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My research examines social and economic networks, primarily using economic theory, along with some
experimental work. Network models focus on the details of who interacts with whom, and offer new insights
on particular applications such as social learning, as well as perspectives on fundamental issues in economic
theory. This statement discusses examples of my work in several overlapping topics: (1) local spillovers
and externalities, as when students’ effort or firms’ innovation directly affects particular “neighbors”; (2)
learning and adaptation, as when a community assesses the payoffs of a new opportunity or technology
and its members learn from each other; (3) contagion of failure in financial and production networks and
the implications for policies to improve resilience.

1. Spillovers and externalities in networks

Many questions in topics ranging from organizational economics to the economics of crime can be
studied using games with heterogeneous spillovers in incentives. For instance, consider workers who choose
levels of effort and have incentives to coordinate these with their direct collaborators (network neighbors),
because their efforts are complementary. Suppose their preferred levels of effort also depend on individual
attributes—such as how much they value a project. Consider a Nash equilibrium of such a game, defined
by a level of effort for each individual. Some basic questions are: (1) How do equilibrium outcomes depend
on the structure of the network and individuals’ own attributes? (2) How does welfare depend on the
same parameters? (3) How could a planner intervene to achieve, e.g., an increase in average effort, or an
improvement in individuals’ welfare?

Social spillovers have long been considered important for understanding aggregate outcomes such as the
crime rate (Glaeser, Sacerdote, and Scheinkman, 1996). An early concern of network theory in economics
was modeling these spillovers, with detailed modeling of who interacts with whom, as in Goyal and Moraga-
Gonzalez (2001) and Ballester, Calvó-Armengol, and Zenou (2006). These studies defined a network where
the link from i to j describes how much i’s best-response action is affected by j’s action. They then used
this network to characterize the role of various individuals’ attributes in determining aggregate effort.1

There turned out to be a very close connection between econometric models of peer effects and models of
network spillovers (Bramoullé, Djebbari, and Fortin, 2009; Blume, Brock, Durlauf, and Jayaraman, 2015)
and these connections have proved useful for applied problems—see, e.g., Calvó-Armengol, Patacchini, and
Zenou (2009), Acemoglu, Garćıa-Jimeno, and Robinson (2015), and Banerjee, Chandrasekhar, Duflo, and
Jackson (2019).

A theme emerging from these studies is what we might call the centrality principle. In settings where
the spillovers between agents are given by strategic complements, those who are more network-central2

have more influence: their attributes play a relatively large role in determining a group’s average or total
effort or output. This has also been a useful guiding principle in thinking about whom to target in order
to increase or decrease some level of activity: more “ripple effects” emanate from more central agents, and
so targeting them often makes a bigger difference.

However, the centrality principle leaves much unresolved. For example, consider games of strategic
substitutes, such as local public goods games in networks studied in Bramoullé, Kranton, and d’Amours

Date: August 15, 2023.
1Related models have been important in the literature on spillovers with incomplete information: see, for example, Angeletos
and Pavan (2007), Hellwig and Veldkamp (2009), and Bergemann, Heumann, and Morris (2015).
2In the network of strategic spillovers mentioned above, often according to classical measures such as eigenvector and Bonacich

centrality.
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(2014). In such games, increasing the effort of a highly central agent causes many others to want to decrease
their efforts. So the net effect on total effort could be negative, and the effect on welfare is ambiguous.
The received theory offers much less guidance on targeting for behavior change or welfare improvement in
such settings.

Galeotti, Golub, and Goyal (2020) show that as we consider natural intervention problems that include,
for instance, welfare-optimal intervention with strategic complements, the structure of optimal interventions
depends on different and more subtle aspects of a network game. The key method of the paper is as follows:
To diagnose which interventions are most effective for increasing a given objective function, we identify
how a given profile of incentive changes is amplified or attenuated by the strategic spillovers in the network,
and how the planner should take this into account.

Reassuringly, we recover a version of centrality principle in a special case: If actions are strategic
complements, the optimal intervention changes all agents’ incentives in the same direction and does so
in proportion to their eigenvector centralities, at least when the intervention is large enough. Next, we
consider games of strategic substitutes—e.g., ones in which an individual has incentives to free-ride on
the effort of a neighbor. Here the optimal intervention is very different: it moves neighbors’ incentives in
opposite directions, dividing local communities into positively and negatively targeted agents.

To derive these results and characterize optimal interventions more generally, we introduce a new method
of decomposing any potential intervention into orthogonal principal components determined by the network.
We give a complete description, in terms of these principal components, of how the planner optimally
focuses interventions. Welfare-optimal interventions whose structure is rather complex in the original
description of the game have a simpler description in the basis given by the principal components. For
example, the two different targeting schemes mentioned in the previous paragraph simply correspond to two
particular principal components which are “extremes” in a precise sense. By developing a new connection
between network games and principal component analysis, we enable the use of new tools from applied
mathematics, where the relationship between principal components and the underlying network has been
extensively studied.

Incomplete information. Several recent papers, such as de Mart́ı and Zenou (2015) and Calvó-Armengol
et al. (2015), have pointed out that the presence of incomplete information drastically complicates the
analysis of network games. In Golub and Morris (2020a,b), we examine how the analysis of network
games can be extended to allow for flexible incomplete information—and how many key insights, suitably
adapted, can be extended to this richer domain. For a motivating example, consider again the problem of
a collaborating team in an organization, but now with asymmetric information about the returns of the
project, and possibly heterogeneous prior beliefs about those returns.

When both asymmetric information and heterogeneous priors are permitted, predicting even average
behavior becomes quite subtle. Golub and Morris (2020a) develops an analysis of how coordination motives
and asymmetric information jointly determine group behavior when coordination concerns are important.
This has some unexpected consequences. For example, suppose a planner would like higher actions to be
taken (for instance, because equilibrium actions are inefficiently low). Moreover, suppose there is a member
of the group who is very (ex ante) optimistic about the project. One may think, based on the centrality
principle mentioned above, that giving the optimist a very central position in the network will maximize
his effective influence on others. But in fact, a better course of action can be to leave his centrality
unchanged, and instead to reduce the precision of his private information. This makes the optimist’s
behavior stick closer to his optimistic prior; the result is to increase the average action in the coordination
game equilibrium, as others best-respond to his optimism. Thus, information can be more important than
centrality: making an individual less privately informed, and therefore more “resolute” or “committed” to
his ex ante preferred action, can be the best way of making him influential.

Methodologically, the key to our general analysis is the construction of a certain network that encodes
both the network structure capturing coordination concerns and the structure of incomplete information.
We then use network methods to analyze equilibrium behavior. An important theme is that iterated
expectations (e.g., A’s expectation of B’s expectation of C’s action) play a crucial role in the coordination
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game, and our network formalism allows us to study these using techniques developed for Markov chains.
This connection builds on ideas of Samet (1998). The companion paper Golub and Morris (2020b) explores
some related methodological issues concerning the behavior of iterated expectations. While Samet (1998)
characterized these in the case of common priors, we are able to characterize how iterated expectations
behave in a larger class of environments with heterogeneous priors.

Externalities rather than spillovers: A network perspective on negotiations. In all the papers
discussed in this section, the solution concept has been static Nash equilibrium: all agents choose their
actions best responding to others. For instance, in a team game, agents noncooperatively decide how much
effort to contribute. As mentioned above, in this case what matters for the comparative statics of outcomes
is the network of strategic spillovers (complements and substitutes) in equilibrium: how much each agent’s
effort affects others’ best responses. For predictions about play, it is not important per se how each agent’s
effort affects others’ welfare.

However, in many settings of interest, agents are not playing a noncooperative game. They may, instead,
be involved in some kind of negotiation or other cooperative process. From a normative perspective, we
may simply be interested in when a group can achieve Pareto improvements on a status quo. Now the
structure of externalities is crucial.

Elliott and Golub (2019) described how a network perspective on the externalities sheds light on efficient
solutions. More concretely, suppose that agents (e.g., countries) can pollute less at a net private cost. Due
to geography and other asymmetries, the benefits of such an effort are not distributed uniformly. We show
how a planner can use a network that describes the externalities to analyze Pareto-improvements, and
efficient negotiated outcomes, available to the group.

To describe the essence of this theory, we consider a simple example. Suppose agent A can, by making a
sacrifice, make B better off, but B’s concessions create no direct value for A. Even in repeated interaction,
these two cannot improve on the status quo by favor-trading without recourse to some other currency. But
if B can help C, who can in turn help A, then there is scope for Pareto-improving cooperation among
the three, which can be interpreted as committing to favor trading: each is willing to do a favor for its
beneficiary to sustain the cycle and get a favor (from someone else). Thus, seeking sufficiently strong
cycles of benefit flows (strong enough to cover everyone’s costs of contributing) is key to structuring Pareto
improvements. Motivated by this idea, we develop the above observation about cycles into a general
characterization of whether and how much a group can improve on the status quo. The key is to analyze
a matrix whose entries record the marginal benefits per unit of marginal cost that each agent can confer
on each other, for a given action profile. A certain network statistic, the spectral radius of the externality
network quantifies the collective returns to increasing actions. We use this measure to characterize players
who are essential to negotiations. We also describe when negotiations can be subdivided without much loss.
A negotiation can be efficiently subdivided when the marginal externalities network is nearly disconnected.
This intuitive observation turns out to be more subtle than it seems; more importnatly, finding good
subdivisions can be reduced to well-studied problems in network partitioning (Spielman, 2007).

Beyond studying whether cooperation can be sustained, we also focus on certain negotiated outcomes
that we motivate with bargaining models (Yildiz, 2003; Penta, 2011). We show that these outcomes—the
Lindahl outcomes—are exactly characterized by a centrality property: agents contribute in proportion to
their centrality in the externality network that reflects who receives benefits from others’ contributions.
Thus, in a precise sense (and without reliance on parametric assumptions) we show that a certain important
class of negotiated outcomes can be characterized in terms of centralities in an underlying externality
network.

A conceptual contribution of this paper is that certain network statistics that are familiar from network
games analysis appear in the analysis of Pareto efficient outcomes. However, they play very different roles
from the familiar ones in network game theory. This paper thus opens up the potential for network theory
to offer new tools, both conceptual and computational, for the design of negotiations or favor-trading
markets.
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2. Social learning and information aggregation in networks

People learn about unknown states (e.g., the quality of a new technology) by observing others’ deci-
sions as well as by directly sharing opinions.3 Fundamental questions include: Is dispersed information
aggregated efficiently? How long does this take? What kinds of agents and what kinds of communities are
susceptible to persistent errors?

These questions have motivated several programs of study. One thread, on Bayesian models, includes
the sequential observational learning papers of Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch
(1992); the work of Vives (1993) on the rate of social learning in a rational expectations equilibrium; and
large literatures that developed on related topics.4 A parallel literature developed around the observation
that rule-of-thumb, behavioral learning rules may be more realistic in complex environments. Ellison and
Fudenberg (1993, 1995) examined different naive rules of thumb for social learning and argued that these
could be reasonably efficient; Bala and Goyal (1998) introduced a boundedly rational model of learning in
a network. There is a vibrant literature on these subjects, including in behavioral economics—see, e.g.,
Eyster and Rabin (2010, 2014) and the recent survey Levy and Razin (2019). A question that recurs
throughout much of the work in this literature is the extent to which learning is efficient or aggregates
information well, leading to estimates that closely approximate the truth—and how this depends both on
the structure of information and the network mediating agents’ observation of each other.

Golub and Jackson (2010) was a paper in the rule-of-thumb paradigm, focusing on how network structure
matters for the quality of information aggregation. Substantively, it found that some network structures
allow naive agents to achieve very good aggregation in large populations, while others do not, and gave
some general characterizations of when each case obtains. Methodologically, a key novelty of the paper was
that it showed that this question is closely related to certain properties of network centrality distributions
in large networks—in particular, the distribution of eigenvector centrality, a canonical statistic in network
theory. A substantial body of work has subsequently built on this observation, bringing together learning
theory and network theory; below I briefly discuss this literature.

In the model, there is a real-valued uncertain state (say, the best action to take) that is drawn once
and for all. A population of n agents in a network receive private signals about the state and then
repeatedly update their estimates of it, based on the estimates of their network neighbors. The updating
occurs according to the simple weighted-averaging rule of DeGroot (1974): agents form their opinions
by averaging their previous opinions with those of their contacts. This can be motivated as a natural
form of “persuasion bias” in which people do not optimally account for the fact that their neighbors have
correlated opinions conditional on the state because they share common influencers (see DeMarzo, Vayanos,
and Zwiebel (2003) and Eyster and Rabin (2010) for detailed discussions of this interpretation). We focus
on the long-run opinions: what agents believe after many rounds of such updating.

We ask when these long-run estimates are close to the true state in a large network. The first result is
that a sequence of networks5 achieves good aggregation if and only if the maximum eigenvector centrality
of any agent tends to 0. The second set of results gives various more primitive conditions for this decaying-
centrality condition to hold. A fundamental obstruction is the existence of finite sets of agents that are are
“prominent”—influencing many others directly or indirectly.6 This paper also made extensive use of the

3The resulting information flows play a role in a variety of economically important processes, such as job search (Calvó-

Armengol and Jackson, 2007; Beaman and Magruder, 2012), household financial planning (Duflo and Saez, 2003), and the
choice of technologies or production methods (BenYishay and Mobarak, 2019).
4To mention just a few other contributions in the Bayesian literature especially relevant to networks, Banerjee and Fudenberg

(2004) moved away from the “single file” paradigm of standard sequential models, while Acemoglu, Dahleh, Lobel, and
Ozdaglar (2011) modeled networks explicitly.
5We consider such sequences so that we can make sense of the statement “in a large network.”
6We also give several more intricate sets conditions. The question of when a sequence of networks has good aggregation is

equivalent to the question of when a sequence of finite Markov chains (of increasing size) has stationary distributions that
converge pointwise to the zero vector; I believe it is still not known exactly what this means in terms of the graph structure

of the Markov chains.
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fact that a node’s influence on group opinion in the DeGroot model is equal to its eigenvector centrality,
and contributed to diffusing this observation in the networks literature.

Golub and Jackson (2012b) continued to study rule-of-thumb learning in large networks, but rather than
focusing on the quality of aggregation, this paper examined the speed of convergence to a consensus estimate.
The main finding of the paper is that a key determinant of speed is homophily, the tendency of people to
socialize most with demographically similar others. Formally, the speed of convergence is characterized in
terms of a group-level measure of segregation called spectral homophily. Moreover, disagreement takes the
form of polarization of opinions across groups: societies that exhibit network segregation along demographic
lines converge internally, but persistently disagree with each other. There are two important steps: (1)
to describe the dynamics of updating using the matrix algebra of Markov chains (e.g., Levin, Peres, and
Wilmer, 2009) and give a geometric description of the “main component” of disagreement in opinion space,
following DeMarzo, Vayanos, and Zwiebel (2003); (2) use the spectral properties of random graphs (e.g.,
Chung, Lu, and Vu, 2004) to express these rates in terms of intuitive statistics of social structure. Thus,
methodologically, this study strengthened connections between a central concept in sociology and two active
applied mathematics literatures, while also developing new, empirically relevant network measures. The
characterization just discussed is reliant on suitable statistical assumptions about the underlying network.
In Golub and Jackson (2012a) we found that these statistical assumptions seem to hold up in the data
on high school friendship networks from the National Longitudinal Study of Adolescent to Adult Health.
Jackson (2021) surveys how homophily measures and consequences of the type explored in our work have
percolated into policy discussions of inequality and social segregation.

Work on behavioral learning models in social networks has developed actively since these papers were
circulated. I briefly highlight several threads that are most closely connected to the concerns of the above
papers. One strand (e.g., Molavi, Tahbaz-Salehi, and Jadbabaie, 2018) has examined generalizations of
the DeGroot learning rule, characterized classes of rules in terms of their essential behavioral predictions
(i.e., axiomatized them), and analyzed the properties needed for good or fast aggregation of information.
The aggregation properties of the DeGroot rule established in Golub and Jackson (2010) have served as a
benchmark, but the qualitative requirements for good learning under behavioral rules are now much better
understood.7 Other work (e.g., Tahbaz-Salehi and Jadbabaie, 2009; Acemoglu, Ozdaglar, and Paran-
dehGheibi, 2010; Banerjee, Chandrasekhar, Duflo, and Jackson, 2019) has considered richer (sometimes
stochastic) processes of meeting or updating and examined the extent to which the eigenvector-centrality
characterization of influence can be used in other contexts. Golub and Sadler (2016) surveyed progress in
this area, covering work in the Bayesian paradigm as well.

Of course, it is also important to understand how people actually update their estimates and learn from
each other. There has been an active experimental literature comparing rational and behavioral models in
networks, and asking whether real people are able to counteract the influence of overly central agents—see,
e.g., Mobius, Phan, and Szeidl (2015) and Chandrasekhar, Larreguy, and Xandri (2020).

I close this section by discussing my most recent theoretical paper on learning in networks. The standard
economic models in social learning have tended to take the “state of the world” as fixed and examine long-
run properties of opinion dynamics against the backdrop of this fixed state. Realistically, the state of the
world—the right technology to use, conditions in a market, etc.—is often changing at a rate comparable
to the rate at which social learning changes agents’ estimates. Such a situation requires a different model.
In the model of Dasaratha, Golub, and Hak (2022), the state of the world changes over time as agents
constantly receive signals about it, with each agent having a potentially a different distribution of private
signals, which can be thought of as a “perspective.” Agents form estimates using their own signals and
the recent estimates of their peers; we study an equilibrium in which all agents are optimizing against
the (endogenous) peer learning rules.8 We identify informational environments in which simple linear
updating rules reminiscent of DeGroot’s heuristic are actually part of an equilibrium. The main substantive
finding is that information aggregation is good as long as each individual has access to a set of neighbors

7Mossel, Sly, and Tamuz (2015) characterizes asymptotic rational learning in large networks and some of the key conditions

turn out to be related to ones we studied in Golub and Jackson (2010)!
8For an engineering perspective on a changing-state learning problem, see Shahrampour, Rakhlin, and Jadbabaie (2013).
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that is sufficiently diverse, in the sense of having enough different perspectives represented in substantial
numbers among these neighbors. If individuals’ neighborhoods are not diverse, then social learning is
inefficiently confounded and far from optimal. The essential intuition is that a lack of signal diversity
creates identification problems. If one’s neighbors have similar signals, then they use information similarly;
that situation (reminiscent of collinearity in statistics) makes it harder to figure out the new developments
behind their behavior. Diversity is, in a sense, more important than precision: giving everyone better
signals can hurt aggregation severely if it makes those signals homogeneous.

Endogenous engagement in social learning: An experimental agenda. An obvious question about
social learning is how it is affected by endogenous acquisition of information. Though social learning, as
mentioned above, can be very important for high-stakes decisions, asking questions is often essential to
get social learning started. Beyond the fact that social learning may involve physical or information-
processing costs—an issue studied by Galeotti and Goyal (2010), Niehaus (2011), and Acemoglu, Bimpikis,
and Ozdaglar (2014), among others—seeking information may have a different kind of cost, associated with
others’ perceptions (or, in other words, with one’s social image). Being seen not to know something can in
itself be compromising. An experimental agenda I am working on focuses on the distinctive impediment to
social learning that arises from image concerns. It examines how, in light of such concerns, agents decide
whether to participate in information exchange, whom to talk to, and what to ask.

Chandrasekhar, Golub, and Yang (2019) posits a signaling model in which people are instrumentally
concerned about their reputation for ability. They refrain from asking questions to avoid updating others’
beliefs in a bad direction. Identifying instrumental ability-signaling can be challenging because of a distinct
but observationally similar effect that we call shame: the reluctance to interact with people who have
bad beliefs about you, no matter how they got those beliefs. In a simple model, we distinguish the
observable effects of signaling and shame and describe how they depend (differently) on the environment.
To investigate whether and how much they can inhibit learning in practice, we run a field experiment
with over 1200 subjects. We find that, combined, image concerns can severely deter seeking behavior. We
show that the shame effect is particularly pronounced among socially close individuals (in terms of network
distance and caste co-membership), whereas the signaling effect dominates among pairs who are less close.

The next step is to examine the implications for how policymakers should disseminate information.
Should they broadcast it widely (e.g., via mass media), or let word spread from a small number of initially
informed “seed” individuals? While conventional wisdom suggests broader dissemination is better, we show
theoretically and experimentally that, once we take image concerns and related endogenous responses into
account, this conclusion may be reversed. In a randomized field experiment during the chaotic 2016
Indian demonetization (Banerjee, Breza, Chandrasekhar, and Golub, 2022), we varied how information
about a change in the law was delivered to villages on two dimensions: how many were initially informed
(broadcasting versus seeding) and whether the identity of the initially informed was publicly disclosed. Our
results show that better learning outcomes can be achieved by giving fewer people information, as long as it
is public that some people are informed and can be asked. The results are consistent with a model in which
people need others’ help to make good use of announced information, but worry about signaling inability
or unwillingness to comprehend the information they have access to. The stigma of information-seeking we
identify can reinforce homophily in communication networks, leading to slow convergence in beliefs across
groups and sustaining pockets of ignorance even when information is plentiful within a community.

3. Fragility and robustness in financial and production networks

The last strand of research I discuss focuses on financial or production interdependencies modeled
as networks. It considers shocks and the propagation of distress, their systemic consequences, and the
implications of policies intended to foster resilience.

3.1. Financial networks and contagion. When firms experience defaults or shutdowns, value is lost
not only by direct counterparties that have stakes in those firms (through debt, equity, or other claims),
but also by indirect counterparties that have claims on those directly affected. The question of Elliott,
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Golub, and Jackson (2014) is how the network of dependencies propagates the costs of shutdowns and how
that ultimately redounds to the final claimants on an economy’s value.9

The model is a simple one in which institutions hold direct and indirect claims on each other, corre-
sponding to a network structure. If an institution’s value crosses a critical threshold, a certain amount
of value is lost by all its direct and indirect claimants, corresponding to a shutdown or default cost; such
losses can cascade and trigger further discontinuous losses. The main results look at the expected losses
as we vary the network structure governing the structure of claims. We show that the amount of damage
caused by financial contagions can be nonmonotonic in both the diversification of the network (the typical
number of direct counterparties) and in its integration (the magnitude of the typical financial relationship).
Increasing either of these can exacerbate contagions but can also absorb shocks, and thus optimal policy
responses can involve, for example, making a network more interconnected. Methodologically, the model
combines simple Leontief computations of indirect interdependencies between different financial units with
contagion models from random graph theory.

3.2. Endogenous fragility in complex production. The final project I discuss concerns networks in
the real economy (as opposed to networks of financial interdependencies). The focus is the propagation
of distress among firms that rely on each other for intermediate inputs. The systemic consequences of
such risk have recently been a focus of work in macroeconomics and network theory (Acemoglu, Ozdaglar,
and Tahbaz-Salehi, 2016; Baqaee, 2018). My current work shows that certain particularly stark systemic
fragilities can arise because of the distinctive structure of production networks with failure-prone relational
contracts.

Modern production is complex, featuring nested complementarities. For instance, the producer of a car
needs to be able to source both dashboard electronics and engines. The production of each of these inputs,
in turn, relies on being able to simultaneously source many complex components, each of which is crucial
in the production of that input. In practice, these sourcing relationships are specific—they are formed
between particular firms, rather than taking the form of anonymous transactions in a commodity market.
Because these relationships are specific, they create risk: in a standard macroeconomic model, a firm relies
on the total output of an industry, which has relatively low variance. When the firm relies on the output
of specific counterparties, exposure to idiosyncratic risk is higher for each firm.10

In Elliott, Golub, and Leduc (2022) we extend supply network models to include these forces. We
study a model in which the specific supply relationships just mentioned are used for sourcing, and in
which firms can endogenously invest to insure against their failure. We find that the presence of specific
sourcing relationships markedly changes the standard production network models at the aggregate level,
and introduces new sorts of discontinuities. Even when individual firms optimally insure against supply
link failure to maximize their own expected profits, the economy as a whole can be very sensitive to changes
in aggregate parameters, such as the quality of contracting institutions. Small adjustments in aggregate
productivity—which, in the standard model, have only a small effect on aggregate output—have very stark
consequences in our model. For example, a fairly small negative shock (say, contracting becoming more
difficult due to Brexit, or queues at ports due to Covid) can disrupt production and cause inventory to dry
up suddenly across many seemingly unrelated sectors. Simple production, which does not require risky
sourcing of multiple inputs, is not susceptible to this fragility.

We emphasize two main implications of our analysis. First, as economies develop, there can be sudden
jumps in their ability to sustain complex production in equilibrium, and this occurs due to the structure
of complex production networks. Second, the same phenomena create distinctive externalities. Counter-
acting seemingly small shocks to some industries can make a decisive difference for aggregate production
possibilities, and this can be important as policymakers regulate and subsidize supply chain robustness.

9For overviews of the extensive work on this topic—foundational models, empirical motivations, etc.—see Glasserman and
Young (2016) and Cabrales et al. (2016).
10The importance of relational contracts in production has been emphasized by Fafchamps and Minten (1999), Antràs (2005)

and Acemoglu, Antràs, and Helpman (2007). In different settings, related problems of optimization in the presence of
disruption risk have been studied by Blume, Easley, Kleinberg, Kleinberg, and Tardos (2011), Erol (2018), Erol and Vohra
(2018), and Brummitt, Huremović, Pin, Bonds, and Vega-Redondo (2017), and many others.
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This paper makes several contributions to the theory of economic networks, both at a conceptual and
technical level. First, we introduce percolation analysis (i.e., disabling some links at random) to an other-
wise standard network model of complex production—with complex meaning that each firm must source
multiple inputs through customized relationships. That leads to the fragilities emphasized above. Second,
as a modeling contribution, we demonstrate the tractability of studying equilibrium investments in links
(more precisely, investments in the probability that links are operational) in such a setting. By defining
a suitable model with a continuous investment choice and a continuum of nodes, investment problems
are characterized by relatively tractable first-order conditions, because firms are able to average over the
randomness in network realizations.11 This technique is related to methods developed in Golub and Livne
(2012), as well as in my student’s dissertation (Dasaratha, 2022), and we expect the methods to have other
applications. Finally, using our equilibrium conditions to deduce the fragility results discussed above re-
quires developing some new techniques to analyze the outcomes large network formation games. Outcomes
depend in a subtle way on the structure of random graphs and incentives, reminiscent in some ways of
forces studied by Jackson and Yariv (2007). This combination yields a complete analysis of equilibrium,
which is what we need for our theory of aggregate fragility.
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