number of agents n arranged in a circle. Let G
be the undirected network in which each agent is connected to all other agents
except the diametrically opposite agent in the circle: for all distinct i and j we
let Gij = 1 if |i− j| ≠ n/2 and Gij = 0 if |i− j| = n/2. The network structure is
shown in Figure 2.

9A subnetwork with links between all pairs of agents.
10Among allocations giving s shares to agents, a given allocation is optimal if and only if it
gives s/2 shares to the central agent and s/2 shares to the peripheral agents.
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Suppose that we want to allocate s shares to agents optimally. The maximum
cliques have size n/2, and dividing the s shares evenly within any maximum

clique gives (G̃σ)i =
n−2
n

· s. All agents in the full network have degree n− 2, so

dividing s shares evenly among all agents also gives (G̃σ)i =
n−2
n

· s. It follows
that the set of all agents, as well as all maximum cliques, are possible active sets,
depending on which optimal allocation is chosen.

This example shows that the principal can be indifferent between very different
active sets—a point which has implications for the welfare of agents, as we discuss
further in Section 6.4.

5. Implications

In this section, we explore some implications of our analysis that illuminate
how the optimal contract depends on the environment. We focus on the effects of
changes in the network G and the parameter β describing the strength of com-
plementarities. Section 5.1 examines how the equity allocation and the resulting
team performance depend on the network of complementarities. The results pro-
vide some insights about which networks might be preferred by the principal and
by agents. Section 5.2 then asks how the share of equity retained by the prin-
cipal (in the residual profit maximization problem) depends on the strength of
complementarities.

5.1. Varying network structure. Our first result describes how optimal al-
locations vary as the network changes. We write ∂

∂Gjk
for the derivative in the

weight Gjk = Gkj of the link between j and k. Recall that given an allocation,

we write G̃ for the adjacency matrix restricted to active agents.

Proposition 4. Suppose that under G there is a unique optimal equity alloca-
tion11 σ∗, with agents i, j, and k all active. The derivative of agent i’s optimal
share as we vary the weight of the link between j and k is

∂σ∗
i

∂Gjk

= −(G̃−1)ikσ
∗
j − (G̃−1)ijσ

∗
k +

∂c

∂Gjk

σ∗
i

c
.

The value c is the balanced equity in each neighborhood from Theorem 1(a).
The proof is based on the matrix calculus expression

(6)
∂G(t)−1

∂t
= −G(t)−1∂G(t)

∂t
G(t)−1

for the derivative of the inverse of a matrix.
The result provides a fairly explicit expression for the impact of changing a link

on equity allocations. However, calculating the change ∂c
∂Gjk

in c may be difficult

under the residual profits objective, where the total amount of equity allocated

11We expect this hypothesis to be satisfied for generic networks.
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can change as we strengthen a link. We can be more explicit under the success
probability objective, since the total amount of equity allocated sums to 1. In
that case, we have an explicit expression

c =
1

1T G̃−11

for the total equity in each neighborhood. Differentiating this expression gives a
version of Proposition 4 without an unknown value c.
Under either objective, the ratio σ∗

i /σ
∗
i′ between two agents’ shares is indepen-

dent of c, so (6) lets us calculate the change in this ratio (under either objective)
as the link between j and k is strengthened.
The matrix inverse G−1 need not vary monotonically as G changes. This

implies that equity centrality need not satisfy monotonicity properties that hold
for standard centrality measures such as Bonacich centrality. As an illustration,
we return to our example of three-agent networks from Section 4. Details are
again deferred to Appendix B.

Example 1 (continued). Recall that we normalized G12 = 1. We will vary the
weight G23 over the interval (1 − G13, G13). We will further suppose G13 > 1

2
;

under these conditions, there is a unique optimal allocation and all three agents
are active in this allocation.

We begin by studying the effect on optimal shares σ∗
i—or, in other words,

equity centralities. Under the success probability objective, we show these cen-
tralities can be non-monotonic in an agent’s own links. There exists a threshold
g∗ ∈ (1 − G13, G13) such that for G23 ∈ (1 − G13, g

∗), increasing the weight G23

decreases the share σ∗
2 allocated to agent 2. So strengthening one of an agent’s

links can decrease his share of output under the optimal allocation. Intuitively,
as G23 is strengthened, the principal would like to increase agent 3’s shares, and
initially is willing to do so at the expense of agent 2. (When G23 ∈ (g∗, G23),
meanwhile, increasing this weight decreases the share σ∗

1 allocated to agent 1.)
Under the residual profit objective, comparative statics are more challenging

because of the additional choice of how much equity to allocate (corresponding to
the last term of the formula in Proposition 4). We turn to a numerical example
to illustrate that non-monotonicities like those discussed above can nevertheless
continue to be present. Figure 3 shows the optimal equity shares and the cor-
responding equilibrium payoffs as we vary the link weight G23, under parameter
values specified in the caption. Figure 3a depicts the optimal equity allocation of
each agent as a function of G23. The equity allocation is non-monotonic in own
links: increasing G23 initially decreases agent 2’s equity, mirroring our analytical
result described above.

The numerical example also illustrates a corresponding non-monotonicity in
payoffs: strengthening one of an agent’s links can decrease his equilibrium payoff
under the optimal contract. Figure 3b depicts the equilibrium payoffs under the
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optimal equity allocation as a function of G23. Strengthening the link between
agents 2 and 3 can decrease the resulting payoffs for agents 1 and 2. This contrasts
with the standard network games intuition: under a fixed equity allocation, all
agents’ payoffs are monotone in the network. In the present setting, however,
agent 2 can benefit from weakening one of his links. This suggests a tension
between the network formation incentives of the principal and the agents. Agents
may not be willing to form links that would benefit the principal or the team as
a whole, even if link formation is not costly.

We next look at how team performance under an optimal allocation varies as
the network changes. Recall that Y ∗ denotes the equilibrium team performance
under an optimal allocation. Then ∂Y ∗

∂Gij
is the change in this team performance

as the weight on the link between agent i and j increases.

Proposition 5. Suppose σ∗ is an optimal allocation. Then the change in equi-
librium team performance as Gij varies can be expressed as

∂Y ∗

∂Gij

= σ∗
i σ

∗
jh,

where h does not depend on the identities of i or j.

This result says that the increase in output from strengthening a link is precisely
proportional to the product of the equity shares given to the two agents connected
by that link. The proof gives an explicit formula for the quantity h, which depends
on the model parameters and the equity allocation where the derivative is taken.

The proposition has implications for a designer who can make small changes
in the network of complementarities. If the principal can marginally strengthen
some links, she prefers increasing complementarities between agents whose equity
stakes are high. The intuition is that the principal is best off when equity is
allocated to highly complementary agents, because in that case their incentives
reinforce each other and countervail dilution effects. Indeed, this intuition already
came up in our explanation of the results in Section Section 4.

5.2. Varying complementarity strength. We now turn to how outcomes
change as the complementarity parameter β increases. Recall from Proposition 2
that ratios of optimal shares do not depend on the value of β. But under the
residual profits objective, we can ask how the total fraction of shares allocated
to agents depends on β.
We study the comparative static in the special case when P (·) is linear in the

range of feasible team performances. We assume for simplicity that the optimal
allocation is unique, but could easily relax this assumption. The principal faces
a trade-off between keeping a larger share of the profits and using a larger share
to encourage workers to exert more effort. The following result states that when
complementarities in production are larger, it is optimal to keep a smaller share
of a larger pie.
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(b) Payoffs under optimal shares

Figure 3. The optimal share allocation and resulting equilibrium
payoffs as a function of the weight G23. We work with the residual
profits objective. Here G13 = 0.8 and β = 0.1, while P (Y ) =
min{0.9Y, 1} (the kink is not relevant for the principal’s problem).
In both diagrams, the curve corresponding to agent 1 is the topmost
(solid blue) one; the curve corresponding to agent 2 is the second
from the top (dashed red); and the curve corresponding to agent 3
is the lowest (dotted orange) one.
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Proposition 6. Suppose that P (Y ) = αY on an interval [0, Y ] containing the
equilibrium team performance under any feasible allocation and that there is a
unique optimal allocation σ∗. Under the residual profits objective, the sum of
agents’ equity shares under the optimal allocation is increasing in β, i.e.,

∂
(∑

i∈N σ∗
i

)
∂β

> 0.

The basic idea behind the proof is that the benefits to retaining more of the firm
are linear in the output while the benefits to allocating more shares to workers
are convex, and become steeper as complementarities increase.

If P (Y ) is strictly concave, there is a trade-off between the concavity of P (Y )
and the convexity of Y (a). Depending on which effect is stronger, the fraction
of shares allocated to agents may increase or decrease as complementarities grow
stronger.

6. Discussion

6.1. The balance condition in more general environments. Our charac-
terization of the optimal equity allocation relies on several features of our model.
In particular, we assume quadratic functional forms for agents’ utility and the
joint output and assume that heterogeneity across agents arises only from their
different network positions. If these assumptions are relaxed, the balanced neigh-
borhood equity result will no longer hold exactly. Nevertheless, the key insight
behind the result is more general: optimal incentives favor balancing, across
agents, the spillover effects of inducing those agents to put in more effort.

In general, the principal will trade off the benefits of such balance with other
concerns that could be introduced to the model. For example, if agents’ indi-
vidual returns to effort are heterogeneous, a trade-off arises between balancing
spillovers and allocating equity to the most individually productive agents. A
more complicated balance condition would then characterize optimal incentives.

Nevertheless, the forces underlying our main results would remain relevant,
and would be the dominant ones in some cases. For instance, consider extending
our model to allow heterogeneous returns bi > 0 to individual effort, so that team
performance is

Y (a) =
∑
i∈N

biai +
β

2

∑
i,j∈N

Gijaiaj.

Then our main results continue to hold in the limit β → ∞—i.e., as comple-
mentarities grow strong. Intuitively, when complementarities can be sufficiently
large, it becomes much more important to exploit those complementarities op-
timally (which requires balance) than to exploit the heterogeneity in standalone
productivities.



22 KRISHNA DASARATHA, BENJAMIN GOLUB, AND ANANT SHAH

More generally, firms may condition compensation on multiple outcomes or
signals—continuous variables such as revenues, as well as discrete outcomes such
as whether a benchmark or discrete success was achieved (in which case agents’
actions affect the probabilities of such outcomes). Many of the outcomes that
can be measured within a firm involve complementarities, especially when these
outcomes reflect the efforts of managers or executives. A broader lesson of our
analysis is a force that is relevant in the design of such schemes. When two indi-
viduals’ marginal contributions to the same outcome have very different spillover
effects on others’ incentives to contribute, first-order conditions for optimally-
powered incentives become harder to satisfy. This pushes optimal schemes to-
ward “spillover balance” across those whose effort is motivated by a particular
incentive. The equity pay problem we have considered makes the force come
out in the simplest way, and it would be interesting to analyze its more general
implications.

6.2. Multilateral complementarities. The functional form for team perfor-
mance that we have studied includes only bilateral complementarities between
pairs of agents. In reality, a project’s success is likely to depend on the simul-
taneous contributions of larger sets of agents; for instance, terms such as a1a2a3
may play a role in team performance.

However, we claim that there is a good reason, beyond this specific model, for
focusing on the pairwise interactions captured by the derivatives ∂2Y/∂ai∂aj. In
particular, let Y : Rn → R be a more general team performance function, smooth
in all agents’ efforts, subject to the further condition that a pure-strategy Nash
equilibrium in effort levels is played for any equity allocation. To check whether
incentives are optimally-powered, a principal could contemplate perturbing an
equity allocation slightly and consider the comparative statics of a pure-strategy
Nash equilibrium. A necessary condition for optimality is that no such pertur-
bation should increase her payoff. It can be seen that the comparative statics
calculation involved here would depend on Y only through its second-order Tay-
lor expansion. The reason is that only second derivatives of payoffs show up in
the local linear approximation of agents’ best responses. Thus, the generalized
optimality condition would depend only on the Hessian of Y in a at a purported
optimum, as well as on the first derivatives of Y . As we have already said, the
details of how the balance condition would generalize can be considerably more
complex, and closed-form solutions for optima would, of course, not be possible.
But such a generalization of our analysis in Section 3 would boil down to cer-
tain equations depending on pairwise interaction terms of the form ∂2Y/∂ai∂aj
evaluated at the optimum, rather than “higher-order” complementarities.

6.3. Tightly-knit teams. Our extensive margin results can be summarized as
saying that the principal prefers to concentrate equity in teams whose members
have strong mutual complementarities. In terms of interpretation, this need not
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mean that the agents involved work closely together or are nearby in an organi-
zational sense—just that their efforts are highly complementary in producing the
output.

The details of the extensive margin results depend on the specific structure
of our model, but we believe the economic intuition underlying these results has
broader implications. When the principal motivates an agent by giving him a
larger share of the equity in a single common output, it dilutes the equity of the
others. Strong complementarities among those getting equity shares countervail
this dilution, and this is what makes tight-knit teams valuable to the principal.

As we have already remarked, in reality, a principal may have signals of ef-
fort richer than we have studied—for example, outcomes reflecting contributions
of specific organizational units. In that case, concerns about incentive dilution
would be less severe, and larger, looser collaborations could become optimal.
Nevertheless, similar forces could still constrain team composition, and asking
our extensive-margin questions about team composition in more general envi-
ronments, such as those sketched in the prior two subsections, might lead to
interesting classes of discrete optimization problems.

6.4. A tension between the principal’s interests and agent welfare. Ex-
ample 2 shows that the principal can be indifferent between active sets, and
associated allocations of equity, that have very different welfare implications for
workers. In that example, since the cost of effort is convex, agents are better
off (on average) if the same performance is achieved by a larger team. But the
principal is indifferent between two different team sizes. If the complementar-
ities are perturbed slightly to strengthen those in some maximum clique, then
the principal’s indifference is broken and she has a strict preference for the com-
pensation scheme that motivates a smaller team—and which happens to leave
workers substantially worse off.

This is a consequence of the fact that, subject to paying out a certain total
share in equity compensation, the principal is maximizing the probability of a
project’s success rather than utilitarian welfare. The mechanism of equity pay can
do a very poor job of transmitting workers’ interest in a more equal distribution
of effort. There is thus an interesting tension between welfare and the principal’s
preferred mode of incentive-provision, and the binary-outcome model we work
with brings it out particularly sharply.

6.5. Connection to a spectral radius maximization problem. The opti-
mal allocation turns out to have a simple description in terms of a problem of
maximizing a spectral radius: if σ solves the success probability optimization
problem, then Σ = diag(σ) also maximizes the spectral radius ρ(ΣG) among
nonnegative diagonal matrices with trace 1.12 To show this, we show that when

12The spectral radius of a matrix, ρ(·), is the largest magnitude of an eigenvalue of the matrix.
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β is large enough (so that very large spillovers are possible), the principal wants
to choose shares σ inducing a large spectral radius to capture these spillovers.
By Proposition 2, the optimal allocations do not depend on β, so in fact such a σ
is optimal for any β. We formally state and prove the connection in Appendix C.
An applied mathematics literature discusses spectral radius maximization prob-

lems of this form (e.g., Elsner and Hadeler (2015), Nesterov and Protasov (2013),
and Axtell, Han, Hershkowitz, Neumann, and Sze (2009)). Most closely related,
Elsner and Hadeler (2015) consider the spectral radius maximization problem we
have stated and discuss heuristics for efficiently solving it. Our analysis turns
out to provide several new insights into this problem. For instance, Theorem 2
implies a characterization of the highest achievable spectral radius when G is
the adjacency matrix of an unweighted network, showing that it is achieved by a
dividing shares σi equally among the members of a maximum clique.
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Appendix A. Proofs

Proof of Proposition 1. Fixing shares σ and others’ strategies, agent i’s expected
payoff is strictly concave in his action ai because Y (a) is linear in ai, the success
probability P (Y ) is concave in Y , and the effort cost is strictly convex. So
agent i has a unique best response, meaning we need only consider pure-strategy
equilibria. Moreover marginal costs at ai = 0 are zero while marginal benefits at
ai = 0 are strictly positive if σi > 0 and zero if σi = 0. Since Ui is concave in
ai, this rules out a boundary solution where the first-order condition ∂Ui

∂ai
= 0 is

not satisfied. So the first-order condition is necessary and sufficient for a best-
response.

It follows that the following equations are necessary and sufficient for the vector
a∗ to be a Nash equilibrium:

[I− P ′(Y ∗)βΣG]a∗ = P ′(Y ∗)σ and Y ∗ = Y (a∗).

For a fixed Y ∗, there exists a vector a∗ solving the first equation if and only if
P ′(Y ∗)βρ(ΣG) < 1, where ρ(ΣG) is the spectral radius ofΣG. Then equilibrium
actions are characterized by

a∗ = [I− P ′(Y ∗)βΣG]−1P ′(Y ∗)σ.

Given a constant y such that P ′(y)βρ(ΣG) < 1, we can define actions by

a∗(y) = [I− P ′(y)βΣG]−1P ′(y)σ.

Solutions of the first-order conditions then correspond to solutions to

Y (a∗(y)) = y.

The function Y (a∗(y)) is strictly increasing in each coordinate of a∗(y) while
each coordinate of a∗(y) is weakly decreasing in y since P ′(·) is weakly decreasing
(by our assumption P (·) is concave). So Y (a∗(y)) is decreasing, meaning there
is at most one solution to Y (a∗(y)) = y. It remains to show a solution to this
equation exists.

We claim that we can find y such that Y (a∗(y)) ≥ y and P ′(y)βρ(ΣG) < 1.
If P ′(0)βρ(ΣG) < 1, the claim holds with y = 0 since Y (a∗(0)) ≥ 0. Otherwise,
define y0 by P ′(y0)βρ(ΣG) = 1. A solution to this equation exists since P ′(y)
is continuous and converges to zero as y → ∞. Then Y (a∗(y)) → ∞ as y → y0
from above, so we have Y (a∗(y0 + ϵ)) ≥ y0 + ϵ for ϵ > 0 sufficiently small. This
completes the proof of the claim.

Since Y (a∗(y)) is decreasing in y, we can also choose y large enough such
that y > Y (a∗(y)). Since Y (a∗(y)) is continuous in y, by the intermediate value
theorem this function has a fixed point. We conclude that there exists a unique
solution to Y (a∗(y)) = y and a corresponding unique profile a∗ of equilibrium
actions. □
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Proof of Theorem 1. Part (a): Suppose σ∗ is a solution for either objective.
Then it must solve the following optimization problem:

(7)

choose σ, a to maximize Y (a)

subject to a = [I− P ′(Y (a))βΣG]−1P ′(Y (a))σ

σi ≥ 0 for all i ∈ N,∑
i∈N

σi ≤
∑
i∈N

σ∗
i .

The first constraint applies the equilibrium characterization in Proposition 1.
The content of the final constraint is that if σ∗ is optimal among all feasible
allocations, it must maximize equilibrium team performance among allocations
distributing at most a fraction

∑
i σ

∗
i of shares to agents (where this sum will be

equal to 1 under the success probability objective).
We now fix (σ∗, a∗) solving (7), with associated team performance y∗. Our

argument proceeds in several steps.

Step 1: Reduce to the case where all agents are active. We want to show that
(Gσ∗)i is constant across active agents. The values of (Gσ∗)i for active agents
depend only on the restriction of the adjacency matrix to the subnetwork of
active agents. Moreover, the allocation σ∗ remains optimal for this subnetwork.
So without loss of generality, we can drop any inactive agents and assume that
all agents in N are active.

Step 2: Reduce to a related problem that avoids the curvature of P . A challenge
in studying (7) is that as we optimize over allocations, the P ′(Y ) term appearing
in the formula for equilibrium actions may change. This step performs a reduction
that avoids this complication.

We show any optimal σ∗ must also solve a dual problem of obtaining a given
team performance with a minimum total of shares distributed to agents.

Lemma 1. Any solution (σ∗, a∗) to (7) solves the minimization problem

(8)

choose σ, a to minimize
∑
i∈N

σi

subject to Y (a) = y∗

a = [I− P ′(y∗)βΣG]−1P ′(y∗)σ

σi ≥ 0 for all i ∈ N.

Proof. Suppose not, so that there exists a solution (σ∗, a∗) to (7) that does not
solve (8). Fix a solution (σ†,a†) to (8). By construction σ∗ is feasible for (8), so
we must have

(9)
∑
i∈N

σ†
i <

∑
i∈N

σ∗
i .
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Since (σ†,a†) is a solution to (8), it must satisfy its constraints. Thus, Y (a†) = y∗

where a† = [I − βP ′(y∗)Σ†G]−1P ′(y∗)σ†, which implies that σ† satisfies the
constraints of (7). So we have a solution to (7) for which the constraint

∑
i σi ≤∑

i σ
∗
i is a strict inequality. But this gives a contradiction, since the equilibrium

team performance is strictly increasing in the shares σi given to each agent i and
so this constraint must bind. We conclude that any solution (σ∗, a∗) to (7) is a
solution to (8). □

In the rest of the proof, we will study (8). This problem is simpler because
we have replaced P ′(Y ) terms with the constant P ′(y∗), and therefore need not
worry about the curvature of P in our optimization.

Intermission: Some important definitions. The third step will calculate a
key derivative for studying this problem. First, it will be useful to make some
definitions. The endogenous Bonacich matrix is defined to be13

M := P ′(y∗) [I− βP ′(y∗)ΣG]
−1

and the associated endogenous Boniacich centralities of the agents are defined as
the column sums of this matrix:

bi :=
∑
j∈N

Mji.

These are reminiscent of the familiar Bonacich centralities, but as discussed in
Section 3.1, the effective network depends on the principal’s choice of σ and the
marginal effect on success probability at the optimum. Finally, define

bi =
∑
j∈N

Mjibj

to be the weighted sum of bj, where the weights are the corresponding entries
in column i of M. This can be thought of as an average of agents’ centralities
weighted by a measure of their connectedness to agent i.

Step 3: A formula for the derivative of team performance in shares. The
purpose of this step is to establish the following formula for the derivative dY

dσi
of

team performance in the share allocation:

dY

dσi

=
bibi

P ′(Y )2
.

To prove the formula, we begin by using the formula Y (a∗) = 1Ta∗+β
2
(a∗)TGa∗:

dY

dσi

= 1T da
∗

dσi

+ β(a∗)TG
da∗

dσi

13By the proof of Proposition 1, given an equity allocation σ, the matrix inverse in this expres-
sion is well-defined and the equilibrium action profile can be written as a∗ = Mσ.
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= [1+ βGa∗]T
da∗

dσi

.(10)

Now we calculate the derivative of equilibrium actions in share allocation, da∗

dσi
.

Rearranging a∗ = Mσ, we can characterize the equilibrium action implicitly as
follows:

a∗ = βP ′(y∗)ΣGa∗ + P ′(y∗)Σ1,(11)

⇐⇒ Σ−1a∗ = βP ′(y∗)Ga∗ + P ′(y∗)1.(12)

The elements of the vector Σ−1a∗ are equal to ai/σi, and thus can be interpreted
as the average cost, measured in equity shares, of inducing effort by agent i. An
important fact for the rest of the proof is that this is equal to the endogenous
Bonacich centrality of agent i.

Lemma 2. Σ−1a∗ = βP ′(y∗)Ga∗ + P ′(y∗)1 = b.

Proof. It will be convenient to work with the transpose:

(Σ−1a∗)T = (a∗)TΣ−1

=
(
[I− P ′(y∗)βΣG]−1P ′(y∗)Σ1

)T
Σ−1 by (11)

= 1TΣ[I− P ′(y∗)βGΣ]−1P ′(y∗)Σ−1

= 1T [I− P ′(y∗)βΣG]−1P ′(y∗) absorbing Σ, Σ−1 into the inverse

(13)

= 1TM definition of M

= bT definition of b. □

Returning to the calculation of da∗

dσi
, we now implicitly differentiate (11) in σi:

da∗

dσi

= β
dΣ

dσi

Ga∗P ′(y∗) + βΣG
da∗

dσi

P ′(y∗) +
dΣ

dσi

1P ′(y∗).

Simplifying the above expression, we obtain

[I− βΣGP ′(y∗)]
da∗

dσi

= P ′(y∗)

 0
1 + β (Ga∗)i

0

 ,

where the nonzero entry of the last vector is in row i. Premultiplying this ex-
pression by [I− βΣGP ′(y∗)]−1, we get

da∗

dσi

= [I− βΣGP ′(y∗)]
−1

P ′(y∗)

 0
1 + β (Ga∗)i

0


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= M

 0
1 + β (Ga∗)i

0

 .(14)

Now, substituting (14) in (10), we deduce

dY

dσi

= [1+ βGa∗]T M

 0
1 + β (Ga∗)i

0

 .

Using the formula of Lemma 2 twice and the definition of bi, we conclude

dY

dσi

=
bibi

P ′(Y )2
.

Step 4: Deduce that the endogenous Bonacich centralities bi are constant
across agents. We know (σ∗, a∗) is a solution to (8). We first show that its
optimality requires that dY

dσi
is equal to some constant for all agents i. (This is

intuitive: it should not be possible to increase team performance by transferring
shares from one agent to another.) To prove this, we combine the two constraints
Y (a) = y∗ and a = [I− P ′(y∗)βΣG]−1P ′(y∗)σ into a single constraint,

(15) Y ([I− P ′(y∗)βΣG]−1P ′(y∗)σ) = y∗,

noting that P ′(y∗) is now a constant, so the argument of the function Y here de-
pends only on σ. The Lagrangian first-order conditions for the share-minimization
problem (8) subject to the constraint (15) read

d
∑

i σi

dσi

− λ
dY

dσi

= 0,

where λ is the multiplier on the constraint. (Recall we have dropped any inactive

agents, so the nonnegativity constraints do not bind.) Since
d
∑

i σi

dσi
= 1 for all

agents, at any optimum, dY
dσi

is equal to some constant for all agents i.
By the formula obtained in Step 3, this requires that

bibi is constant across agents i.

The idea of the rest of this step is to show that this is possible only if all the bi
are identical. The intuition is that both bi and bi are centrality measures closely
related to Bonacich centrality. If the bi are not all identical, then the agent with
maximum bi must have minimum bi, a strange situation. To show formally this
is impossible, suppose that there exist two agents i∗ ∈ N with i∗ = argmink∈N bk
and j∗ ∈ N with j∗ = argmaxk∈N bk such that bi∗ < bj∗ .

14

14We are grateful to Michael Ostrovsky for suggesting the argument in the next paragraph.
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Then we have that, for agent i∗,

(16) bi∗bi∗ < bi∗bj∗
∑
j∈N

Mji∗ = (bi∗)
2bj∗ ,

using the maximality of bj∗ among the bj and the definitions of bi∗ and bi∗ . But
we similarly have that, for agent j∗,

(17) bj∗bj∗ > bj∗bi∗
∑
j∈N

Mjj∗ = bi∗(bj∗)
2.

We showed above that bi∗bi∗ = bj∗bj∗ for any two agents i∗ and j∗, and so com-
bining(16) and (17) implies

(bi∗)
2bj∗ > bi∗(bj∗)

2.

This contradicts our assumption bj∗ > bi∗ , so we must have bi equal to some
constant c1 for all i in N .

Step 5: Conclude the neighborhood equity (Gσ)i is constant across (active)
agents. By (13) and Step 2, we have

(1T [I− P ′(y∗)βΣG]−1P ′(y∗))i = c1

for all i. Therefore,

P ′(y∗) = c1 − P ′(y∗)βc1(Gσ)i

for all i, so there exists a constant c such that (Gσ)i = c for all i (among the
subnetwork of active agents).

Part (b): We now compute the equilibrium action vector under the optimal
allocation. We calculate

a∗ = [I− P ′(Y ∗)βΣ∗G]
−1

P ′(Y ∗)σ∗,

=
∞∑
k=0

P ′(Y ∗)kβk (Σ∗G)k P ′(Y ∗)σ∗,

=
∞∑
k=0

P ′(Y ∗)kβkckσ∗

=
P ′(Y ∗)σ∗

1− P ′(Y ∗)βc
,

where the second equality follows from writing out the expansion of the inverse.
The third equality follows from the characterization of the optimal equity shares
above for entries corresponding to active agents, and holds for inactive agents
because both sides are zero. Convergence of the geometric series follows from the
proof of Proposition 1.
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Part (c): For all active agents i, we have

(Ga∗)i =
P ′(Y ∗)(Gσ∗)i
1− P ′(Y ∗)βc

=
P ′(Y ∗)c

1− P ′(Y ∗)βc

where the first equality applies part (b) and the second equality applies part
(a). □

We next state and prove a lemma, discussed in Section 4, which will be used
in subsequent proofs.

Lemma 3. An allocation σ is optimal among those with a given sum of shares∑
i∈N σi = s if and only if it solves

max
σ

c

subject to (Gσ)i = c whenever σi > 0.

In particular, the active sets at optimal allocations are the same as the sets of
non-negative indices under solutions to this optimization problem.

Proof. By Theorem 1, there exists a constant c such that for all agents that get
a strictly positive equity at the optimal solution, (Gσ∗)i = c. At any solution
which satisfies the balanced equity condition and allocates a fraction s of shares
to agents, the team performance

Y ∗ = 1Ta∗ +
β

2
(a∗)TGa∗

can be rewritten as

(18) Y ∗ =

(
P ′(Y ∗)

1− βP ′(Y ∗)c
+

βP ′(Y ∗)2c

2(1− βP ′(Y ∗)c)2

)
s.

We will conclude from the above expression that team performance is increasing
in c. For a given c, the team performance Y ∗(c) is the solution to f(y, c) = y,
where we define

f(y, c) :=

(
P ′(y)

1− βP ′(y)c
+

βP ′(y)2c

2(1− βP ′(y)c)2

)
s.

By assumption P (·) is concave and twice differentiable, so f(y, c) is decreasing
in y. Since we have also assumed P (·) is strictly increasing, we have ∂f

∂c
> 0 for

all y and thus Y ∗(c) is increasing in c. □

Proof of Proposition 2. By Lemma 3, the optimal active set is determined by
an optimization problem that is independent of β. So if the active set for the
allocation σ∗

0 is optimal for complementarity parameter β0, the same active set

is optimal for complementarity parameter β1. Call this active set G̃.
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By Theorem 1, the optimal allocation with this active set is characterized by

σ∗
0 = G̃−11c0 for some constant c0 > 0 when the complementarity parameter is

β0. Similarly, the allocation with this active set is characterized by σ∗
1 = G̃−11c1

for some constant c1 > 0 when the complementarity parameter is β0. This implies
the claim with k = c1/c0. □

Proof of Proposition 3. We consider the success probability objective as the ar-
gument is essentially the same for both objectives. By Lemma 3, any optimal
allocation maximizes (Gσ)i for active agents i among allocations σ satisfying the
balanced equity condition.

Let g = maxi,j Gij and choose i and j such that the link between i and j
obtains this maximum weight. Setting σi = σj = 1

2
and all other σk = 0 gives

(Gσ)i = (Gσ)j = g/2. We now show this value cannot be obtained with an
active set with diameter greater than 2.

Suppose there is an optimal allocation σ∗ with an active set A∗ with diameter
greater than 2. Choose active agents i and j such that the distance between i
and j is at least 2. The subsets {i}, {j}, N(i) ∩ A∗, and N(j) ∩ A∗ of the active
set are all disjoint.

The balanced equity condition implies that (Gσ∗)i = (Gσ∗)j = c for some
constant c, and we have

2c = (Gσ∗)i + (Gσ∗)j

≤ g
∑

k∈N(i)∪N(j)

σ∗
k

< g,

where the last inequality holds because σ∗
i > 0 so

∑
k∈N(i)∪N(j) σ

∗
k < 1. Since

we showed we can obtain a value of c = g/2, this contradicts the optimality of
σ∗. □

Proof of Theorem 2. We consider the success probability objective as the argu-
ment is essentially the same for both objectives. By Lemma 3, any optimal al-
location maximizes the constant c = (Gσ)i for active agents i among allocations
σ satisfying the balanced equity condition.

Let the size of the maximum clique in the network be k. Theorem 1 implies
that the optimal allocation with active set a clique of size k gives all active agents
equal shares 1

k
. Under this allocation, the balanced equity condition holds with

constant c = k−1
k
.

Suppose an allocation σ satisfies the balanced neighborhood equity condition

with constant c > k−1
k
. We will show the active set under this allocation must

contain a clique of size at least k+ 1, which contradicts our assumption that the
size of the maximum clique is k.
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Define

k∗ = argmax
k∈Z

{
c−

(
k − 1

k

)
> 0

}
.

We will show that the active set under σ contains a clique of size k∗ + 1 > k.
Call the set of vertices of this active set by A∗. First observe that the equity that
each agent gets is at most (1− c). This is because each agent’s neighbors receive
equity shares summing to c and the total of all equity shares is 1.

We will define a sequence of agents i0, . . . , ik
∗
inductively such that i0, i1, . . . , ik

is a clique for all k. Fix some i0 in the active set and define NS(i
0) := N(i0).

Given i0, i1, . . . , ik for any k < k∗, we define

NS(i
k) :=

k⋂
l=0

N(il).

Given i0, . . . , ik with 0 ≤ k < k∗, we want to choose ik+1 to be an arbitrary
agent in NS(i

k). To do so, we must show NS(i
k) is non-empty.

We will prove that the total equity in NS(i
k) is at least (k + 1)c− k, i.e.,∑

i∈NS(ik)

σi ≥ (k + 1)c− k.

We show this by induction on k. The base case k = 0 holds by the balanced
neighborhood equity condition.

The inductive hypothesis is∑
i∈NS(ik−1)

σi ≥ kc− (k − 1).

This implies

(19)
∑

i∈N(i0)\NS(ik−1)

σi ≤ (k − 1)(1− c)

since
∑

i∈N(i0) σi = c.

Since ik is active, we also have
∑

i∈N(ik) σi = c. We can decompose the equity
in this neighborhood, potentially along with additional agents’ shares, as∑

i∈A∗\N(i0)

σi +
∑

i∈N(i0)\NS(ik−1)

σi +
∑

i∈NS(ik)

σi ≥ c.

By the balanced neighborhood equity condition for agent i0 and (19), this implies∑
i∈NS(ik)

σi ≥ (k + 1)c− k,

completing the induction. Since c > k∗−1
k∗

, this implies that NS(i
k) is non-empty

for each k ∈ {1, . . . , k∗ − 1}. So we can construct i0, . . . , ik
∗
as described above.
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By construction, the subnetwork {i0, . . . , ik∗} is a clique of size k∗ + 1. Since
we have assumed the maximum clique has size k, this contradicts the existence
of an allocation σ satisfying the balanced neighborhood equity condition with

constant c > k−1
k
. Thus the maximum clique must be an optimal allocation. □

Proof of Proposition 4. Theorem 1 tells us that, for all agents such that σ∗
i > 0,

we have

σ∗ = cG̃−11.

We will use the matrix calculus expression

∂G(t)−1

∂t
= −G(t)−1∂G(t)

∂t
G(t)−1.

Taking the derivative with respect to Gjk, we have that

∂σ∗

∂Gjk

= −cG̃−1 ∂G̃

∂Gjk

G̃−11+
∂c

∂Gjk

G̃−11.

Analyzing the ith element in this vector gives

∂σ∗
i

∂Gjk

= −c(G̃−11)j(G̃
−1)ik − c(G̃−11)k(G̃

−1)ij +
∂c

∂Gjk

· (G̃−11)i.

The result follows from σ∗
i = c(G̃−11)i and the analogous expressions with indices

j and k. □

Proof of Proposition 5. We want to calculate the derivative of the team perfor-
mance Y ∗ under the optimal allocation as Gij increases. By the envelope theo-
rem, we can calculate this derivative by holding fixed the allocation σ∗. To do so,
we calculate the derivative of the equilibrium team performance Y ∗ for a given
allocation σ as Gij increases. We will then substitute σ = σ∗.
Letting a∗ be the equilibrium action profile under the allocation σ, we calculate

∂Y

∂Gij

=
∂1Ta∗ + β

2
(a∗)TGa∗

∂Gij

,

= 1T ∂a∗

∂Gij

+ β(a∗)TG
∂a∗

∂Gij

+
β

2
(a∗)T

∂G

∂Gij

a∗,

=
[
1T + β(a∗)TG

] ∂a∗

∂Gij

+ βa∗i a
∗
j .
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The equilibrium action satisfies a∗ = βP ′(Y )ΣGa∗ + P ′(Y )Σ1. Thus, we can
write

∂a∗

∂Gij

= βP ′(Y )Σ
∂G

∂Gij

a∗ + βP ′(Y )ΣG
∂a∗

∂Gij

+ (βΣGa∗ +Σ1)
∂P ′(Y )

∂Gij

,

= β


0

σia
∗
j

0
σja

∗
i

0

P ′(Y ) + βP ′(Y )ΣG
∂a∗

∂Gij

+ (βΣGa∗ +Σ1)P ′′(Y )
∂Y

∂Gij

.

where Σ ∂G
∂Gij

a∗ is a vector with the ith element equal to σia
∗
j , the jth element

equal to σja
∗
i and the rest of the elements equal to zero. Solving for ∂a∗

∂Gij
gives

∂a∗

∂Gij

= [I− βP ′(Y )ΣG]
−1

βP ′(Y )


0

σia
∗
j

0
σja

∗
i

0

+Σ [1+ βGa∗]P ′′(Y )
∂Y

∂Gij

 .

Substituting into the expression for ∂Y
∂Gij

gives

∂Y

∂Gij

[
1− (1+ βGa∗)T [I− βP ′(Y )ΣG]

−1
Σ (1+ βGa∗)P ′′(Y )

]

= βP ′(Y )
[
1T + β(a∗)TG

]
[I − βP ′(Y )ΣG]

−1


0

σia
∗
j

0
σja

∗
i

0

+ βa∗i a
∗
j .

We now use the optimality of σ, which implies the equality a∗ = σ∗ P ′(Y )
1−βcP ′(Y )

by Theorem 1. Applying this, we obtain

∂Y ∗

∂Gij

= βσ∗
i σ

∗
jP

′(Y ∗)2

(
2

(1−βcP ′(Y ∗))3
+ 1

(1−βcP ′(Y ∗))2

)
1− P ′′(Y ∗)

∑
i σ

∗
i

(1−βcP ′(Y ∗))3

.

The right-hand side has the desired form. □

Proof of Proposition 6. We can assume without loss of generality that all agents
in G are active under σ∗ (by dropping any inactive agents from the network).
Consider a feasible allocation σ satisfying the balanced neighborhood equity con-
dition Gσ = c1 and let s =

∑
i σi ∈ [0, 1] be the sum of shares under this alloca-

tion. Such an allocation will exist for any s ∈ [0, 1], as G is the optimal active set
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and thus (G−11)i > 0 for all i in G. The balanced neighborhood equity condition
implies that

c =
s

1TG−11
.

Applying (18), we can write the residual profit for the principal under this
allocation as

V (s, β) = α2s(1− s)

(
1

1− βα s
1TG−11

+
βα s

1TG−11

2
(
1− βα s

1TG−11

)2
)
.

So for a fixed β for which σ∗ is an optimal allocation, the sum of shares under
this allocation solves the optimization problem

V ∗(β) = max
s∈[0,1]

s(1− s)

(
1

1− βα s
1TG−11

+
βα s

1TG−11

2
(
1− βα s

1TG−11

)2
)
.

We will characterize the solution to this optimization problem. We define

k∗ := 1TG−11 and claim that βα < k∗. We must have β ∈
(
0, 1

α
1

ρ(ΣG)

)
by our

assumption that equilibrium team performance is in [0, Y ]. Observe that c = s/k∗

is an eigenvalue for the matrix ΣG for any s ∈ [0, 1], with right eigenvector σ.
Thus we have

s

k∗ ≤ ρ(ΣG) <
1

βα
.

Choosing s = 1 then verifies the claim βα < k∗.
We now return to the problem of maximizing V (s, β). Taking the partial

derivative with respect to s, we find

∂V (s, β)

∂s
=

k∗α2 (−(βα)2s3 + 3βαk∗s2 − 4(k∗)2s+ 2(k∗)2)

2 (k∗ − βαs)3
.

It suffices to study the behavior of V (s, β) when s ∈ [0, 1]. Define

p(s, β) := −(βα)2s3 + 3βαk∗s2 − 4(k∗)2s+ 2(k∗)2

to be the numerator of V (s, β). The partial derivative of p(s, β) with respect to
s is

∂p(s, β)

∂s
= −3(βα)2s2 + 6βαk∗s− 4(k∗)2 < −3(βαs+ k∗)2.

Since the right-hand expression is strictly negative, the function p(s, β) is strictly
decreasing in s ∈ [0, 1]. Thus p(·, β) has only one real root for each β.

We claim that this root lies in
(
1
2
, 1
)
. At s = 1

2
, we have

p

(
1

2
, β

)
=

(
−(βα)2 · 1

8
+ 3αβk∗ · 1

4

)
> 0,

for any βα < k∗. At s = 1, we have

p(1, β) = (k∗ − βα)(βα− 2k∗) < 0,
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for any βα < k∗. This proves the claim.
For s ∈ [0, 1], the denominator of V (s, β) is strictly positive for any βα < k∗.

So for each β, the sum of shares s at the optimal allocation is characterized by
p(s, β) = 0. We calculate

∂p(s, β)

∂β
= 3αk∗s2 − 2βα2s3 = αs2 (3k∗ − 2βαs) > 0,

where the inequality holds for all s ∈ (0, 1). Since p(s, β) is strictly decreasing in
s for each β, the sum of shares s at the optimal allocation is increasing in β. □
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Appendix B. Three-agent networks (for online publication)

In this section, we describe the optimal equity allocation in a three-agent
weighted network (without self-links). We begin by describing the optimal al-
location and then discuss how this allocation changes as we vary the network.

We first describe which agents receive the most equity and which agents are
active as a function of the network structure. We then derive comparative statics
of the optimal equity shares as the network structure varies. We will see that the
equity given to an agent need not be monotonic with respect to the weights on
his links.

Without loss of generality, we can assume the adjacency matrix is

G =

 0 1 G13

1 0 G23

G13 G23 0

 ,

with the ordering 1 ≥ G13 ≥ G23 ≥ 0.15 We will consider the case when all three
links have positive weight, i.e., G23 > 0.

Our first result ranks agents’ equity allocations and describes the active set:

Proposition 7. For any β > 0, there is a unique optimal allocation. The set of
active agents in an optimal allocation is {1, 2, 3} if and only if

G13 +G23 > 1.

The shares at the optimal allocation are ranked

σ∗
1 ≥ σ∗

2 ≥ σ∗
3.

We defer proofs to the end of this section. The first part of the proposition
states the optimal allocation is unique, or equivalently there is a unique best
active set for all networks. The second part of the proposition characterizes the
active set under the optimal allocation. All agents are active precisely when each
agent’s degree is greater than the weight of the opposing link, and otherwise only
the two higher-degree agents are active. Intuitively, it must be the case that the
combination of the two lower-weight links provides complementarities at least as
strong as the highest-weight link. Otherwise, the principal prefers to give equity
only to the two higher-degree agents.

The final part of the proposition describes which agents receive the most equity.
Under any optimal allocation, equity shares are increasing in degree. Intuitively,
the weights on links originating from agent 1 dominate those originating from

15To reduce to this case, we can reorder agents and then normalize the link G12 to 1.
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agent 2, which in turn dominate links from agent 3. From the balanced neigh-
borhood equity characterization of the optimal equity incentives, we expect that
agents with stronger links receive more equity.16

We now turn to comparative statics of the optimal equity allocation with re-
spect to the weight of the weakest link G23, fixing the weight G13 > 1

2
. By

Proposition 7, agent 3 is active if and only if G23 > 1 − G13. We will restrict
to this interval to take comparative statics, as the optimal allocation does not
depend on G23 below the threshold 1−G13.

Proposition 8. Fix G13 >
1
2
. When G23 ∈ (1−G13, G13), we have

∂
(

σ∗
2

σ∗
3

)
∂G23

< 0, and
∂
(

σ∗
1

σ∗
3

)
∂G23

< 0.

Moreover, there exists a threshold g∗ ∈ (0, 1), which is a function of G13, such
that

∂
(

σ∗
1

σ∗
2

)
∂G23

> 0 if G23 < g∗(G13) and
∂
(

σ∗
1

σ∗
2

)
∂G23

< 0 if G23 > g∗(G13).

Under the success probability objective, all equity is allocated and there is no
question of how the sum of shares changes; in that case, an immediate implication
of Proposition 8 is that the equity of agent 2 is decreasing in G23 for small G23,
while the equity of agent 1 is decreasing in G23 for large G23.

Corollary 1. In the success probability problem, increasing G23 decreases agent
2’s optimal share σ∗

2 when all agents are active and G23 < g∗(G13). Increasing
G23 decreases agent 1’s optimal share σ∗

1 when G23 > g∗(G13).

The first part of the result is more counterintuitive: it says that increasing
the strength of an agent’s collaborations can decrease the agent’s relative equity
share. This is what happens to agent 2 when G23 is increased starting from a low
level. Once G23 gets large enough, however, the equity given to agent 2 begins
increasing; this is financed by taking equity from agent 1, whose stake is then
decreasing in this regime by the second part of the corollary.

B.1. Proofs for three-agent networks. We now prove the two propositions
in this section.

Proof of Proposition 7. As a preliminary, we prove any optimal active set has
at least two agents. Suppose only agent i were active. Let the optimal equity
allocation for such an agent be σ∗. The principal then maximizes the output
(1−σ)P (σ), so σ∗ solves P (σ∗) = (1−σ∗)P ′(σ∗) for the residual profits objective

16Roughly speaking, an agent i’s degree times average equity in i’s neighborhood is equal to a
constant. So agents with higher degree need to have neighbors with lower equity. With three
agents this means that higher degree implies higher equity.
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or σ∗ = 1 for the success probability objective. But, for any β > 0, the principal
can strictly increase residual profits by giving agents 1 and 2 each shares σ1 =
σ2 = σ∗/2 or increase the success probability by giving shares σ1 = σ2 =

1
2
, which

gives a contradiction.
We claim that the unique active set is all three agents if and only if G13+G23 >

1. If all agents are active at an optimal allocation, then Theorem 1 characterizes
the optimal shares as

σ∗
1 =

1 +G13 −G23

2G13

c, σ∗
2 =

1 +G23 −G13

2G23

c, σ∗
3 =

G23 +G13 − 1

2G23G13

c,

for some constant c. A necessary condition for {1, 2, 3} to be an optimal active
set is σ∗

3 > 0, which is equivalent to G13 +G23 > 1.
To prove the claim, it remains to show this condition is sufficient: if G13+G23 >

1, then the unique active set is all three agents. Fix an optimal allocation σ∗ and
let s =

∑
i σ

∗
i be the corresponding sum of shares. By Lemma 3, this optimal

allocation must maximize the constant c in the expression G̃σ = c1 among
feasible allocations with

∑
i σi = s.

First suppose the active set is {1, 2}. By Theorem 1, the two agents receive
equal equity shares σ1 = σ2 = s/2 and we obtain Gσ = s/2.

Suppose the principal instead allocated s shares among all three agents so that
the balanced neighborhood equity condition is satisfied. This requires

σ1 =
1 +G13 −G23

2G13

· c, σ2 =
1 +G23 −G13

2G23

· c, σ3 =
G23 +G13 − 1

2G23G13

· c.

Since G13 +G23 > 1, the three shares σ1, σ2, σ3 > 0, so we have defined a feasible
equity allocation. Combining the expressions for the σi,

c =
2G13G23s

2(G23 +G13)− 1− (G13 −G23)2
> 0.

It remains to check that this allocation gives a higher constant c than the
allocation σ1 = σ2 = s/2 and σ3 = 0 with two active agents. This holds if

2G13G23s

2(G23 +G13)− 1− (G13 −G23)2
> s/2,

⇐⇒ (G13 +G23 − 1)2 > 0,

and the bottom inequality holds since G13 +G23 > 1. This shows that there is a
unique optimal allocation and the active set at this allocation is {1, 2, 3}.
Finally, we prove that σ∗

1 ≥ σ∗
2 ≥ σ∗

3 by considering both possible active sets.
When all agents are active, by Theorem 1, the optimal shares satisfy

σ∗
2 +G13σ

∗
3 = σ∗

1 +G23σ
∗
3 = G13σ

∗
1 +G23σ

∗
2,

where σ∗
1, σ

∗
2, σ

∗
3 > 0. We have assumed G23 > 0, so σ∗

1 ≥ σ∗
2 ≥ σ∗

3.
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When only agents 1 and 2 are active, by Theorem 1, the two active agents i
and j receive equal shares σ∗

i = σ∗
j = σ∗ while agent 3 receives no shares. □

Proof of Proposition 8. Since we are working in the range of values where the
optimal active set is all three agents, Theorem 1 implies

σ∗
2

σ∗
3

=
G13 (G23 + 1−G13)

G23 +G13 − 1
.

Taking the derivative of the ratio of the optimal shares with respect to G23, we
get that

∂
(

σ∗
2

σ∗
3

)
∂G23

= − 2G13(1−G13)

(G23 +G13 − 1)2
< 0.

Turning to the relative shares between agent 1 and 3, Theorem 1 implies

σ∗
1

σ∗
3

=
G23 (G13 + 1−G23)

G23 +G13 − 1
.

Taking the derivative of this ratio with respect to G23, we get that

∂
(

σ∗
1

σ∗
3

)
∂G23

=
(G13 − 1)(1 +G13 −G23)−G23(G23 +G13 − 1)

(G23 +G13 − 1)2
< 0,

where the inequality follows from Proposition 7. Finally, we have that

σ∗
1

σ∗
2

=
(1 +G13 −G23)G23

(1 +G23 −G13)G13

.

Taking the derivative with respect to G23 and analyzing the quadratic function
in G23 in the numerator gives the result with threshold

g∗(G13) =
√
1−G13

(√
2−

√
1−G13

)
. □

Appendix C. Spectral radius maximization (for online publication)

We now state and prove the connection to the spectral radius maximization
problem discussed in Section 6.5. Recall the spectral radius of a matrix M, which
we write as ρ(M), is the largest magnitude of an eigenvalue of M.

Proposition 9. If σ∗ is optimal for the success probability objective, then Σ∗ =
diag(σ∗) maximizes the spectral radius ρ(ΣG) among matrices Σ = diag(σ) such
that σ is a feasible allocation.
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Proof. For the proof, we consider the alternate model (discussed in Section 2.1)
in which the team has a deterministic output P (Y ) and the principal allocates
equity shares σiP (Y ) to each agent i. We moreover assume that P (Y ) = Y . Our
analysis applies essentially unchanged, with equilibrium actions under shares σ
now given by

a∗ = [I − βΣG]−1σ.

In particular, the optimal allocations are unchanged and Proposition 2 continues
to apply in this alternate model.

Suppose σ∗ is optimal for the output objective for some complementarity pa-
rameter β0 but does not maximize the spectral radius ρ(ΣG). Let σ′ maximize
the spectral radius ρ(ΣG). Then, by assumption, ρ(Σ∗G) < ρ(Σ′G). Recall
that given shares σ, the equilibrium actions are

a∗ = [I − βΣG]−1σ.

Since σ is the right eigenvector of ΣG with largest eigenvalue, we have

a∗ =
1

1− βρ(ΣG)
σ.

Taking the limit of β to 1/ρ(Σ′G) from below, we have ∥a∗∥2 → ∞ under
the equity allocation σ′ but ∥a∗∥2 remains bounded under the equity allocation
σ∗. So we can choose β1 such that the team performance with shares σ′ is
strictly greater than the team performance with shares σ∗. This implies that
σ∗ does not maximize the output objective with complementarity parameter β1.
Proposition 2 implies that σ∗ does not maximize the success probability with
complementarity parameter β0 either, giving a contradiction. Thus, any solution
to the principal’s problem maximizes the spectral radius ρ(ΣG). □
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