ROBUST MARKET INTERVENTIONS

ANDREA GALEOTTI, BENJAMIN GOLUB, SANJEEV GOYAL,
EDUARD TALAMAS, AND OMER TAMUZ

ABSTRACT. When can interventions in markets be designed to increase sur-
plus robustly—i.e., with high probability—accounting for uncertainty due to
imprecise information about economic primitives? In a setting with many
strategic firms, each possessing some market power, we present conditions for
such interventions to exist. The key condition, recoverable structure, requires
large-scale complementarities among families of products. The analysis works
by decomposing the incidence of interventions in terms of principal compo-
nents of a Slutsky matrix. Under recoverable structure, a noisy signal of this
matrix reveals enough about these principal components to design robust in-
terventions. Our results demonstrate the usefulness of spectral methods for
analyzing imperfectly observed strategic interactions with many agents.
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1. INTRODUCTION

Market power has recently attracted renewed attention and is thought to
have significant and growing welfare implications (see, e.g., Syverson, 2019).
While many applied analyses of competition confine the analysis of market
power to tightly defined product markets, it is becoming clear that important
welfare-relevant spillovers operate across such markets (Bagaee and Farhi, 2020;
Azar and Vives, 2021; Pellegrino, 2021; Ederer and Pellegrino, 2021). Our the-
oretical understanding of such spillovers in environments with many firms in-
teracting via general demand systems remains limited. This paper is about the
welfare theory of such interactions.

Consider many profit-maximizing, single-product firms simultaneously set-
ting prices, with arbitrary complementarities and substitutabilities across prod-
ucts. For instance, one firm’s product—e.g., a Samsung smartphone—may be
a substitute to some products—e.g., Apple smartphones—and a complement
to others—compatible accessories such as earbuds, watches, and smart home
appliances, which may in turn be substitutes or complements to one another.

We are interested in the nature of inefficiencies in such an environment and
policies to respond to them. We consider these issues from the perspective of
an authority that recognizes the possibility of inefficiency due to market power
and can intervene through taxes and subsidies on firms’ sales. For concrete-
ness, we will think of this authority as the operator of a large marketplace, such
as Amazon, that mediates retail sales and aims to increase the equilibrium eco-
nomic surplus generated by the marketplace." What principles should guide
the design of such interventions? When can such policies be implemented un-
der realistic uncertainty about market parameters?

What makes the problem challenging is that, once we broaden our perspec-
tive beyond one traditionally defined market (e.g., smartphones) and consider
spillovers to a variety of other complements and substitutes, there is a kind of
curse of dimensionality. In a marketplace with numerous and changing goods,
the demand system is high-dimensional and a priori unstructured. As any
firm’s cost changes, the number of potential effects to consider is equal to the
number of products; thus, the number of interactions scales quadratically in
this number. Realistic signals will leave substantial uncertainty about many as-
pects of the structure of the game among the firms (see Section 7.1 for a detailed
discussion). In particular, the authority will have nothing close to a precise es-
timate of the entire demand system. This raises the question is whether there
are policies that robustly improve surplus despite this uncertainty.

Our main result is that if demand satisfies a property that we call recoverable
structure, then there are feasible intervention rules that robustly (i.e., with high
probability) increase equilibrium total surplus despite large errors in observing
every detail of the system. Moreover, within a natural class of interventions—
those that do not reduce consumer surplus>—our feasible interventions achieve

!The aim of this might be to deliver more value to consumers and producers to keep the
platform competitive, or to reclaim the surplus via lump-sum fixed fees.

’This constraint is natural for a platform that could lose customers to other marketplaces or
a government that can lose political support.
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the largest gain in surplus that is possible for a given level of subsidy expen-
diture. Hence, within this class, these interventions are as good as those that
could be designed by an authority with perfect information.

Furthermore, our results provide tight conditions for robust intervention in
the following sense. First, the property of recoverable structure cannot be dis-
pensed with; there are reasonable demand systems without recoverable struc-
ture for which the authority cannot robustly increase total surplus. Second, we
show that there are settings with recoverable structure in which any interven-
tion rule that robustly increases total surplus is equivalent, in terms of how
it allocates surplus, to the interventions identified by our main result. These
tightness results show that robust interventions must, in general, be tailored to
the marketplace—there is no simple rule of thumb that always works. On the
other hand, under conditions that we identify, it is possible to tailor rules well,
despite large uncertainty in many aspects of demand.

The key condition in the paper is recoverable structure. We now explain what
it means for demand to have recoverable structure and how this property is
used in the construction of robust interventions.

The demand structure is encoded in a matrix D of demand derivatives, which
in our setting is equal to the Slutsky matrix. A given cell D;; in this matrix is the
derivative of product i’s demand with respect to product j’s price. Thus, the
matrix specifies the complementarity and substitutability relationships across
products. Mathematically, the recoverable structure property requires that D
can be written as a rank-one matrix with large norm plus a matrix orthogonal
to this. This rank-one piece can be thought of as a large principal component:
a part of the demand system described by a single vector that accounts for a
large amount of demand behavior. In terms of the economic intuition, we will
show that recoverable structure entails substantial large-scale complementar-
ities. This manifests as the ability of small subsidies to have large spillover
effects that raise the consumption of many goods by significant amounts.

The key point here is that recoverable structure is large-scale structure. When
large-scale complementarities are present, they correspond to marketplace-wide
double marginalization problems, where many goods all exert externalities on
one another. Such broad externalities create the potential for interventions that
substantially improve welfare.

The statistical implications of recoverable structure are then central to actu-
ally taking advantage of this potential when the Slutsky matrix is observed im-
perfectly. The authority’s signal consists of noisy estimates of the entries of this
matrix, with noise magnitudes in each entry comparable to the entries them-
selves. This noise creates large uncertainty in the operation of a given interven-
tion. We show that, nevertheless, in large markets with recoverable structure,
such noisy observation of D can be used to precisely predict the effects of some
well-chosen interventions—specifically, those operating in the space of eigen-
vectors associated with the largest eigenvalues of D. The key tool for this is the
Davis—Kahan theorem (Davis and Kahan, 1970).

Combining the economic and statistical implications of recoverable structure
allows us to establish our main result. In markets possessing such structure,
the authority can recover precise information about large-eigenvalue compo-
nents of the spectral decomposition, and interventions based on this informa-
tion have highly predictable surplus implications.
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At a technical level, to perform this analysis we develop a new spectral de-
scription of the pass-through of an intervention. That is, we diagonalize the
Slutsky matrix to obtain a specific orthonormal basis in which we can express
the implications of any intervention as a linear combination of orthogonal ef-
tects. These effects correspond to the projection of the intervention onto each
eigenvector of the Slutsky matrix D. By characterizing the pass-throughs of
subsidies to prices, quantities, and welfare separately across these principal
components, we are able to prove that targeting the high-eigenvalue princi-
pal components yields precisely predictable results achieving our claimed wel-
fare properties. The spectral decomposition may be of independent interest,
yielding a useful basis in which price and welfare pass-throughs of cost shocks
behave intuitively despite the complexity of a system with arbitrary spillovers.

1.1. Related literature. Our paper contributes to the literature on the structure
and theoretical properties of market power. For an early theoretical paper, see
Dixit (1986); more recent studies include, for example, Vives (1999), Azar and
Vives (2021), Nocke and Schutz (2018), and Nocke and Whinston (2022). A re-
cent strand of research in macroeconomics and industrial organization uses dif-
ferentiated oligopoly network models—similar to the one we consider here—to
provide empirical estimates of efficiency losses due to market power (e.g., Pel-
legrino (2021) and Ederer and Pellegrino (2021)).

Given these estimates of inefficiencies, a natural theoretical question is: What
feasible interventions can improve welfare? Our main contribution is to an-
alyze interventions from the perspective of an authority uncertain about the
demand structure. Our analysis combines new spectral pass-through formulas
with results building on the statistical theory of large matrices, and we identify
conditions on the demand structure that ensure the robust achievement of wel-
fare improvements even when many aspects of the demand structure cannot
be accurately estimated.* This approach has significant implications for under-
standing which kinds of empirical models are needed to design interventions
in large markets with many goods. We elaborate on these issues in Section 7.2.

Methods in high-dimensional statistics are currently attracting considerable
interest in econometric settings with high-dimensional covariates (see, e.g., Athey,
Bayati, Doudchenko, Imbens, and Khosravi (2021) and Chernozhukov, Hansen,
Liao, and Zhu (2023)), and there is work applying related statistical models to
informational or behavioral spillovers in social networks (Golub and Jackson,
2012; Dasaratha, 2020; Cai, 2022; Parise and Ozdaglar, 2023; Chandrasekhar,
Goldsmith-Pinkham, McCormick, Thau, and Wei, 2024). However, we know
little about when noisy data can be effectively used in order to implement de-
sirable interventions in the presence of strategic spillovers, particularly in mar-
ket settings. We show that, in a large oligopoly market, the concepts developed
in the literature on large network recovery can be useful for designing socially
desirable interventions.

35ee also Elliott and Galeotti (2019) for related arguments about how network methods can
be useful for competition authorities in developing antitrust investigations.

4Our focus on pass-through builds on work emphasizing the value of pass-through as a
conceptual tool, e.g., Marshall (1890), Pigou (1920), Dixit (1979) and, more recently, Weyl and
Fabinger (2013), Miklos-Thal and Shaffer (2021) and Norris (2024).
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Our paper contributes to the theory of network interventions. Early contri-
butions include Borgatti (2006), Ballester, Calvé-Armengol, and Zenou (2006),
and Goyal (1996).° Spectral methods have recently been applied to optimal in-
tervention problems when spillovers are known (Galeotti, Golub, and Goyal,
2020; Gaitonde, Kleinberg, and Tardos, 2021; Liu and Tsyvinski, 2024).6 By con-
trast, in the present paper, the authority observes strategic spillovers with sig-
nificant noise.” The methods we develop for robust interventions can be ap-
plied to other network games more generally and we briefly discuss this in
Section 7.3. Our analysis of perturbations of taxes and subsidies is related to
the classic “tax reform approach” in public finance (Feldstein, 1976; Tirole and
Guesnerie, 1981); the study of uncertain spillovers distinguishes our work.

Our approach to robustness is conceptually related to, but methodologically
distinct from, an extensive literature in economic theory. That literature focuses
on understanding the design of mechanisms and contracts that achieve desired
outcomes even when assumptions about the environment (e.g., agents” prefer-
ences, beliefs, and rationality) are relaxed; see Carroll (2019) for a survey. Our
definition of robustness aligns with the spirit of this literature. However, in
our context, the motivation for analyzing robust interventions arises from the
high-dimensional nature of the market state, and use methods that align with
statistical work in this type of setting.

2. FRAMEWORK

In this section, we present the framework for our study. The foundation is a
simple differentiated oligopoly game. Within this game, we introduce a class
of interventions available to the authority and calculate the surplus outcomes
associated with these interventions. Finally, we introduce the statistical frame-
work describing the signals available to the authority and a notion of rules that
use these signals to achieve good outcomes robustly.

2.1. The differentiated oligopoly game.

2.1.1. Demand side. There is a set {1,...,n} of distinct products. The demand
for these products arises from the consumption choices of a fixed, finite number
of optimizing households. Each household h € {1, ..., H} takes prices as given

>The literature on this subject is very large. Intervention design has been studied in models
of information diffusion, advertising, finance, security, and pricing, among other topics—see
e.g., Banerjee, Chandrasekhar, Duflo, and Jackson (2013), Bloch and Querou (2013), Candogan,
Bimpikis, and Ozdaglar (2012), Belhaj and Deroian (2017), Demange (2017), Dziubinski and
Goyal (2017), Galeotti and Goyal (2009), and Leduc, Jackson, and Johari (2017).

Some recent work uses spectral analysis to derive conditions for core-selecting re-
allocative auctions (Rostek and Yoder, 2023), and robust implementation (Ollar and Penta,
2023). See also Aguiar and Serrano (2017) on spectral methods to study Slutsky matrices in
a consumer theory setting.

"We share with several prior papers the idea that decision-makers act under partial infor-
mation about the network. For instance, Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv
(2010) study large network games where players have incomplete information about the net-
work structure, described by a random graph; Akbarpour, Malladi, and Saberi (2020) considers
seeding in a large random graph; the diffusion process there lacks any form of complementarity.
Our questions and methods of analysis are very different from these papers.
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and has a choice utility that is quasilinear in a numeraire m,
utg",m) =v"(g") +m,

where V" is a twice-differentiable and strictly concave function of the consump-
tion profile ¢" € R” and m is a numeraire (“money”), in which all prices are
denominated. Given a price profile p, the household’s problem is to choose
a bundle ¢" to maximize U"(¢g",m) — p - ¢". Letting ¢"(p) be the solution to
household h’s problem (unique by concavity of V"), total market demand is®

a(p) = > _ 4"
h=1

Note that we use tilde notation for an arbitrary price or quantity, and then drop
the tilde for these variables to indicate some optimal or equilibrium solution.

2.1.2. Supply side. There is a firm associated with each product: Firm ¢ produces
product i. Firms play a simultaneous pricing game; each firm chooses p; > 0.
For any realized profile of prices p, firm i’s profit is

¢(p)(Pi — ci), (D
where ¢; is the (constant) marginal cost of production.

We fix a vector ¢” of marginal costs and a pure-strategy Nash equilibrium
p’, and we refer to these as the status quo marginal costs and equilibrium, re-
spectively.” To facilitate unambiguous local comparative statics, we make the
following assumption.

Assumption 1 (Local equilibrium uniqueness). There exist v > 0 and p > 0
such that, for all ¢ with |lc — ¢°|] < v, there is a unique pure-strategy Nash
equilibrium p(e) in a p-neighborhood of p°.

From now on, we confine attention to cost perturbations within the set dis-
cussed in Assumption 1, and when we refer to an equilibrium at any cost profile,
we mean the locally unique one entailed by this assumption.

2.2. Interventions and their effects. An authority—an institution that oversees
a marketplace—can intervene in the market. We focus on a canonical set of
interventions: per-unit subsidies and taxes. For a consumption profile g, a per-
unit subsidy intervention

o= (01,...,04)
consists of a transfer 0;g; from the authority to firm i; a positive o; corresponds
to a subsidy to firm 7, while a negative o; corresponds to a tax.

8Because the households’ utilities are quasilinear in money, one can derive the same ag-
gregate demand from a representative consumer, and this description is sufficient for studying
producer and aggregate consumer surplus. However, some of our results will provide more
refined results about the effects on individual consumers, showing that no household is signif-
icantly hurt.

9Existence of a pure strategy equilibrium is guaranteed if profits are quasi-concave in prices
(see Theorem 1.2 in Fudenberg and Tirole (1991)). A sufficient condition for this is that the
functions 1/¢;(p) are convex in p; (Vives (1999) page 149). This holds, for instance, under the
much stronger condition that demand is linear in prices; in this case the equilibrium is also
unique. The general sufficient condition for local uniqueness is nonsingularity of the Jacobian
of best responses at equilibrium, which will hold generically in our setting (McLennan, 2018).
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We will focus on demand functions that are linear in a neighborhood of the
status quo equilibrium, as captured by the following assumption.

Assumption 2 (Linearity of demand locally). There exists p > 0 such that, in a
neighborhood of radius p around the initial equilibrium p°, the demand func-
tion ¢;(p) is linear in p; for every firm .

This assumption facilitates our analysis of interventions, yielding simple for-
mulas for comparative statics. It also captures much of the economics of our
robust interventions problem, despite its simplicity. We discuss how to extend
the analysis for the case of non-linear demand in Section 7.4.

The firms’ first-order conditions imply that equilibrium prices p around the
status quo p" satisfy

9q;
N Op;
The linearity assumption implies that g—gi (p) remains constant when prices change
locally around p°. Hence, we can replace the p-dependent partial derivative in
the above equation with the constant g—fé(po). By strict concavity of the con-
sumer utility functions, this is a negative number; from now on, we maintain a
normalization (by choosing suitable units in which to express the quantity pro-
duced by firm ¢) that g—gi (p°) = —1 (see Appendix A.1). After this normalization,
equilibrium behavior is summarized by the following system of equations:

qp)=p—c. (2)

Implicitly differentiating this (linear) system, we obtain that the effect of a small
intervention o on prices is determined by the following system of equations:

[I - Dlp = —o, (3)
where o = ¢’ — cis the intervention (i.e., tax or subsidy offered by the author-

ity), p is the derivative of p in the direction of & (see eq. (6)), and D = D(p°) is
the Slutsky matrix (in the normalized units):

%(p) = (P)(pi — ci).

0

a%’ 0
D;; = (9_]9](1) ).
For i # j, it D;; > 0 (resp. D;; < 0) then, around the equilibrium, products i
and j are substitutes (resp. complements)."” Note also that quantity changes
following the intervention o are pinned down by

q = Dp. (4)

The local linearity of demand implies that comparative statics of prices and
quantities are fully determined by the Slutsky matrix ID. We note that D satis-
fies the following property (Nocke and Schutz, 2017).

Property NSD. The normalized Slutsky matrix D is negative semidefinite, sym-
metric, and has diagonal entries D;; = —1.

0 general, the matrix of derivatives of Marshallian demand need not be the same as the
Slutsky matrix (which works with compensated demand). However, in this demand system,
the wealth effect is zero due to the fact that the goods utility and money are additively separa-
ble. Thus, the two matrices coincide (Nocke and Schutz, 2017), and so we use the term “Slutsky
matrix” throughout.
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This property holds because the demand function can be taken to arise from a
representative household (with a twice-differentiable utility function for goods
equal to the sum of the consumers’ utilities, V").

Finally, the following helpful normalization is without loss of generality—it
holds by suitably adjusting the units of the numeraire m.

Assumption 3. The quantity vector’s Euclidean norm ||q"| is at most 1.

In what follows, we maintain Assumptions 1-3 unless stated otherwise.

2.3. Surpluses. The authority’s net spending associated with an intervention
o is denoted by S = o - q. Recalling Assumption 1, we define the set of feasible
interventions as'"'

Y={oceR":|o| <v}

The authority cares about the surplus that different market participants ob-
tain in equilibrium. We focus on three canonical metrics: consumer surplus C,
producer surplus P, and total surplus W (accounting for the intervention ex-
penditure S). Given an intervention o, and quantity profiles {qh}hzl,m,n and
q:=>,q" these are:

C= Z C" where C"=V"(¢")-q"p,
h

P=(p—-¢)-q and W=C+P-5. (5)

We evaluate the effect of an intervention o on an outcome variable Y by its
first derivative. Formally, the first-order effect on any outcome variable Y (e.g.,
Y = C or P) of changing subsidies in the direction o is defined by

: dY
n:ZLEm. (6)

Fixing the parameters of the economy, the set of possible surplus outcomes is
defined to be the set of tuples

{(Cy, Py, S5) : 0 €R"}

of surplus outcomes corresponding to some intervention. The following propo-
sition characterizes the possible surplus outcomes.

Proposition 1. For generic ¢° and any D, the following hold:
(1) A surplus outcome (C, P, S) is possible if and only if it satisfies

C+%P=S (7)
(2) It (C, P S ) is possible and C >0, then

C+ P <28
We restrict attention to deterministic interventions but this is immaterial to our results.
2We often omit the subscript & when there is no ambiguity about the relevant intervention.
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Proof sketch. Consumer surplus satisfies the Marshallian formula C=—-¢" p.
Meanwhile, P = ¢° - (p + o) + (p — ¢) - ¢ = 2q° - g, where we have used the
equilibrium condition p — ¢ = ¢ from (2). Finally, S = —q°-¢ = ¢q° - & by
definition. This establishes that any (C,,, P,. S,,) satisfies (2.3). The proof that
every tuple satisfying () arises from some o is more involved and is found in
Appendix B. The second part follows from the first. O

Part (1) says that, for a given level of spending S, the set of possible outcomes
is a line in (P, C') space. This “Pareto frontier” tells us what is possible in princi-
ple, and in particular implies that market surplus cannot be increased by more
than twice the level of expenditure without reducing consumer surplus.

While this result characterizes what post-intervention outcomes are possible
in equilibrium, it does not discuss how to attain them. The following lemma is
an important input in the answer to this question, and is used in the proof of
the “if” direction of Proposition 1(1).

Lemma 1. For any intervention &, spending is given by S, = & - ¢°, while

W, = ;P = (@) DI~ D] o (®)

The proof works by combining the formulas in the proof of the above propo-
sition with the formulas in (3) and (4) to make price and quantity derivatives
explicit.

Formula (8) can be interpreted as a pass-through equation: entry ¢ of the row
vector w' = (¢")"D[I — D]™! gives the impact on total surplus of increasing
the subsidy o;. The authority aims to achieve a desired total surplus effect 1V,
possibly subject to additional requirements, such as holding spending S, con-
stant.

2.4. The challenge. Matrix inverses such as [I — D]™! can be extremely sen-
sitive to entries of D. Therefore, without precise knowledge of D and ¢°, the
authority may not be able to implement a desired point on the line defined by
(2.3). For example, the authority may not be sure that a given intervention will
increase total surplus (W, > 0) rather than decrease it (W, < 0). Indeed, it
seems hard to justify the detailed study of comparative statics such as eq. (8)
when n is large without confronting the uncertainty about the ingredients of
the formula an analyst or authority is likely to face.

These observations motivate the central question of this paper: Which inter-
ventions have surplus effects that can be predicted with confidence by an authority
facing substantial uncertainty about market primitives?

2.5. The statistical framework. To formalize this question, we introduce a sim-
ple model of noisy observation of D and q°.

In the linear oligopoly environment, Proposition 1 establishes that to deter-
mine the first-order surplus effects of any intervention o, the only additional
data needed is the tuple (D, ¢"), where D is a negative semidefinite matrix
with diagonal entries —1 and ¢° is a vector of norm at most 1. We call such
a tuple a market state and denote it by 6. The set of possible market states is
denoted by ©.
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The authority receives a signal, denoted by 6 € ©, about the market state.”®
This signal consists of random variables

D=D+Eandq’ =q°+e.

We will later detail assumptions on the error terms. For now, a canonical setting
to keep in mind is one where all error draws are mean-zero and independent,
with each error having a magnitude comparable to the underlying entry D;; or
¢?. Note that the signal need not lie in the same set as the state; for example,

under our assumptions, D is negative semidefinite, but the signal D might not
be.

Let g € A(®) denote the probability measure over signals when the state is
0.

2.6. Robust intervention rules. The authority designs an intervention rule'*
R:T =3,

prescribing an intervention o € X for every possible signal 6. We now define a
notion of such a rule robustly achieving a desired property.

A market outcome is a tuple (0, o) consisting of a market state and an inter-
vention. We call this pair the outcome because it determines production, con-
sumption, and transfers. A property is a measurable subset & C © x X of
all possible outcomes. An important example of a property is increasing total
surplus, given by (8):

P ={(0,0): W, >0}
={((D.q"),0): (¢")" DI — D]"'o > 0}

We are interested in understanding which properties can be achieved with
high probability in all market states that the authority considers possible:

Definition 1. An intervention rule R achieves a property & e-robustly if the
following holds: For every 8 € ®, we have

e ({é: 6,R(8)) € y)}) >1—e

The only randomness in the definition is in the signal draw—recall ¢y is the
distribution of the signal given the true state 6.
We close with some remarks on our modeling choices.

Remark 1. The main parameter in the definition of robustness is the set © of
possible market states. If the authority has any prior i« over ©, then, given con-
ditional error distributions (yg)e and a property & of interest, the probability
P.(Z?) can be computed under that prior. Requiring an intervention rule to
achieve a property e-robustly is equivalent to requiring P,(Z?) > ¢ for every
possible prior f.

A reason to focus on robust intervention rules is that for primitives such as
Slutsky matrices involving a large number of goods, it is not at all obvious
how an authority should specify a prior. A set ® can, in contrast, encode an
assumption on the environment (e.g., D being negative semidefinite) without
having to take a stand on prior probabilities.

BSection 7.1 discusses some practical examples.
4This should be measurable in a suitable sense, which is clear in our application.
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Remark 2. Notice that the definition of robust interventions does not depend on
any details of the linear oligopoly environment. The definition can be applied
in any environment where 6 is some state, o is the authority’s choice, the pair
(6, o) fully determines all outcomes of interest to the authority, and there is a
known distribution over signals given states.

Nevertheless, the linear oligopoly game and the focus on first-order effects
provide a useful starting point: a canonical environment in which rich spillovers
can be fully specified by a familiar finite-dimensional object (D). Moreover, for-
mulas using only simple matrix operations suffice to describe surplus effects,
and these facilitate tractability of statistical questions. Extensions to nonlinear
environments are discussed in Section 7.4.

3. RECOVERABLE STRUCTURE AND ITS ECONOMIC IMPLICATIONS

The main result of this paper says that under conditions on the set of possible
market states ® and conditions on the distribution of errors, there are intervention
rules that improve surplus robustly. The content of the result lies in specifying the
assumptions on ® and error distributions. While these conditions are some-
what involved to state in full generality, a useful preview can be presented in
an important class of examples, related to the classic stochastic block model in
network theory.

3.1. A stochastic block model of demand. There is a fixed, finite set of prod-
uct types, M = {1,2,...,m}. The interactions of products are determined by
their types, and given by entries of an m-by-m type-level matrix D satisfying
Property NSD. Quantities are also determined by types, according to a vector
g € R™. Let the type of good i be k(i) € M." Finally, fixing v(n) € (0, 1], let

D, - {V(H)Dw)km i#]

and ¢ = Guo)- 9
1 i=j q; qk(i) )

An explicit example of a stochastic block model appears in Section 5. The
errors ¢; in observing q” and the errors E;; in observing D are i.i.d. and mean
zero, with bounded support, satisfying Var[E;;] < @ and Var||e||] < 5||q°| for
some fixed real numbers & and <. This entails that errors in demand signals and
quantity signals are of the same order of magnitude as the underlying parame-
ters. Within this model, we have:

Proposition 2. Fix a generic (D, g) and assume ~(n)n'/? — co. For large enough
n and any spending level s, there is an intervention rule that robustly achieves
a surplus outcome arbitrarily close to (P, C, S) = (25,0, s).

Note that Proposition 1(2) implies that the intervention rules guaranteed by
Proposition 2 achieve the largest possible increase in total surplus subject to
not reducing consumer surplus. It is also worth noting that the partitioning of
goods into types need not be known in advance to achieve the target surplus
outcome.

In this setting, the assumption that v(n)n'/? is large ensures that some of the
entries of D can be recovered despite noisy observation. Notice, however, that

>We let N(t) be the number of products of type ¢, which depends on the total number of
products n, and assume N (t)/n is a convergent sequence as n — oo for each t € M.
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other entries of D may not be recoverable precisely. One extreme example of
this occurs if some types have only a single good, or more generally a number
of goods uniformly bounded in n. The substance of the result is that the infor-
mation that can be recovered about D suffices to robustly achieve the indicated
outcome.

The result raises several questions: First, how is recoverable information used
to design effective interventions, and what determines the limits of this strat-
egy? More fundamentally, how can it be extended beyond the specific structure
of the stochastic block model? The assumption that there are arbitrarily large'®
“blocks” of products whose exact relationships to other goods (the entries D;;)
are identical within type is restrictive. Are there more flexible structures that
permit robust interventions—e.g., in cases where no entry of D can be recov-
ered precisely? A third question that this result raises is whether outcomes that
allocate surplus differently can be robustly achieved. The remainder of the pa-
per addresses the three issues we have raised.

The next subsection presents the assumption on ©, called recoverable struc-
ture, that underlies our analysis of the general robust intervention problem. We
then present the key method—a spectral price theory decomposition—that en-
ables our use of this assumption, and illustrate the ideas throughout in relation
to the stochastic block model special case.

3.2. Recoverable structure. Recoverable structure imposes conditions on the
pattern of complements and substitutes (which we will call interactions) among
products, as summarized by the Slutsky matrix D. It requires that there is a
strong latent pattern of product interactions and, simultaneously, this latent
structure “has enough correlation” with the vector of market quantities.

We now define this notion formally. A vector in R" describes a bundle of
products. Given D, we are interested in the subspace of bundles spanned by
eigenvectors of D with large eigenvalues. Formally, let £(D, M) C R" be the
subspace of the bundle space spanned by the eigenvectors of D with eigenval-
ues at least M in absolute value.

Definition 2. The set of market states ® has (M, §)-recoverable structure if for
every (D, q") € © the projection of g° onto £(D, M) has norm at least 4.

To understand this definition, note that a Slutsky matrix, by virtue of being
symmetric, can be orthogonally diagonalized: it can be written as a linear com-
bination of orthogonal rank-one matrices:

D=- 3% @) - > | @)
u‘eL(D,M) rank-1 matrix %' ¢£(D,M) rank-1 matrix
where A\, A\, ..., )\, are the eigenvalues of D (which are nonpositive numbers
because D is negative semidefinite), ordered from greatest to least in absolute
value, and (u',...,u") is a corresponding basis of orthonormal eigenvectors.

All the summands are orthogonal to each other, and |)\;| is the norm of the
contribution of the corresponding summand.

1®When there are |M| types of products, then some type must contain at least n/|M| prod-
ucts.
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Having market states with (M, §)-recoverable structure means that (i) D has
eigenvectors with eigenvalues larger than A in absolute value, ensuring the
first summation is nonzero, and (ii) the vectors u’ in that sum can jointly ac-
count for a non-negligible portion of the status quo quantities. We will call
the eigenvectors u’ associated with the eigenvalues such that |\,| > M the top
eigenvectors.

As we will detail later, if we set M to be larger than the norm of the noise £
in the signal of D, then condition (i) ensures that the space of top eigenvectors
of D can be estimated precisely. We now explain what recoverable structure
with a large M means economically before explaining the intuition behind re-
quirement (ii), which we defer to Section 3.3.

3.2.1. Recoverable structure and large-scale complementarities. We start with a sim-
ple example.

Example 1. Consider the special case where there is only one type of product,
i.e, M =1and Dy ) =k € (0,1) and y(n) = 1. Then

—1 ifi=j,
Dy = .
! {—k if i # j.

D=(k—1)I—k11",
where I is the identity matrix and 1 is the all-ones vector. The eigenvalues of &
are k — 1 with multiplicity n — 1 and —k(n — 1) — 1 with multiplicity 1. Thus, if
k> M/(n—1),and >, ¢) > 4, the market state (D, q") has (M, §)-recoverable
structure.

Notice that negative off-diagonal entries in D correspond to product comple-
mentarities. Thus, even a small (entry-wise) amount of complementarity em-
bedded in the demand system can generate a large eigenvalue and recoverable
structure.

This can be written as

Recoverable structure is closely related to large-scale complementarities more
generally. To see this, let ||| be the Euclidean norm of vector  and note that:

|A1] = sup _HDpH =su M,
pz0 [IPI pzo [P

where the first equality is the well-known Courant-Fischer characterization of
the spectral radius of a symmetric matrix, and the second equality follows from
of equilibrium condition, ¢ = —Dp. The solution to the maximization problem
over p is to choose a change in price equal to the dominant eigenvector of D,
denoted by u', which is the eigenvector associated with the largest eigenvalue
in absolute value. Thus, the largest eigenvalue measures how much a price
shock can be amplified in terms of its effect on demand and the corresponding
eigenvector gives this extremal price shock achieving this effect.

This gives us a useful perspective on the meaning of a large |\;|. Note that if
there were no demand spillovers across products (i.e., all products were inde-
pendent), then by our normalization we would have D = —I and each good’s
quantity would change by an amount equal to the price change. When there are
demand spillovers across products, and we change prices in the direction of u',
each good’s quantity changes by —|\| times the price change, a large negative
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multiple. Hence, the case |A;| > 1 indicates that there are price changes where
the downward effect on quantities is larger than in the independent case. This
corresponds to complementarities, in that reductions in demand reinforce one
another."”

This interpretation of the dominant eigenvector and its eigenvalue extends
to the other eigenvectors and eigenvalues of D. Let u’ be the eigenvector as-
sociated with the /™ largest eigenvalue, denoted ),. A direct implication of the
Courant-Fischer theorem is that the price change that maximizes the change in
quantities relative to the change in price across all price changes orthogonal to

u',u? ... u'lis exactly uf, and

sup lall | Ad.

plusg=1¢-1 ”pH
Hence, the spectral decomposition of D captures a set of n orthogonal price
changes in the economy, each representing the maximum induced change in
quantity that is feasible within the system given the orthogonality constraint.

3.2.2. Application to the stochastic block model. We now make explicit the rela-
tionship between the general recoverable structure condition and the stochastic
block model. In the stochastic block model, fixing D, g, and a sequence y(n),
the set of market states is the set of all (D, ¢°) (for any number of firms) satis-
tying the block specification (9) for some function % partitioning products into

types.

Fact 1. In the stochastic block model, if v(n)n'/? — oo, then thereisa § > 0
such that, for large enough n, the set of market states has (M (n), §)-recoverable
structure for some constant § > 0 and a sequence M (n) with M (n)/n'/? — oco.

The intuition is straightforward: because there are only finitely many types,
some blocks in D must be large; as in Example 1, a large block with entries
of order (n) gives rise to an eigenvalue of magnitude v(n)n. The proof also
shows that the projection onto the corresponding eigenspace of ¢° arising from
a generic g° has norm bounded below by a number independent of n.

To see how the presence of aggregate structure relates to large-scale comple-
mentarities in the example, recall that we assumed D itself satisfies NSD, and
so its diagonal entries are —1. This means that there is a large block on the
diagonal of D with negative entries of magnitude ~(n)—large-scale comple-
mentarities just as in Example 1.

Thus, we can now keep the stochastic block model in mind as a canonical
example of recoverable structure with M (n) > \/n.

3.3. A key tool: Spectral price theory. When recoverable structure is present,
information about the top eigenvectors of D will be recoverable with high
precision—under suitable assumptions on errors—using standard statistical re-
sults. We now describe how an authority can use information solely about top
eigenvectors to design an intervention that increases surplus robustly.

The key tool is a decomposition of surplus pass-through in spectral terms,
building on a spectral description of the pass-through of an intervention to

7In contrast, when |A1] < 1, the effect on demand is lower than in the independent case,
corresponding to an economy where products are globally substitutes.
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prices and quantities. Denoting by U the matrix whose (' column is the ("
eigenvector u’ of D, and by A the matrix whose non-diagonal elements are
zero and whose /th diagonal element is )\, we have:

D=UAU".

An intervention o that subsidizes (or taxes) a single product will in general
affect not only the prices and quantities of that product but also those of other
products, whose equilibrium values are all connected through strategic inter-
actions. If we think of the eigenvectors u’ as representing bundles, then these
bundles have the important property that an intervention o « u’ in the direc-
tion of such a bundle will only affect the price u’ - p and quantity u’ - q of that
bundle, leaving the prices and quantities of the bundles corresponding to the
other eigenvectors unchanged. Generally, we can decompose o = >, (u’ - o)u’
into a combination of n orthogonal interventions, each in the direction of an
eigenvector. We can use this decomposition to solve the oligopoly game and
obtain simple expressions for the pass-through of the intervention in terms of
the eigenvalues of D.

Lemma 2. The pass-throughs from any intervention o to prices and quantities
of each eigenvector are as follows:
, 1 : : Al
- p=——"u-o and u'-g=N\(u" p)= u’
2 W q o p) 1+ ||
Proof. From equation (3) we get (I —UAU")p = ¢. Multiplying both sides
by UT we get UTp = (I — A)"'U"¢ and, using equation (4), UTq = A(I —
AU 0

Thus, we can study the price and quantity pass-throughs of each of these n
interventions separately across eigenvectors. In particular, each unit of subsidy
in direction u’ exclusively passes through to the price and quantities of bundle
u’, and it does so with coefficients —(1+|\,|) = and |\ (1+4|\|) 7!, respectively.

Note that the magnitudes of the price and quantity pass-throughs in the dif-
ferent u’ are ordered according to their corresponding eigenvalues: The larger
is |A¢|, the less a given subsidy u’ - o reduces prices, but the more it increases
quantities. This asymmetry is the result of two opposing forces: On the one
hand, the strategic interactions among firms imply that the equilibrium price
u’ - p° is less sensitive to the subsidy u’ - o the larger is |\,|. On the other, the
demand u’ - q° is more sensitive to the price u’ - p° the larger'® is |\,|; this is
just a fact about the market’s demand function, rather than equilibrium pric-
ing. Lemma 2 shows that the second effect dominates the first in the sense that
the larger is |)\,|, the more sensitive is the equilibrium quantity u* - ¢° to the
subsidy u - o.

3.3.1. Surplus metrics: Spectral decomposition and robust interventions. We now
combine the spectral decomposition with the surplus formulas to deduce the
following second lemma.

BIndeed, it follows from (4) that UT¢® = AUTpY, so the slope of the demand u’ - ¢° with
respect to own price u’ - p is equal to .
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Lemma 3. The pass-throughs to consumer, producer, and total surpluses are:

n

€= =3 (') p)

P=23"(u' q")(u' )

W= ) @)

(=1

Proof. The effect of the intervention on consumer surplus is C' = —q° - p. Mul-
tiplying this equation by UUT gives C' = —UTq0 - UTp. Similarly, the effect of
the intervention on producer surplusis P = ¢° - (p+ o)+ (p—¢) -4 = 24" - 4.
Multiplying the equation by UU T yields the expression of P in the Lemma.
The expression for I/ is obtained by aggregating P, C' and the intervention ex-
penditure. O

Lemma 3 shows that the effect of an intervention on consumer, producer, or
total surplus is a weighted sum of pass-throughs to each of the eigenvectors
u’—with the weight being the corresponding bundle’s quantity.

We now use Lemma 3 to illustrate how—by setting o equal to u'—the au-
thority may achieve the highest total surplus per dollar spent possible subject
to the constraint that the change in consumer surplus is not negative (recall
Proposition 2). Because u' is orthogonal to all the other u’ with ¢ # 1, such
intervention changes only the price and quantity of the bundle u':

L Al

ul .——# and u = —
PN =T

leading to an overall change in consumer and producer surplus equal to

1 . . |)\1|
— S and P:2
L+ [N\ + [N\

Recoverable structure requires that [A;| — oo with n, and so (by inspection of
the equations) the interventions will achieve C'//S — 0 and P/S — 2.

4. CONDITIONS FOR ROBUST SURPLUS IMPROVEMENTS

In Proposition 1, we reported a complete information benchmark that shows
what is possible with no observation errors. In Proposition 2, we provided
an example in which a natural constrained-efficient outcome among these is
achievable under considerable observation errors. This section presents our
main result, which generalizes this example.

4.1. Assumptions on errors. We now add to our maintained assumptions the
following assumption about the authority’s signal. Let || E| denote the spec-
tral norm of a matrix E, which for a symmetric matrix is equal to its largest
eigenvalue. Fix a sequence b(n) and a positive constant V.

Assumption 4. We assume that:
(1) E[[E[]] < b(n);
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(2) all the ¢; are independent and E|||e||?] < V.

The first part of the assumption bounds the matrix norm of the errors in es-
timating the normalized Slutsky matrix. In Appendix C, we provide a simple
procedure for sampling market data independently across product pairs (3, j)
under which this assumption holds with b(n) = yn'/? (for a positive constant
v > 0). We can think of this example as generating F;; that are essentially in-
dependent, with variance of constant order (i.e., neither growing nor decaying
with n). This shows that the assumption can hold even when there is no entry
of D that can be recovered accurately.

If b(n) = yn? with 3 € (1/2,1), there are error structures consistent with
Assumption 4 where some terms in D have large covariances. For example,
spatially correlated errors, with sufficiently “distant” parts of the matrix being
at most slightly correlated, would satisfy this assumption.”” An example that
would violate part (1) of Assumption 4 is the entries of E all having correla-
tion bounded away from zero (e.g., arising from a common shock to measured
complementarities).

The second part of the assumption requires independence of errors across
different products’ quantities. The purpose of the assumption is to apply a law
of large numbers for estimating outcomes such as the average quantity, as well
as various linear combinations of quantities that are important for intervention
outcomes. Independence is stronger than we need for our main result stated in
Theorem 1, and is made to facilitate exposition. When we use this assumption
in the proof of our main result, Theorem 1, we rely on a substantially weaker
but more technical condition that Assumption 4(2) implies (see Appendix A.3).
Regarding the assumption on the norm of ¢, recall that we assume that ||¢°|| <
1; the assumption on € scales the error to be of the same order of magnitude as
the quantity vector.

4.2. Main result. Our main result, Theorem 1, examines what can be imple-
mented robustly when the authority has partial information and the economy
has a recoverable structure that is strong enough relative to the noise. It shows
that interventions exist that robustly protect consumers from surplus loss and
implement market surplus equal to the upper bound achievable by an omni-
scient authority (the upper bound given by Proposition 1(2)).

Recall that we have fixed a sequence b(n) under which Assumption 4 holds—
an upper bound on the noise in observations of the demand system.

Theorem 1. Let M (n) be an increasing sequence with M (n)/b(n) —, oo, and fix
d > 0. Assume the set of market states has (M (n), §)-recoverable structure. For
every € > 0 and for every target expenditure s > 0, the following properties can
be simultaneously achieved e-robustly for sufficiently large n:

(i) The sum of marginal consumer and producer surplus gains C' + P is at
least twice the marginal expenditure, up to a small multiplicative error:
C+P>(2-¢)S.

(ii) The marginal effect on consumer surplus is not significantly negative: C' >
—e. Moreover, no individual consumer’s surplus decreases significantly—
i.e., C" > —¢ for each household h.

YThe idea is analogous to ergodicity-type conditions in time-series settings.
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(iii) The marginal expenditure is arbitrarily close to the target expenditure s,
ie,|S—s| <e

The condition in Theorem 1 stipulates that the market has (M (n), §)-recover-
able structure for some M (n) that asymptotically dominates b(n). This lower
bound on M (n) ensures that the recoverable structure in D is substantially
larger than the norm of the error matrix E, which is O(b(n)) under Assump-
tion 4. Note also that the assumptions on errors are satisfied by the stochastic
block model of Section 3.1, so Proposition 2 is a direct corollary of Theorem 1.%

Part (i) states that, when this condition is satisfied, the authority can robustly
achieve approximately two dollars of surplus gain per dollar spent.”

Point (ii) states that it is possible to achieve this while leaving all households’
welfare essentially unchanged; indeed, under the policy we construct, produc-
ers fully capture the surplus gains. Note that by Proposition 1, the welfare gain
described in point (i) is essentially the maximum total surplus change that an
omniscient authority could implement with the same expenditure without re-
ducing consumer surplus.

Finally, point (iii) says the authority can precisely target the realized expen-
diture (and thus, total surplus impact) of the policy.

Our notion of e-robustness means that these surplus properties are achieved
ex post with high probability. A natural question is whether they are also
achieved in expectation (since, in principle, realizations with very negative sur-
plus could occur with low probability). In our setting, it turns out that all the
analysis would be unaffected if we added good ex ante expected performance
to the definition of robustness.*

To prove Theorem 1, we apply a statistical method that accurately identifies
a subspace spanned by top eigenvectors of the Slutsky matrix from noisy ob-
servations. We then show that interventions projecting exclusively onto these
recoverable subspaces possess the desirable welfare properties stated in Theo-
rem 1.

4.3. Recovering and using the subspace of top eigenvectors.

4.3.1. The Davis—Kahan theorem. Recall that if M(n) > b(n), then (M(n),0)-
recoverable structure requires that the normalized Slutsky matrix D has eigen-
values that, in absolute value, are much larger than b(n); we will refer to such
eigenvalues simply as “large” from now on.

The key tool in our statistical exercise that leverages this assumption is the
Davis-Kahan theorem. Under the hypothesis that some eigenvalues of D are
large, this theorem guarantees that, despite the noise in E, the large eigenvalues
of the observed matrix are good approximations of the true large eigenvalues.
In other words, the noise in E cannot cause the large eigenvalues of D to be-
come “mixed up” with the eigenvalues far away in the spectrum; see Figure 1

20This follows since the entries of E were taken to be independent (Dallaporta, 2012).

ZRecalling the definition W = P 4 C — S, this implies that every dollar spent yields approx-
imately one unit increase in 1, net total surplus.

22This is because the surplus pass-throughs are supported on [0, 1] and all quantities in the
proofs are bounded. Thus, convergence in probability is equivalent to convergence in L', and
so our proofs extend to show close approximations to the omniscient benchmark in terms of ex
ante surplus.
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FIGURE 1. An illustration of the Davis—Kahan theorem: How eigenvectors

of D (perturbed matrix) project onto eigenvectors of D (true matrix) with sim-
ilar eigenvalues (off by at most | E||). This relationship ensures that the sub-

space generated by the “top” (i.e., large-eigenvalue) eigenvectors of Disa
good approximation of the subspace generated by the top eigenvectors of D.
For our economic problem this implies that interventions based on top eigen-

vectors of D yield high surplus pass-through, despite noise E.

for an illustration. The theorem also permits the recovery of eigenvectors. More
precisely, this theorem has the following two central implications in our setting:

(i) D = D + E has some eigenvalues which are themselves large;
(ii) the eigenvectors of D associated with such eigenvalues are in the span

of eigenvectors of D with large eigenvalues, i.e., the eigenvectors of D
associated with such eigenvalues can be expressed (up to a small error)
as linear combinations of eigenvectors of D with large eigenvalues.

4.3.2. Using recovery of eigenvectors to design a subsidy policy: A simple illustration.
This powerful result forms the core of our strategy to recover and use structure
underlying the oligopoly demand robustly under noise. To facilitate the illus-
tration, we impose a stronger assumption on D: that the largest eigenvalue of
D is sufficiently well-separated from all other eigenvalues by a “gap” much
larger than b(n). Under this condition, the Davis—-Kahan Theorem yields an

even stronger implication: we can use D to recover a normalized eigenvector

4! that correlates almost perfectly with the corresponding eigenvector® u'.
To use this, observe that Lemma 2 and Lemma 3 together imply

i - €. 0y L Al
W ;m @)@ o) (10)
while expenditure is
S= (u'-q")(u' o). (11)
=1

Let us use the recovered u' to design an intervention with o « @'. The
Davis-Kahan Theorem allows us to treat u' as effectively equal to its true coun-
terpart u' with a very small error, so from now on we will treat u' as known.
By choosing the sign of o to ensure (u' - ¢°)(u' - o) is positive. Then we can see

BIn Section 5 we develop Example 2 to illustrate our main result. Figure 2 illustrates the
similarity between the true u' (in panel B) and the estimated @' (panel D) for a case where this
stronger “gap” condition holds.
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from the equations above that W will closely approximate S, since \; > b(n)

implies 12‘;‘” ~ 1. Moreover, if we know u'-q" and this differs from zero (which
is a requirement of recoverable structure), we can scale the intervention to be of
the size that we desire, and achieve S = s.

This argument contains some wishful thinking, however. When we arranged
the sign of o so that (u' - ¢°)(u' - o) is positive, we did not consider that we
have only a noisy observation @ of ¢°. So part of the challenge of the proof is
to manage the observation error that makes ¢° different from ¢, and to show
that we can obtain a correct estimate of the sign with probability tending to 1
as n — oo. If we fail to do this correctly, our intervention actually decreases
efficiency with positive probability. This explains the need for the second part
of Assumption 4 on the error ¢ in the quantity signal.

However, bounded noise alone is insufficient: if u' - ¢° is very small, there
may be no hope for consistently recovering the true magnitude or sign of u' - ¢°
from the signal u' - (¢° + €) even with well-behaved noise: the asymptoti-
cally small noise could still overwhelm a similarly decaying underlying mean
u' - ¢°. Such an unrecoverability would make it impossible to orient and scale
our intervention appropriately. The definition of recoverable structure prevents
this problem by requiring that the projection of ¢° onto eigenvectors with large
eigenvalues is bounded away from zero.

The special case of our main result that this discussion makes plausible is: If
the largest eigenvalue of D is well-separated from others and if ¢° - u! is not
vanishingly small, then a subsidy profile proportional to u' can, if it is suitably
scaled, achieve all the properties of Theorem 1.

4.3.3. The more general result. The proof of the main result improves on this
sketch in two ways. First, it does not rely only on the eigenspace spanned by

u'. Instead, it uses a potentially much larger eigenspace of D. The general in-
tervention projects g° onto £(D, M(n)), the eigenspace of all eigenvectors of D
with eigenvalues larger than M (n). This makes it easier for the analog of u' - ¢"
not to be too small, since the projection of ¢° onto a larger eigenspace will have
a larger norm. Second, the general proof dispenses with assuming that any
eigenvalues are well-separated. Instead, it handles any possible spectrum of
D subject to our maintained assumptions. This introduces considerable com-
plexity, as it is no longer generally possible to recover any true eigenvector u*
with any accuracy. We instead work directly with a recovered eigenspace that
generalizes the span of u'. We show that despite limited knowledge of individ-
ual true eigenvectors of D underlying this space, we can use the fact that all of
them have large eigenvalues to generalize our argument for showing that (10)
and (11) can be made very close and nonzero with a feasible intervention. This
is where the arguments go beyond standard applications of the Davis—-Kahan
theorem.

5. ILLUSTRATION: INTERVENTIONS BASED ON NOISY DEMAND ESTIMATES

We begin this section by providing an example illustrating the notion of re-
coverable structure, and then use this example to demonstrate the effects of the
intervention rule that taxes and subsidizes firms in the direction of the eigen-
vector associated with the largest eigenvalue of the observed Slutsky matrix.
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Example 2 (An illustration of recoverable structure). There are n = 300 prod-
ucts. The Slutsky matrix is the combination of two matrices:

D = (1—7)Duoxk +v(—-Z2"). (12)

The first matrix, Dyjock, is a block matrix dividing the 300 products into 3 equally-
sized blocks. The entries of Dyjok are based on a 3 x 3 matrix C that governs

the pattern of interactions within blocks (C;;) and across them (C;; with i # j).

In particular,*

-1 0.15 0.7
Cc=1015 -1 0.6 and Dy = C ® J, 3.
0.7 06 -1

Here J is the matrix of ones. Products within each block are complements,
while products across blocks are substitutes. For instance, products in block
3 are highly substitutable with products in other blocks, whereas products in
blocks 1 and 2 are only mildly substitutable with each other.

We can think of each block as a product category—for example, kitchen prod-
ucts, digital entertainment products, and sports-related products. Within cat-
egories, products are complements, but across the categories they are substi-
tutes. For another example, consider three non-compatible operating systems
accomplishing similar tasks; products within each system are complements,
and products across them are substitutes.

The second term in eq. (12), a scaling of —Z Z’, is a negative definite matrix
that adds heterogeneity to the regular pattern of interactions in Dyjock. In par-
ticular, we take Z to be an n x 10 matrix with rows drawn uniformly from the
unit sphere.”

Finally, the observed Slutsky matrix is

D=D+E

where each entry of the error matrix E—except its diagonal entries, which are
kept at zero—is drawn from U[—1, 1]; this noise structure results in the upper
bound b(n) = n'/? on || E||.

We aim to illustrate basic statistical implications of (), §)-recoverable struc-
ture that is strong enough relative to the noise b(n)—that is, with M/ much larger
than b(n). In this example, the largest eigenvalue of Dy, substantially exceeds
n'/2. Hence, if v is low, then the D of eq. (12) will also have some eigenvalues
exceeding n'/2. In contrast, if ~ is high, then the main contributor to D is —Z Z’
and, in this case, the largest eigenvalues of D turn out to be no larger than
n/2. We now show that these two cases, low vs. high v, have very different
implications for inference.

First we consider a low value of v = 0.3. In this case, the two largest eigen-
values of D, in absolute value, are approximately 130 and 80, and these are
considerably larger than b(n) = /300 ~ 17, whereas the third largest eigen-
value is roughly 1.2; hence, £(D, M) with M > b(n) equal to, e.g., n?/?, is the
subspace spanned by eigenvectors u' and u®. As we explained in Section 4.3,
the Davis-Kahan Theorem tells us that we can use the noisy observation D to

24The symbol © denotes the Kronecker product.
ZNote that entry (i,¢) of ZZ' is the norm of the ith row of Z, which, by construction, is 1.
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(A) True Slutsky matrix D (B) True latent structure: u'(u')T
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(C) Slutsky matrix signal D (D) Estimated latent structure: @' (') "

FIGURE 2. Tllustration of true vs. estimated parameters when there is recov-
erable structure, v = 0.3. Blue regions illustrate complementarities (a nega-
tive sign of the corresponding matrix entry) and the red regions signify substi-
tutabilities (positive signs). The darker the color, the higher the corresponding
entry in absolute value.

accurately estimate the eigenvectors in £(D, M). Here, for simplicity, we illus-
trate graphically how the first eigenvector of Disa good description of the first
eigenvector of D.

Figure 2 depicts the Slutsky matrix when v = 0.3. Panel A illustrates the true
matrix D and panel B illustrates the rank-1 matrix u'(u')" corresponding to the
eigenvector with the highest eigenvalue. We can see that the rank-1 matrix of
Panel B, despite being defined based on how D acts on a very low-dimensional
subspace, captures a lot of information about the pattern of demand interac-
tions within and across blocks of D. Panel C illustrates a realization of the
observed matrix D. We now illustrate how the patterns in D can be recovered

from this observation. Let u' be the eigenvector of D associated with its largest
eigenvalue. Panel D illustrates the associated rank-1 matrix u'(u')". The close
resemblance between the matrices in Panel D and Panel B is an informal illus-
tration of how @' is a good approximation of the true w'. That is, despite the
fact that we observe D with substantial noise, we can recover structure latent in
D, summarized by u'(u')7, by simply calculating the largest-eigenvalue eigen-
vector of the noisy matrix D.
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Figure 3 illustrates the Slutsky matrix when v = 0.9. In this case the largest
eigenvalue is comparable to y/n and therefore is not much larger than the noise.
Although v = 0.9, and so D mainly consists of —Z Z’, the block matrix Dyjock
is still visible in D (Panel A) and the true rank-1 matrix u!(u')" summarizes
that pattern (Panel B). However, this structure cannot be recovered using noisy

observation. This is illustrated by a realization of the estimated matrix D (Panel
C) and the associated rank-1 matrix u!(u')" (Panel D).

(B) True latent structure: u'(u')T

(C) Slutsky matrix signal D (D) Estimated latent structure: ' (4') "

FIGURE 3. Illustration of true vs. estimated parameters when there is not
recoverable structure, 7 = 0.9. The meaning of the colors is as in Figure 3c

5.1. Interventions. In the context of Example 2, we focus on the following in-
tervention rule: Recover the eigenvector associated to the largest eigenvalue, in
absolute terms, of the estimated Slutsky matrix D. Intervene to subsidize firms
in proportion to this eigenvector. This intervention aligns with the intervention
rule behind our Theorem 1.

In order to meaningfully compare the effects of such intervention for differ-
ent realizations of the market state, we scale the size of all interventions that

%In this example, for low values of v the largest eigenvalue of D is sufficiently well-
separated from all other eigenvalues and, consequently, the authority can use the first eigen-

vector of D as a good approximation of u! (see the illustrative discussion in Section 4.3.2).
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we consider by requiring that they have the same expenditure based on the
observed quantity vector.”

The true initial quantity vector ¢° has some regular block structure but also
some idiosyncratic heterogeneity. It is constructed as follows:

q? = (leock)iXi
Here, the quantity vector gyocx provides a base quantity for each product that
depends on its associated block (0.1 for products in the first two blocks, and 3
for the products in the third block). The random variable X; is drawn indepen-
dently of all others, and its logarithm is normal with variance 0.1 and mean 1.
We use a multiplicative perturbation to avoid negative quantities.
The observed quantities are given by

g =qY:
where Y] is an independent error with the same distribution as X;. This can be

rewritten in terms of our additive error model, with ¢; = ¢?(Y; — 1). Here again,
the multiplicative error model avoids negative quantities.

5.2. Evaluation of interventions. We consider different values of v € [0, 1].
For each of these values we generate 3000 market states according to the above
description and we compute the changes in consumer and producer surplus
under the true market state. Figure 4 summarizes this exercise: for each value of
~ considered, it reports the median (blue dot) of the change in consumer surplus
(panel A) and of the change in producer surplus (panel B) and the respective
5th and 95th percentiles associated with the 3000 market state realizations.
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(A) Change in consumer surplus (B) Change in producer surplus

FIGURE 4. The effects of a first eigenvector intervention on changes in con-
sumer surplus (panel a) and changes in producer surplus (panel b) as a func-
tion of v in a market described in Example 2. For each value of v, we plot the
median (in blue), 5th, and 95th percentiles associated with 3000 market state
realizations.

Figure 4 shows a sharp transition in the performance of the intervention. For
7 less than roughly 0.7 the true market state has very large eigenvalues and
so the authority can use the estimate of D to precisely identify the underlying
main eigenvector(see Figure 2 for v = 0.3.) Note also that products in category
3 are the ones that are most substitutable with other products in categories 1
and 2 and so they are highly represented in the first eigenvector (i.e., they have

*More precisely, we first project the observed quantity vector onto the recovered eigenvec-
tor, and use that to predict the expenditure size.
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a high eigenvector centrality). This implies that the estimated first eigenvec-
tor is sufficiently correlated with the status quo market quantity. Hence, for
low ~, the true market state has recoverable structure. This allows the author-
ity to implement interventions that robustly have the pass-through properties
characteristic of high-eigenvalue eigenvectors—negligible impact on prices and
hence on consumers, along with an effect on producer surplus equal to twice
the authority’s spending , which is normalized to one unit.

However, as v grows larger than 0.7, the property of recoverable structure
tails (see Figure 3 for v = 0.9) with the consequence that an intervention that
taxes and subsidizes firms based on the estimated first eigenvector is very un-
predictable and risky. The unpredictability is shown by the fast widening of
the error bars as 7 increases beyond 0.7. The riskiness is shown by the fact that
for over a third of the outcomes, the realized change in producer surplus, and
hence in total surplus, is negative.

In this example, the demand for products in block 3 is significantly higher
than the demand for the other products. Hence, to a first approximation, con-
sumer surplus increases when the price of products in block 3 decreases, while
producer and total surplus increase when the quantity of these products in-
creases.

When the authority can estimate the first eigenvector accurately, the first
eigenvector intervention turns out to subsidize products in block 3 and tax all
the other products. Subsidizing products in block 3 leads to a decrease in their
price and hence an increase in their demand. Taxing products in blocks 1 and 2
leads to an increase of the price of these products, and hence an increase in the
demand of products in block 3. Combining the effects, the intervention leads
to a relatively high increase in the demand of good 3, while keeping prices
roughly constant. As a result, both producer and total surplus increase dramat-
ically without sizable changes in consumer surplus.

This management of the spillovers can be achieved only by statistically iden-
tifying some relevant latent market structure from the noisy demand measure-
ments. While in this example that structure takes the simple form of product
categories, in general it might be less easy to describe, and yet equally useful
for the design of robust interventions.

6. TIGHTNESS OF THE MAIN RESULT

We have established that if demand has recoverable structure, the author-
ity can robustly achieve the maximum possible total surplus per dollar spent
subject to the constraint that consumers are not harmed. The associated inter-
vention rule boosts production with minimal price changes, resulting in firms
capturing all efficiency gains.

This raises two natural questions. First, can we find interventions that ro-
bustly increase total surplus when the demand does not have recoverable struc-
ture? Second, when there is recoverable structure, is the structure of robust in-
terventions that we have just described in any sense necessary? For example,
could we have found interventions that robustly increase consumer surplus,
rather than leaving it unchanged?

In this section, we work with the case we have focused on in other illustra-
tions, where F hasi.i.d. entries with a standard deviation that does not depend
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on n, giving b(n) ~ n'/?; this choice is immaterial and the results apply to a
wide range of alternative noise structures.

Proposition 3. The following hold:

1. There are environments such that (i) for any ¢ > 0, there are no interven-
tion rules that e-robustly increase total surplus (W > 0) for any n; (ii)
there are interventions achieving P = 25 and C' = 0 for any S > 0.

2. There are environments satisfying (M (n), §)-recoverable structure with
]‘f((n’;) — oo and § > 0 such that (i) for any € > 0, there are no intervention
rules that e-robustly achieve C > e for all n; (ii) there are interventions
achieving C' = S and P = 0 for any S > 0.

In each case, Proposition 3 describes the limits on what can be achieved by an
authority with noisy information. It also notes that these limits really are about
information: part (ii) of each case states that an omniscient authority would not
be subject to the same limitation.

In more detail, Part 1 of Proposition 3 tells us that we may not be able to de-
sign interventions that robustly increase total surplus W = C + P — S. (Since,
by Theorem 1 we know this can be done under the recoverable structure as-
sumption, our construction must lack recoverable structure.) Intuitively, in this
case the information about the market state learned from the signal can be very
imprecise and, therefore, there are market states in which any intervention will
lead to undesirable outcomes. The proof constructs a set of market states such
that, with an uninformative signal, for any intervention there is a market state
with W < 0. The basic idea is to use the total surplus decomposition:

Al
L+ [

W=> (u' ¢")u' o) (13)
14

and construct the example so that the authority cannot accurately predict the
signs of the terms for any given o.

Part 2 of Proposition 3 tells us that even if the market state has recoverable
structure, it may be impossible to design interventions that robustly increase
total surplus and allow consumers to capture some of the resulting efficiency
gains. Lemma 3 tells us that to achieve such an outcome, the intervention must
project onto some u’ where ), is not too large, since only those eigenvectors
have nonvanishing pass-through to consumer surplus. However, the noisy ob-

servation of D and ¢° gives very noisy estimates of the constituents of (13)
corresponding to these eigenvectors. So, by targeting them, there is a substan-
tial chance (at least in some environments) that the policy will have negative
consequences for consumers.

7. DISCUSSION AND CONCLUDING REMARKS

We have developed a theory of robust interventions in large oligopolies. We
identify a condition on demand under which an authority can robustly in-
crease the total surplus per dollar spent as much as would be possible under
perfect information subject to the constraint that consumers are not harmed.
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The methodological contribution lies in developing spectral methods to ana-
lyze pass-through in oligopolies, and applying these methods to gain leverage
on statistical problems about oligopolies observed with noise.

We conclude with some observations about the scope of our analysis and
connections to related research.

7.1. Marketplace big data in practice. In our model, the authority has “big
data” about the Slutsky matrix D that may not allow precise estimation of any
pairwise demand interactions or hedonic model parameters. This is natural for
markets with a large and changing collection of goods, such as those hosted
on large online marketplaces. Such marketplaces collect immense amounts of
data—about consumer browsing behavior, timing of purchases, consideration
sets, etc.—and apply machine learning techniques to these data to form infor-
mative but imperfect estimates of interactions among various goods (Athey,
2018; Wager and Xu, 2021; Cai and Daskalakis, 2022; Bajari, Burdick, Imbens,
Masoero, McQueen, Richardson, and Rosen, 2023). This is modeled by our no-
tion of a market signal.*® Our paper offers an approach for calculating suitable
statistics that suffice for effective interventions despite the noise in this signal.

Our approach contrasts with a standard one in empirical industrial organi-
zation, where markets tend to be defined tightly so that each contains only a
relatively small number of similar goods with strong demand interactions, and
then a small number of hedonic parameters and demand elasticities are pre-
cisely estimated. That approach would correspond in our notation to a very
precise signal (i.e., an error matrix E with small norm) and a small number of
products.

We have focused on total market surplus as a canonical objective. But we
also saw that our robust intervention maximizes the change in total surplus by
increasing producer surplus while holding consumer surplus constant. In this
sense, the intervention maximizes the increase in producer surplus under the
constraint that consumers do not lose—a reasonable objective for an operator
of a marketplace that collects revenue proportional to sellers” profits. We leave
the study to other objective functions for the authority to future research.

Our model permits flexible marginal interventions. This modeling choice
is suited to online marketplaces, because the operators in charge of them can
finely target policies that function as taxes and subsidies, including commission
rates, discount coupons, free advertising, etc.—and regularly experiment with
such perturbations. It is worth noting, however, that the policies our analysis
recommends need not be specific to individual products. This is because when
we take a large matrix (in our case, the Slutsky matrix) reflecting relationships
among units (in our case, products) and look at eigenvectors with large eigen-
values, the coordinates of those eigenvectors typically yield low-dimensional
embeddings capturing substantively natural categories (Chen, Chi, Fan, and
Ma, 2021). For instance, in our Example 1, the top two eigenvectors are suffi-
cient to recover the blocks to which the goods belong. Relatedly, spectral clus-
tering analyses based on the top few eigenvectors sort items into natural “sim-
ilarity” classes, where similarity is defined by having similar relationships to

2The distributional properties of E describing the errors in these estimates would depend
on the application, as would the conditions for E that would bound its norm. It would be
interesting to investigate these issues in specific applications.
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other classes (Spielman and Teng, 1996). Once again, the spectral statistics used
in these techniques tend to pick up interpretable “broad” features of the prod-
ucts, rather than idiosyncrasies specific to individual products. As a result, the
policies our interventions recommend—which project all variation onto these
eigenvectors—will often be close to a policy that depends mostly on category—
e.g., a subsidy on smartphones along with a tax on certain types of accessories.
Though the policies will not be perfectly regular (note the irregularities of Panel
D of Figure 2) the above observations lead us to conjecture that an authority
constrained to design policies that discriminate only at a coarse product level
could, under natural assumptions, achieve a substantial amount of the gains of
our policies. We leave these interesting considerations to future work.

Lastly, we mention the problem of predicting the effects of general perturba-
tions to markets in settings such as ours. This is related to, but distinct from,
the problem we have studied. The problem of robust intervention is impor-
tantly easier, because the authority chooses the perturbation to make a pre-
diction about. Nevertheless, the spectral decomposition of intervention effects
appears likely to be useful for descriptive comparative statics in cases where a
cost shock o or other change is exogenous.

7.2. Relationship with hedonic utility models. Recent work by Pellegrino (2021)
and Ederer and Pellegrino (2021) uses an oligopoly model to empirically quan-
tify the evolution of market power. The relationship between our model and
their work sheds light on the types of empirical models that can capture recov-
erable structure.

In Pellegrino (2021), the model of demand is hedonic, in the spirit of Lan-
caster (1966): the household’s utility is additively separable in the contributions
of various characteristics, and a product provides a bundle of these characteris-
tics. The Slutsky matrix D derived from this demand model can be expressed
as a transformation of the cosine similarity matrix of products’ characteristics,
which Hoberg and Phillips (2016) estimated for a large set of consumer goods
using text data.” We have calculated that in the Slutsky matrix derived this
way, the eigenvalues are all small and the recoverable structure condition fails.*
It is useful to reflect on why this is the case.

In the model of Pellegrino (2021), a simple calculation shows that it is impos-
sible for the Slutsky matrix to have large eigenvalues.” For an economic intu-
ition, note that in the Lancaster (1966) type of model, the “direct” relationship
between any pair of goods is substitution. With substitution, if some demand is

29Pellegrino (2021) and Ederer and Pellegrino (2021) consider quantity competition, but the
Slutsky matrix does not depend on this choice.

30There are more than 3000 products in the data and for the case of i.i.d. noise we would
require that the largest eigenvalue is considerably larger than b(n) = /n ~ 54; this fails as
largest eigenvalue of D in absolute value is about 2.

3The (un-normalized) Slutsky matrix in Pellegrino (2021) is —B~!, where B = I +a(X—1I).
The matrix X is positive semidefinite because it can be written as VTV, where the columns of V'
are the characteristic vectors of various products. Thus all eigenvalues of B are real numbers
bounded below by 1 — a, and all eigenvalues of —B~! are at most 1/(1 — «) in magnitude.
Pellegrino uses the value oo = 0.12, which prevents any eigenvalue from exceeding 1.13. We do
not work with exactly the same Slutsky matrix because of the normalization in Appendix A.1.
Its eigenvalues are a bit different, but they can still be bounded by a constant by elaborating
this argument. Numerically we see that the normalization makes little difference.
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diverted from one good due to an increase in its price, the total effect on all sub-
stitute goods is bounded, since, loosely speaking, the demand gained by these
other goods must come out of the demand lost by the more expensive one. This
bounds the sum of positive entries in D corresponding to this effect, which in
turn bounds any complementarities in the Slutsky matrix.”> In essence, in a
hedonic model where the basic force is substitution, overall spillovers remain
bounded, and the fact that D has no large eigenvalues is the mathematical man-
ifestation of this.

Quite different behavior emerges in models where utility arises directly from
consuming goods together, and such complementarities are central to our ex-
amples of recoverable structure. A leading practical example comes from the
use of computers: a consumer’s utility from a computer depends on the hard-
ware, operating system, and applications. Two firms selling distinct components—
a hardware device and an operating system, for instance—supply complemen-
tary goods, while two firms selling the same component (say, operating sys-
tems) supply substitute goods (Matutes and Regibeau, 1988, 1992). Our illustra-
tive Example 2 in Section 5 shows how Slutsky matrices with large eigenvalues
arise naturally in such settings.” But, as we have seen, it is impossible to pro-
duce the same patterns in models of the Lancaster (1966) type, because they can-
not generate large eigenvalues; one would need to incorporate terms reflecting
that some characteristics provide greater value when enjoyed together. There
is a straightforward economic intuition for why such complementarities more
readily produce recoverable structure: when one good’s price decreases, all its
complements can experience comparable nonvanishing increases in demand.
This creates the clusters of nonvanishing entries in D that are the hallmark of
recoverable structure.

In summary, direct complementarities seem practically important and can
naturally yield the recoverable structure central to our results. We hope these
observations will motivate further empirical research on the structure of large-
scale oligopoly models with complementary goods.

7.3. Games on networks. One can view our exercise as a special case of an
intervention, under noisy information, in a game among a large number of
agents. In our case, the game comes from a standard oligopoly pricing model.
Under the assumption of linear demand, the pricing game can be seen as a
network game with linear best replies where the Slutsky matrix defines the
network. Our analysis shows that if the oligopoly exhibits recoverable struc-
ture, then there are robust interventions for particular economic objectives. The
methods we have developed can be extended to other settings. For example,
in a public goods setting, interventions would aim to realign private marginal
returns with social marginal returns. The literature has developed tools to un-
derstand how to do this when the authority has precise information on the

32Note that complementarity (where one good’s demand decreases in the price of the other)
can arise in Pellegrino (2021) model. This happens through indirect effects: the substitute of my
substitute can be my complement. However, since the “direct” substitution effect is bounded
in magnitude, so are the indirect consequences.

33The complementarities there happen to be within-category, but that is not important for
our point here.
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spillovers causing the underprovision of public goods.> However, we know
little about designing interventions under noisy information about such exter-
nalities. Similarly, in contracting for teams under moral hazard, network meth-
ods have recently been developed for locally perturbing contracts to achieve
better outcomes for a principal (Dasaratha et al., 2024). But it is a considerable
challenge to extend these results to the realistic case where the strategic interac-
tions among members of an organization are only imperfectly known. General
games will lack some of the structure we have leveraged, including the proper-
ties of the spillovers structure coming from a symmetric, positive semidefinite
Slutsky matrix. So there are challenges to overcome in extending our results.
We hope this paper stimulates research in these directions.

7.4. Nonlinear demand. We have assumed that demand is exactly linear in
a neighborhood around the status quo equilibrium point. This assumption
implies that the pass-through of an intervention to prices and quantities and,
therefore, to welfare, depends only on the Slutsky matrix D. We use this simpli-
fication to develop new concepts useful for robust market interventions. These
concepts can be extended to nonlinear demand settings. We briefly explain
how.

When demand is not locally linear, the pass-through of marginal cost shocks
depends not only on the Slutsky matrix (which is the Jacobian of demand) but
also on the Hessian of the demand function, the matrix whose (i, j) entry is
0%q;(p)/OpiOp; (see, e.g., Miklos-Thal and Shaffer (2021)). Thus, our calculations
would change, and there is no guarantee that our linear tax/subsidy interven-
tions (based only on the Slutsky matrix at the status quo) would perform as
they do in the linear model.

However, our main result can be extended once we allow the authority to use
nonlinear interventions, i.e., to commit a vector of functions specifying a pay-
ment to each producer ¢ as a function of all prices and quantities realized after
the intervention. With this broader set of instruments, the authority can use
nonlinear rebates based on post-intervention quantities to reduce the problem
to the one we have studied. The key idea is to effectively linearize the demand
the firms face around the status quo by using transfers to make up the differ-
ence between realized demand and a linear demand function. Once demand
has been “linearized” in this way, the problem that firms face becomes equiva-
lent to the one we have studied and we can use the results developed to design
per-unit tax/subsidy interventions with desirable welfare properties. If we as-
sume that the curvature of the demand of each product is locally bounded by a
known constant, the payments needed to linearize demand can be bounded by
a small fraction of the first-order gains of an intervention, so our welfare guar-
antees remain valid. Such assumptions on curvature also allow us to specify
concrete sizes of interventions that achieve a given level of welfare gain, rather
than just characterizing the behavior of derivatives.

34See, for instance, Bramoullé et al. (2014).
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APPENDIX A. OMITTED PROOFS AND DETAILS FOR MAIN RESULTS

A.1. Normalization of spillover matrix. For any differentiable function f :
R™ — R™, let D f(x) be the Jacobian matrix of the function evaluated at x € R”,
whose (7, j) entry is f;/0x;, where f; denotes coordinate i of the function.

Here we will be explicit about distinguishing quantity variables g from the
corresponding demand function; to this end, we will write the function as g.

Consider the change of coordinates for quantities given by ¢; = 7,¢;. Keeping
units of money fixed, the corresponding prices are p; = p;/v;. Let I be the
diagonal matrix whose (i,) entry is ;. With these new units, we can define a
function

q(p) = I'q(I'p)
and by the chain rule we have that

Dq(p) =T [Da(p)] T

For a given demand function q : RY — R¥, recall D is defined to be Dq(p*),
where p* are equilibrium prices, uniquely determined under our maintained
assumptions. We write D9 for Dq(p*), It follows from this and the above para-
graph that

D' =TDT.

Now set ; = 1/4/|DJ|. It is clear from the above formula that D% has —1 on
the diagonal.

Thus, under a suitable choice of units, the matrix D may be assumed to have
diagonal —1.

A.2. Proof of Fact 1. Fix an n and a set of types {1,2,...,m}, with the number
of products of type t being N(t).
The matrix D can be written as

D=A+(1+~n)I

where A is a block matrix, in the sense that A4;; depends only on k(i) and &(j).
The nonzero eigenvalues of A are the same as those of the m-by-m matrix A

whose (t,t') entry is
Aw = v(n)\/NE)N (') Dy .

There is some ¢ so that N(t) > n/|M]|. Thus,

~ n) | = n
|Aw| > %H‘Dtt‘ = %Th

recalling D has diagonal —1. By the Courant-Fisher Theorem, this is a lower
bound on the magnitude of the largest eigenvalue A. Since the adjustment
coming from the scaled identity matrix is of lower order, D has an eigenvalue
at least y(n)n/2|M| in magnitude.

Now let u' be the corresponding eigenvector of A normalized to lie in the
unit ball, and v' be its limit as n — co. This limit depends only on the limit
A/n, which exists by our assumption that N(¢)/n converges for each n. The

limit projection of ¢° onto u' depends only on g and v', and for generic g this
is nonzero.
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A.3. Proof of Theorem 1. We prove the theorem under Assumptions 1-3 but
we replace Assumption 4 with the following weaker assumption:

Assumption 5. We assume that:
(1) E[ E[] < b(n);
(2) for any sequence of linear subspaces V(n) of R" with dimension d(n),
where d(n)/n —, 0, the norm || Py(,,)e|| tends to 0 in probability.

Note that parts (1) of Assumption 4 and Assumption 5 are identical. How-
ever, part (2) of Assumption 4, which stated that all ¢; are independent, implies
part (2) of Assumption 5.

Some notation: For any matrix M, we define (M, ) as the set of eigenval-
ues of M with absolute value greater than or equal to A and £(M, )) as the
space spanned by corresponding eigenvectors.

Recall that under Assumption 5, a signal with b(n)-bounded noise can be

written D = D(p°) + E, where, by Markov’s inequality,
1B < kb(n) (14)

with high probability, where k is a large constant; we can absorb this constant
into b(n), which we will do from now on.

Recall also the conditions of the theorem imply that we have sequences b(n)
and M (n) such that, for large enough n, D has eigenvalues exceeding M (n)
where® b(n) < M(n) and (D, M (n)) is nonempty. We also choose two other

sequences M (n) and M (n), such that M(n) < M(n) < a(n) and the differences
between these successive sequences also dominate b(n).
We use the following notation:

A(n):= (D;M(n)), A(n):= (D;M(n)), A(n):= (D;M(n))
L(n) := L(D,M(n)), L(n):=L(D,M(n)), L(n):=L(D,M(n)).

Let Py be the projection operator onto subspace V and Py its orthogonal
complement. Let (A, u'),..., (\,, u") be eigenpairs of D, with [A\;| > |\o| >
> Al

We now define our intervention:

P q°
o= (15)
1P @
The expenditure of this intervention is
. P q°
S:a.qOZL.qO (16)
1Pz @2

Our first main lemma, which we will prove shortly, will assert that S converges
in probability to 1. The challenge in proving such a result is that the actual ex-
penditure depends on true quantities, whereas the intervention is built based
on estimated quantities projected onto an “estimated” eigenspace of D. We be-
gin with a technical result that will be key to controlling the differences between
actual and estimated objects. It relies on the Davis—-Kahan Theorem.

Lemma 4. The norm ||Pi(n) Pr || converges to 0 in probability as n — oco.

35We use the notation a(n) < b(n) to mean that a(n)/b(n) —, 0.
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Proof. The Davis-Kahan Theorem guarantees that, for any n > 0, there exists
Ni(n) such that for all n > N;(n), with probability greater than or equal to
1 — 7, two properties hold. First, every eigenvalue in the set A(n), which is
nonempty by the recoverable structure assumption, has a corresponding eigen-

value within distance O(b(n)), and therefore in A(n). Second,

2[l &l

1Py P
g

I < : (17)

L(n)

where g, the “gap,” is the minimum distance between some eigenvalue of D
in A(n) and some eigenvalue of D not contained in A(n). This gap is at least

M (n) — M(n) > b(n). Thus, increasing N;(n) if necessary, we conclude the
statement of the lemma. g

Lemma 5. As n — oo, the expenditure derivative S converges in probability to
1.

Proof. Write ¢° = @° — € and calculate

Pr @’

(@ o)
[P @

S:o"q(]:

—~0

iwd

S R
1Pz@®l? =

)6

By the Cauchy-Schwarz inequality
IPE(n)fzﬂ . PE(n)€| < ||P2(n)§0|| : ||Pi(n)€||7
which, combined with the above, gives

: 15 el
S>1— ———.
1Py @

The fact that L(n) is a subspace of L(n) and the assumption of recoverable struc-
ture together ensure that HPE(n)(jO | > 9.

So to obtain the conclusion, it suffices to show that || P, el| tends in prob-
ability to 0. This will be established via Assumption 5. To apply it, we need
to show that dim L(n) /n —, 0. The reason this holds is that if there were more
than n/M (n) eigenvaluesin (D, M (n)), then the absolute value of sum of these
eigenvalues would exceed n, but the trace (and hence sum of eigenvalues) of

the negative semidefinite matrix D is —n. Since M (n) — oo, the statement is
established. O

Now, to prove the theorem, we use Lemma 3 to write:

W= Z (ug-qo)(uﬁ-o- |/\€ —|— Z u’ - q°) o) Al : (18)
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where we have divided the quantity into a main (M) part and the rest (R). A
similar (but simpler) decomposition applies to expenditure

S= > @W-"u' o)+ > (u-q")(u' o). (19)

M €A(n) LM EA(n)

SIW SR

J

The proof can be completed with two further lemmas.
Lemma 6. As n — 0o, both T and Sy converge in probability to 0.

Proof. This follows from Lemma 4 and the fact that by construction, o € /L\(n)
O

Lemma?7. Asn — oo, . ‘
W — Sy 2 0.

Proof. Using the expressions above, write the difference

W S= S | ] et

A€A(n) 1+ |>\£|

Note that for all ¢ € A(n), |\| > M(n),so 1 — M%n) < 12‘3‘” < 1. By Holder’s
inequality (with p = oo and ¢ = 1), we have

) ) 1 0
(W — 5] SW Z (u- ¢°)(u’- o).

- /\ZGA(TL)

Then applying Cauchy-Schwarz term by term, we have
W=$1< s 3 Pl Puc|
_ Ae€A(n)
1
M{(n)
Now using our Assumption 3—that ||¢°| is bounded in n—gives the result. [

W - 8| < 1Py @ || Pramyer.

We can put everything together. Lemma 5 gives that S %> 1. Combining
this with (19) and Lemma 6 (which says that Sk 2 0) we see that S); & 1.
Then using Lemma 7, we find that 7,; % 1. Another application of Lemma 6
gives that Wz % 0, so that W % 1. The claim about the effect on C follows
immediately from Proposition 1.

Finally, we consider the effect on individual consumer surpluses. For any
consumer h,

n

C"=—qg"-p=-> (u'-¢")(u'" p) (20)
=1
Using Lemma 2:
1
[ — L 21
u’ - p 1+|M(u o) (21)

Then by an argument very similar to the proof of Lemma 6, we conclude that
ch B o.
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A.4. Proof of Proposition 3. We prove each part separately.

Part 1: We construct an environment (i.e., a set of market states ® and, for each
0 € O a distribution g of (ﬁ, q")) where no intervention robustly increases
total surplus, but where an omniscient authority could achieve total surplus
gains P 4 C' = 25 with C' > 0.
Let
D= "1y LT
n—1 n—1

where I is the n x n identity matrix and 1 is the n-dimensional vector of ones.
Let @ C R™ be the (n — 1)-dimensional sphere of vectors orthogonal to 1 with
norm 1. The set of market states is

1 1
@:{(D,qo) : D:D*andq():g(l—i—ir),forsomerEQ.}

In this proof, it will be useful to define random variables on the extended reals
R U {—00, 00}, which allows us to take ; = oo for all i.*® Note that D is known
and the signal about ¢ is always oo in every entry, so that any intervention rule
implements a single intervention—call it o*.
Note that D is a normalized Slutsky matrix. The spectral decomposition is as
follows:
e \; = 0 with multiplicity 1; the corresponding eigenvector is u! = n=/21;
o \y = ——"= with multiplicity n — 1.
Now write
o = aju' + ayu?, (22)
where u? is a vector orthogonal to u' and a; < 0 (we can achieve this sign of a,

by choosing the sign of the vector u' appropriately).
3

Complete (u', u?) to an orthonormal basis of eigenvectors of D, (u'!, u? u?, . ..

Consider the market state (D, ¢°) € © given by D = D* and

1 1
qoz—(1+—u2).
n 2

For any intervention o, Lemma 3 states that the change in total surplus is
given by:

i - Al £, 0y L
W=— u - u - 23
;Hw( q')(u' - o) (23)
It follows by our choice of ¢° that u’ - o is equal to a; and a, for { = 1 and ¢ = 2
respectively, and to 0 for £ > 2. Also, u’ - ¢° is equal to n='/2 for ¢ = 1 and to
n~!/2 for ¢ = 2. Since \; = 0, only the term corresponding to ¢ = 2 is nonzero,
and so

_ 1

TN
which is non-positive by our choice of a; < 0. Therefore, in this market state o
achieves W > 0 with probability 0. We have thus shown that no intervention

can achieve W > 0 e-robustly, for any ¢ > 0.

3n Assumption 4, we may take V = oo; this is immaterial since that assumption plays a
role only in our positive results. Since D is deterministic, we can take E to be the zero matrix.
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On the other hand, by Proposition 4 in Appendix B, any surplus outcome
(P,C, S) satisfying 3 P + C' = S can be achieved.

Part 2: Note the setting here is different from Part 1: in that case, we were con-
structing an environment without aggregate structure, while here we will give
an example of an environment with recoverable structure where no interven-
tion can robustly increase consumer surplus.

The set of market states is as follows. Since we have to show that there is no
intervention that has the claimed property for all n, we will work with n = 2™
firms, where m is a positive integer. Let r!, 7% ... r" € {—1,4+1}" be vectors
that are mutually orthogonal, with r! being the vector of all ones. (This is pos-
sible by Sylvester’s construction of Hadamard matrices.) Let u’ = —=r". Let

* neont,o1 1
D = 5 (u’) u 2I .
Note this matrix has eigenvalues \; = —2* with multiplicity 1 and —1/2 with
multiplicity n— 1. The set of possible market states is (D*, q"), where ¢° is given
by any vector of the form

q’ = % <u1 + f(n) Z Sgu€> : (24)

=2

where each s, € {—1,+1}, and f(n) is a real-valued function we will specify.
Each (D*,q") € O satisfies our maintained assumptions. Moreover, © has
(M(n), d)-recoverable structure for any M(n) < n/2 and 6 = .49.

In any environment, suppose there is an intervention rule that achieves the
property C' > ¢ > 0 robustly over a set of market states ©. Then, by definition
of robustly achieving the property, the intervention rule must achieve it with
high probability when 6 is drawn from any distribution over ®. We will use
this fact now, specifying the distribution over © given by drawing the s, in (24)
with equal probability from +1, and derive a contradiction to our assumption
at the start of this paragraph.

Recall

: 1 N
€= =3 (v o)
The ¢ = 1 converges in probability to 0 as n — oo, since |A\;| — co. Note we may
take each u’ to be a scaling of r(*).

To handle the rest of the summation, we introduce the error structure in this
environment: let the ¢; be independent and normal, each with variance 1/n,
which satisfies Assumption 4. We note a useful fact. Fixing any 6 > 0 and n, if
f(n) is small enough, then (under Assumption 4), for large enough n, the con-
ditional distribution over ¢° — Ju' given the authority’s signal (in this example
just ") is within 4 of the prior in total variation norm, except for signals having
probability at most 4.%

37Let’s work in the basis (u',u?,...,u™). For each ¢, the authority observes a signal z, =
f(n)seu® + ¢, where (; are i.i.d. normal with variance 1/n (we have used that the rotation
into the new basis does not affect the distribution of errors). Now fix n and condition on error
realizations satisfying ||e|| < K (n), where K (n) will be specified later. For a fixed K (n), if f(n)
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Now, let

n n

: 1 0 _ 2 0
Cor = =3 ) = 3 2l ')

We will study the distribution of this random variable for any fixed o, under
the prior. We claim that C, has the same distribution as —C-,. This is because
in the above expression, only q” is random, and u’ - ¢° are independently equal
to plus or minus the same constant by definition. Thus, for any € > 0,

P(sz§—€‘q\0)—P(CEQZ€’aﬂ)%nO
Now, taking expectations over gq"

P(CZ2 < —6) — P(C’ZQ > 6) —, 0.

, and using the useful fact, we find that

Thus we have a contradiction to robustly achieving C' > .
On the other hand, again by Proposition 4 in Appendix B, any surplus out-
come (P, C, S) satisfying 3 P + C' = S can be achieved.

Remark 3. For simplicity, this proof has worked with a case where all un-
certainty comes from q°, and the projections of ¢° onto various low eigen-
vectors are small. A stronger negative result can be obtained by elaborating
the construction a bit—making the )\, different from one another, so that the
eigenspaces orthogonal to 1 are not deterministic. Then, by showing that the
eigenvectors are often impossible to recover with any precision, we can obtain
a similar conclusion even if all the projections u‘ - ¢° are bounded below.

APPENDIX B. COMPLETE INFORMATION

Recall from Proposition 1 that

%PJFO:S (25)

always holds. We now show the following result.

Proposition 4. If all products are independent (i.e., D = —1I), then an interven-

tion that spends S dollars implements C = g and P = S. Otherwise, for generic

q°, any (C, P, S) that satisfies (25) can be implemented by an intervention.
Proof. First, consider the case in which products are independent. In this case,
the effect of a subsidy to firm ¢ and a subsidy to firm j to surpluses are separa-
ble. So it is sufficient to prove the result for an intervention which only subsi-
dizes one firm: take o with o; = 0 for all j # 1 and oy > 0, so that S = o1q}.
Note the basis diagonalizing D is the standard basis, and using the formulas
in Lemma 3 with \, = —1 for all ¢, we conclude C' = ¢¢%/2 and P = ¢¢?, as
claimed.

Second, if products are not all independent (D # —I), then there exists ¢ # ¢’
with A, # ),. For generic q, we also have that (u’ - q)(u’ - ¢') # 0. Without loss,
take / = 1 and ¢’ = 2. We now construct a set of interventions under which we
can obtain any outcome (C, P, S) that satisfies (25).

is chosen small enough, the density of the signal 2, depends arbitrarily little on s;, and thus the
posterior distribution about s; depends arbitrarily little on the signal.
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For any real number 3 # 0 and any S, consider the intervention
o=pB(u'-qQu' +a(u qu’),

where o is chosen so that o - ¢ = S. Note that o - ¢ = 5((u' - q)> 4+ a(u?- q)?) so
this implies that

L _ S8~ (u-q)

2. q)2
Hence, as we vary 3, we keep o - g co::targc)and equal to S. Next, note that
C = Ty oo
= %M(ul q)° + %W -q)°
T +5]A1] (u-q)" + & _(52@;).2(1)2 1 +1\)\2\ (u”-q)”
1 +6|)\1| (w'-gqt+ 2 _1B+(rL|LA12'|q)2

1 1 1 .
1 2
= : - + S
flu-q) (1+|)\1| 1+\)\2\) 1+ N

Since this is a non-constant linear function in 3, for a given S, we can achieve
any given C' by choosing /3 appropriately. O




ROBUST MARKET INTERVENTIONS 41

APPENDIX C. A NOISE STRUCTURE UNDER WHICH ASSUMPTION 4 HOLDS

For a concrete interpretation of Assumption 4, we will present a sampling
procedure and an associated estimator for the normalized demand matrix D.
As in Appendix A.1, we will not assume any normalization to begin with (since
the authority does not have the luxury of the market being normalized).

Since all our notation about the Slutsky matrix (D;;, its estimators D;;, etc.)
was for the normalized version of this matrix, for this proof we use underlines
to refer the un-normalized matrix, whose entries are D,; = 0¢;/dp;. We will
also use underlines in our notation for estimators of the un-normalized entries.

For simplicity, we assume that all households share a single representative
utility function for goods and that the number of households exceeds n?, where
n is the number of firms. Moreover, we assume that, for all i and j, the entries
D,; are uniformly bounded, i.e., |D;;| < D,,,, < oo for some positive constant
D, .. Also assume the true diagonal entries D,; are bounded away from 0:
0 < Din < |D,;| foralli. The constants D, ;, and D,,.. do not depend on i, j, or
n.

For each product pair (i, j), the authority samples a distinct household—call
it h(i, j)—with the representative preferences; it performs a demand experi-
ment to obtain an unbiased estimate EZ-(Z’]

N h 7:7 j . . . . . .
D el of D,,. Note there is a distinct estimate of D,; for each household A (i, j).

(3

" of D,;; and an unbiased estimate

~h(i.j ,
We drop the superscript (i, j) on Qij( 7 and write
D;; = Dy; + Fy.
We assume that the F}; are mean-zero and independent across (i, j), that their

support is uniformly bounded, and that the matrix F is symmetric.”® Let V be
an upper bound on Var[F};] that does not depend on ¢, j, or n.

Turning to estimates of D,;, we write
~h(i,j 0.9
Qii( J) — D, + G?j( 7]).

We assume that the G?j(i’j ) are mean-zero and independent across (i,j), and
that Gz(i’j Vis independent of F}/;; unless (7', j') = (¢, j). We also assume that the

variances of the G?j(i’j ) are bounded by some number V that does not depend

on ¢, j, or n. Now, letting

~ 1 ~h(i,j
D — 2N phtd)

=it =i ’

n =
J
we may write

D 1 h(i.d)
D;; = D, + Gy, where G;; = - Z G
j

Next, as in Appendix A.1, let T be the diagonal matrix whose (i, ¢) diagonal

entry is fu‘ =1/ E and construct

@i
D =TDTI.
3Since D is a symmetric matrix, we view the parameters as being the numbers on or above
the diagonal.
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Next, turning to true quantities (as opposed to hatted estimators) recall the
analogous definitions I';; = 1/+/D;; and also recall that

D =1rDr

is the true normalized Slutsky matrix. Write E = D — D. Notice that Var[G;;] <

V/(n — 1), a fact we will use throughout. (The reason for the very precise es-
timate is that we are using n — 1 different, independent households’ signals to
estimate the same number D,,.)

Lemma 8. Under the sampling procedure described, E[||E|] < b(n), where
b(n) = yn'/? for some constant y > 0.

Proof. Let ® = T —I'. We start by rewriting the error matrix E:
E=D-D=TDT-TIDT.
Substituting T'=T+&and ﬁ = D + F, we have:
E=T+®)(D+F)(I'+®) -TDT.
Expanding the product and using the symmetry of all the matrices involved,
we obtain:
E=TDIr+rD®+TFIr+TF®

+eDI'+PDP+PFI'+PF®-I'DT
=I'FI+2I'D®+2I'F®+®PDP+PF .

Our goal is to bound the expected spectral norm of E:
E[IE|[] = O(v/n).
Using the triangle inequality for the spectral norm | - ||, we have:
B < [T FL]+2|T D@ +2|C F&|+[|®D 2| +[|2F 2.

We will bound the expected value of each term on the right-hand side. In this
argument, we adopt the standard practice that the meaning of the constant C'
can change from line to line, but this symbol always stands for a deterministic
constant that does not depend on ¢, j, or n.

First term: E[||T"' F'T'||]. Since I is a diagonal matrix with entries I';; = 1//Dy;,
and D;; is bounded away from zero and infinity, there exist constants Iy, ['max >
0 such that:

Fmin S Fu S 1_‘max‘

Thus, |T'|| < I'max. The matrix F' has independent, mean-zero entries Fj; with
variances Var(F;) < V.
Consider the matrix H = I' F T" with entries H,;; = I';;F};I';;. The variances
of H;; satisfy:
Var(H,;) = 212 Var(Fy;) <T¢ .V

W jg max ' °

By standard results on the expected spectral norm of symmetric random matri-
ces with independent entries (Bai and Yin, 1988), we have that || H||] = O,(y/n).
Under our assumption that F' has uniformly bounded support, this can be ex-
tended (Dallaporta, 2012, Theorem 2) to the statement that E[|| H||] = O(v/n).
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Second term: E[||T’' D ®||]. Since ® = I-Tand T, = 1/ D;;, we use a Taylor
expansion around D;; to approximate39 D,
~ 1
O =Ty — Ty = —§F?zGii + O(Gi)
The variance of ®;; satisfies:

2
Var(®;;) < (11“9’ > Var(Gy;) <

slQ

(26)

2 max

for some constant C' > 0. The entries of I' D ® are:
(T D ®);; =I'uD;;®j;.
Therefore, the squared Frobenius norm is:

||FQ(I)||% = Z(FiiQijq)jj)z'
1]
Taking expectations:
1
E[HFQ@H%‘] < F?nax(Qmax)2 Z E[(P?j] < On2 = CTL,
i,J

n

where in the penultimate step we have used eq. (26). Thus, using the fact that
Frobenius norm bounds the spectral norm and Jensen’s inequality, we have:

ETD®|] <E[T D 2] <4/ E[IT D2|7] < Cvn.

Third term: E[||T' F ®|||. The entries of I' F' ® are:
(L F®); = Lk 5.
The squared Frobenius norm is:
||FF‘I’||% = Z(FiiFij(I)jj)Q-
Y]
Taking expectations and using the Cauchy-Schwarz inequality:

7 1
[T F @3] < T2,V S E[@2] < Cn* -~ = Cn.
(]

n

Therefore:
E[|T F @[] < Cv/n.

Fourth term: E[||® D ®||| The entries of ® D ® are:
(@D ®@);; = PiuDy; ;.
The squared Frobenius norm is:
H(I)Q(I)H% = Z(q)iigijq)jj)z‘
1,J

Let f(x) = 1/y/. The derivative is f'(x) = —2~3/2. Expanding f(D;; + G;;) around = =
D;; using Taylor’s theorem, we obtain f(D;; + Gi;) = f(Dii) + f(Dsi)Gii + O(G%). Therefore,
@y = Ty —Tii = f(Dii + Gis) — f(Dis) = f'(Dii)Gii + O(G3) = —3T%Gii + O(G7;), where
Li; = f(Du).
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Taking expectations:

n

Ell® DI < (D) S ERIER] < o (£) —c

Thus:
E[[®D @[] < C.
Fifth term: E[||® F ®||] The entries of & F ® are:
The squared Frobenius norm is:
|® F &[% = Z(q)iiFijq)jj)Q'
.3
Taking expectations and using the Cauchy-Schwarz inequality,
= c\* ¢
2 2 2 2
Elle F ol < VY e < o (5 =5
]
Therefore: o
E[|® F ®|] < —.
e Fe|)< -

Combining all the bounds:

E[||E]]] < C1v/n+ 2C2v/n +2C3v/n+ Cy + % = O(v/n),

where C, Cs, C5, Cy, C5 are constants independent of n, as desired. O
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