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Question

External state, changing over time.

Each short-lived agent learns about it using:

private information (private signal with individual-specific
precision);

past estimates of some of the others (e.g., by talking).

Can decentralized communication among short-lived
individuals aggregate information quickly, keeping up with the
changing environment?

Key idea: Sufficient heterogeneity in signal distributions enables
good filtering by Bayesians – whereas naive agents do very badly
with or without it.
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An illustrative example

Agents: single Source, many
Media outlets, and a Public.

Di-
rected link means “observes.” All
r.v.’s will be Gaussian. Timing:

1 S sees sS = θ + ηS; takes an
action equal to posterior mean
of θ;

2 each Mi observes this and
si = θ + ηi; takes an action
equal to posterior mean of θ;

3 P sees only these actions,
estimates θ.

All ηi ∼ N (0, σ2
i ) independent.

ai = wisi + (1− wi)sS

. . .

P

S

M1 M2 M3 M4 M5 M6 Mn

If σ2
i all equal, then wi all equal ⇒ P

cannot filter out ηS.

If σ2
i low for half the Mi and high for

other half then. . .

P learns ≈ wθ + (1− w)sS for two dis-
tinct values of w ⇒ learns θ
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Model

Time is t ∈ T = Z≥0 or Z

State θ evolves according to an AR(1) process:

θt = ρθt−1 + νt,

where 0 < ρ ≤ 1 is a constant and νt ∼ N (0, 1) is normal

Agents get signals about the state and also observe the
actions of some others

There is a (directed or undirected) network of n nodes

For each agent i, denote by Ni the neighbors of i (informally:
people that i can observe)
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state θt = ρθt−1 + νt; network with neighborhoods Ni;

OLG social learning model (cf. Banerjee & Fudenberg 2004,
Wolitzky 2018): agent (i, t) is born at t−m, observes:

the estimates aj,t−1, . . . , aj,t−m of all neighbors j ∈ Ni

(including at own node) ;

a private signal si,t = θt + ηi,t where ηi,t ∼ N (0, σ2i )

all noise terms νt and ηi,t are independent.

Makes an estimate ai,t to maximize the expectation of
−(ai,t − θt)2 so

ai,t = E [θt | i’s observations] .
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time

next generation watching,
waiting to take over

current generation 
taking actions

agents who have taken
their action exit



Context

Old question: when do decentralized systems aggregate
information well enough to facilitate efficient adaptation?

cf. Hayek, 1945: “the economic problem of society is mainly one of rapid

adaptation to changes”; central in RBC models, e.g., Molavi 18

Despite huge social learning literature, surprisingly little on a
moving target and the question of responsiveness.

Sequential soc. learning: Moscarini, Ottaviani, and Smith 98

Moving states and network – distributed Kalman filtering:

Olfati-Saber 07; Shahrampour, Rakhlin and Jadbabaie 13;
Frongillo, Schoenebeck, and Tamuz 11

Very recently: Kabos and Meyer (WP 21), Levy, Marcin Peski,
Vieille (WP 21)
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Main contributions in context

1 Methodological: stationary model of learning in a network
about a dynamic state.

2 Substantive: Conditions for fast aggregation.

Bayesians can use diversity of information endowments to learn
(and need it).

Naive agents are much worse off than in a fixed-state model.
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Existence of a stationary equilibrium

Definition: A stationary equilibrium in linear strategies is one
where strategies are linear and time-invariant.

Proposition

There exists a stationary equilibrium in linear strategies. proof

As in DeGroot learning, at our equilibrium agents add up their
observations with constant weights.

Studied in engineering literature mainly with exogenous
weights; we consider Bayesian equilibrium.

Can bring your own behavioral model of learning, define
analogous fixed point.
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One-step linkage between distributions of behavior

Agents at t+ 1 want to estimate θt, which is a sufficient statistic for past
information, from observed actions

If −i play admissible linear strategies, the vector

∆t =
(
ai,t − θt

)
1≤i≤n

of last-period agents’ errors is multivariate normal (we take m = 1)

Let Vt be the covariance matrix of ∆t: records how accurate and how
correlated observations are.

Writing

ai,t+1 =
∑
j

wij,taj,t,

Vt determines how to weight others’ past actions (wij,t). Also, Vt says
how those actions are distributed. ⇒ determines Vt+1.

Thus, can define Φ(Vt), a (deterministic) map Vt 7→ Vt+1.

A fixed point of Φ; exists by Brouwer (define compact C s.t. Vt ∈ C).
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Distribution of past determines distribution of present

Putting these together gives the map Φ. The behavior of the map
Φ is key to understanding learning outcomes over time.
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Homogeneous signals: Can be far from benchmark

Learning very well: learn θt−1 exactly (it’s the most you could
hope to learn from social information).
Learning well: within ε of this, in payoffs.

Results:

1 Even for Bayesians, diversity of information can be
necessary to learn well.

2 Diversity in a suitable sense is sufficient for Bayesians to
learn well.

3 Naive agents cannot do well even with diversity.
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Learning benchmark: What does it mean to learn well?

i at t+ 1 achieves the perfect aggregation benchmark if he
learns as well as if he knows θt and own private signal

eq’m action has variance (σ−2i + 1)−1

a best case; cannot be achieved exactly.

We ask whether agents achieve this benchmark in large
networks with many observations

Hope: many signals are helpful for learning.
Challenge: neighbors incorporate realizations i doesn’t
know ⇒ correlated noise ⇒ LLN doesn’t apply.

Results:

1 Even for Bayesians, diversity of information can be
necessary to learn well.

2 Diversity in a suitable sense is sufficient for Bayesians to
learn well.
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networks with many observations

Hope: many signals are helpful for learning.
Challenge: neighbors incorporate realizations i doesn’t
know ⇒ correlated noise ⇒ LLN doesn’t apply.

Results:

1 Even for Bayesians, diversity of information can be
necessary to learn well.

2 Diversity in a suitable sense is sufficient for Bayesians to
learn well.

3 Naive agents cannot do well even with diversity.



Homogeneous signals: Can be far from benchmark

Result 1: Learning well is not guaranteed, despite rational
agents and abundant information.

Suppose all agents have the same private signal variance σ2.

Take, for example, the complete graph and m = 1
(generalizations in paper).

Proposition

There is a constant c > 0 such that for the complete graph on n
nodes

there is a unique stationary linear equilibrium;

and in it all agents have variance exceeding the perfect
aggregation benchmark by at least c.

Without signal heterogeneity, agents learn imperfectly.

Same result in graphs with symmetric neighbors, Erdos-Renyi
random graph.
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Homogeneous signals: Can be far from benchmark

Consider an agent at time t+ 1.

All observed actions ai,t are
exchangeable, so the period t+ 1
social signal is just the
(unweighted) average of period t
actions ai,t

Because these actions ai,t in turn
place substantial weight on period
t− 1 actions, correlated error from
the change in state
νt = θt − ρθt−1 prevents perfect
aggregation

More generally: dimensionality of

relevant state updates exceeds

identification power afforded by

your social neighborhood.

Figure: Tumbleweed: Picks up the
dust along its way, rolls along with
it
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Heterogeneous signals, flexible networks

Stochastic block model: finitely many types; probabilities of linking between

types given (depend on n) different signal types within network types.

Assume each neighborhood has many individuals of each of at least two signal

types.



Heterogeneous signals, flexible networks

1 Networks

Large random network: n agents of finitely many network
types comprising fixed population shares
types k and k′ linked with probability pkk′ ; links drawn
independently; no isolated types

2 Signals

Each agent has one of many possible signal variances
Each network type contains a given share of agents with
each private signal variance

3 Example: Complete network with equal shares of agents with
each signal quality
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Heterogeneous signals, flexible networks

Condition. We say signal diversity holds if each network type has
positive shares of agents with at least two distinct signal variances.

Theorem

Assume signal diversity. Let ε > 0. If n is large enough, with
probability 1− ε there is a stationary equilibrium where all agents
have variances within ε of the perfect aggregation benchmark.

With signal heterogeneity, Bayesian agents in stationary linear
equilibrium achieve perfect aggregation on a broad class of
networks

The uncertainty is over the network: with small probability we
could get a network that prevents learning
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Naive agents

Consider agents who incorrectly believe that their neighbors
choose actions equal to their private signals, but are otherwise
Bayesian (as in Eyster and Rabin, 2010)

Take a sequence of complete (or Erdös-Rényi) networks Gn as
n grows large, two signal variances σ2A and σ2B

The naive agents’ equilibrium variances converge to values far
from the equilibrium benchmark.

Perfect aggregation requires a sophisticated response to
correlation, while naive agents completely ignore correlation.
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Comparing naive and Bayesian agents

Complete graph with two signal variances
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Failure to achieve benchmark with naive agents

Proposition

Assume all updating weights are positive and agents put total
weight ≥ δ > 0 on neighbors and on own signal.

Then in any sequence of weight matrices, there is a constant c > 0
s.t. at all times t ≥ 1 all agents have variance exceeding the
perfect aggregation benchmark by at least c.

“Tumbleweed” intuition: pick up old noise even though it’s
irrelevant.

Compare with “wisdom of crowds” in fixed-state environments –
e.g., Jadbabaie, Molavi, Sandroni, Tahbaz-Salehi 12.
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Conclusion

Introduced a model of social learning with a moving target.

Key idea: diversity of signal distributions in one’s
neighborhood helps one to filter. A (distinctive) reason to
have specialized expertise.

Methodology: study action of Φ: fixed points (stationary
equilibrium, which is a DeGroot-type behavior) or dynamics
starting from initial time.

Sophistication is crucial.

Diversity helps rational agents even in real-world, small
networks.



Numerical results

Social networks of 43 villages in rural India (Banerjee et al.
2013);

mean size 212 (s.d. 53.5); mean degree 19 (s.d. 7.5).

Two cases:

1 homogeneous: all signal variances equal to 2;
2 heterogeneous: majority (92%) has the same signal

distribution as in the first case, but a minority (people
lacking electricity) has a substantially worse signal.

In eq’m, median agent in terms of learning quality has more
precise estimates of the state in heterogeneous case.

Also consider an agent who estimates the state better than 75
percent of agents); advantage of these agents in the
heterogeneous case is even more pronounced.
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Social influence: A classic networks question

Let an agent’s social influence be the effect of changing her
time-t private signal by 1 unit on the average beliefs of all
agents, summed across all times.

Focusing on the positive-weights case, we analyze social
influence and how it depends on the network and signal
qualities.

Two equal groups with similar signal variances σA, σB. Either
complete or random with average degrees dA and dB

Suppose we “improve” A’s position in some way (higher σA,
dA).

Ratio [A influence]/[B influence] > σA
σB

.

Ratio [A influence]/[B influence] < dA
dB
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Village networks with homogeneous and heterogeneous signal
variances.
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