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1. Introduction

A popular method of motivating members of a team is giving them performance

incentives that depend on jointly achieved outcomes. Examples of such incentives in-

clude startup executives receiving firm stock and a marketing team receiving bonuses

for achieving a sales target. How should such incentive schemes be designed and how

should they take into account the team’s production function?

We examine these questions in a simple non-parametric model of a team working

on a joint project. Each member chooses how much costly effort to exert. These ac-

tions jointly determine a real-valued team performance—for example, the quality of

a product—according to a nice, increasing function of the efforts, which may entail

interactions such as complementarities among agents’ efforts. Any performance level

determines a probability distribution over observable project outcomes. For example,

the outcome may be the revenue from a project, which is stochastically increasing in

non-contractible project quality. The uncertainty reflects factors outside the team’s con-

trol, such as competing product releases. Although it is not possible to write contracts

contingent on individual actions or the team performance, the principal can commit to

a contract specifying nonnegative payments to each agent contingent on each possible

project outcome. The principal’s goal is to design this contract in a way that maximizes

profit: revenue minus compensation.

The setting builds on the classic Holmström (1979) model, in which a single agent

produces work of a non-contractible quality resulting in an observable outcome.1 In

our setting, the analogue of quality is a jointly achieved performance. How incentive

spillovers across agents matter for contract design—a central issue for modern firms—is

not well understood, despite the immense amount learned about contract design since

Holmström’s work. In this paper, we make progress on this problem by leveraging some

ideas from network theory.

To illustrate the basic importance of incentive spillovers, imagine that the principal

slightly adjusts the contract of a particular agent, Bob, in a way that motivates him to

work harder. In team production, changing one team member’s action can change other

agents’ private returns to effort, holding fixed their own contracts. Those whose efforts

1In particular, the obstacles to perfect contracting are the same: moral hazard and limited liability.
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are complements to Bob’s are now motivated to work harder, while those whose actions

are substitutes have incentives to free-ride on his higher effort. This interconnectedness

plays a pivotal role in the optimal allocation of incentive pay. In view of what we

have just said, optimal contracts cannot be based only on the isolated contributions of

agents’ efforts to team performance. Contract design must also take into account agents’

organizational positions—how their effort shapes other agents’ responses to their own

contracts.

Our contribution is a characterization of optimal contracts in the presence of incentive

spillovers. The characterization is stated in terms of three kinds of quantities that can

be associated to each agent at any contract. The first quantity, an agent’s marginal

productivity, is the partial derivative of team performance in an individual’s action,

holding others’ actions fixed. The second quantity is called an agent’s centrality : a

measure of connectedness2 in a network reflecting incentive spillovers, with connectedness

to more productive agents weighted more. The relevance of these quantities for contract

optimality should be intuitive in view of what we have said. The third quantity is an

agent’s marginal utility of money : it accounts for the fact that an agent who has a low

valuation of an additional dollar is, all else equal, a less responsive and less appealing

recipient of incentive pay.

Our main result is that, when the binding incentive constraints are local, optimal

contracts satisfy a balance condition: the product of the three quantities described

above is equal across all agents receiving any incentive pay. It turns out that the balance

condition is necessary if the principal does not want to shift compensation across agents

in any state—something that must hold at any optimum. The condition is interpretable,

identifying the quantities that must be measured to assess the optimality of a contract.

If the optimality condition is not satisfied, our results yield guidance for modifying a

suboptimal incentive scheme to a better one. Indeed, a key underlying technical result

computes the marginal benefit to the principal of increasing incentive pay to an agent

in any contract (optimal or not). This marginal benefit turns out to be proportional to

the product of the three terms.

2Operationalized as a weighted walk count, i.e., a Katz–Bonacich centrality.
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It is worth emphasizing that our general model makes no parametric assumptions and

thus allows quite flexible production functions for the team. To take just one example,

the team’s production function could be an arbitrary polynomial, with monomials of ar-

bitrary degree reflecting outputs generated through the joint efforts of arbitrary subsets

of the team—e.g., complementing one another in threes, fours, and so on. Neverthe-

less, the team’s production function matters only through its first derivatives and its

Hessian at the optimal contract—which measures bilateral spillovers (complementari-

ties/substitutabilities) between agents. This allows us to leverage some methods from

well-understood network games whose payoffs are quadratic polynomials to analyze the

spillover effects of locally perturbing incentive pay under arbitrary contracts. We use

this key reduction to characterize the first-order conditions that determine the principal’s

optimal allocation of incentives both across agents and across outcomes.

The first half of the paper presents the general result on the balance condition and

explains the reasoning behind it. The second half of the paper explores a variety of

implications when we specialize the model. We start with an intuitive one on ranking

agents’ incentive pay. Generally, agents with a higher product of productivity and

centrality must have a lower marginal utility of money. If all agents have the same

utility functions of money and these functions are concave, then those with the higher

“productivity times centrality” index must be paid more in every outcome—a simple

but novel rule of thumb.

The three factors in the balance characterization depend on the contract, so a natural

next step is to give explicit characterizations of optimal contracts in terms of primitives

only. We do so when team performance is given by some standard production functions.

Two such cases are Cobb–Douglas and constant elasticity of substitution production

functions; these functional forms have not yielded tractable analyses in the literature

on network games and spillovers, but it turns out that they admit nice solutions for

our contract-optimization problems. We show that when team members’ efforts are

more substitutable, the optimal contract is more unequal, focusing incentives more on

more productive agents; when the efforts are more complementary, the contract spreads

payments out across agents.



4 KRISHNA DASARATHA, BENJAMIN GOLUB, AND ANANT SHAH

Optimal contracts can respond to the environment in counterintuitive ways. We

demonstrate this in a third parametric application—a simple environment where the

team’s performance is given by a quadratic production function, yielding a canonical qua-

dratic network game among the agents (Ballester, Calvó Armengol, and Zenou, 2006) for

any fixed contract. In this special case of the model, agents have linear utilities of money

and the output is equal to the sum of individual efforts plus a quadratic polynomial that

we can identify with an exogenous network of bilateral productive complementarities.

We show that the optimal contract equalizes all agents’ spillovers on their neighbors in a

suitable sense, which entails muting the incentives of more technologically central agents,

all else equal. The contracts that achieve this can be computed explicitly and turn out

to be quite different from those that are optimal in related models—e.g., Claveria-Mayol,

Milán, and Oviedo-Dávila (2024)—where incentives are allocated in proportion to Katz–

Bonacich centralities in an exogenous network. Our balance condition thus turns out to

have some implications challenging standard intuitions in this setting.

The canonical quadratic game setting also facilitates some comments on the extensive

margin of our problem—the “team design” question of which agents should be given

incentive pay at all. For a given network of technological complementarities, we find

that the principal may optimally give steep incentives to tightly knit teams with strong

internal complementarities and exclude many others from incentive pay entirely.

Finally, we study a setting where contracts are constrained to take specific forms,

namely “equity” contracts that give an agent the same share of the output in every

state. We show that with this restriction, a version of our balance characterization

holds, with corresponding rankings of incentive pay across agents. This illustrates that

our analysis of incentive spillovers and the optimization of across-agent allocation is

flexible about how optimization is handled across states. In particular, it does not rely

on full contract flexibility and can accommodate some realistic constraints.

Related literature. In the contract theory literature, the Holmström (1979) model—

studying incentives for a single agent under moral hazard and imperfect observability—is

a special case of our multi-agent setup. We use the first-order approach (see Rogerson



INCENTIVE DESIGN WITH SPILLOVERS 5

(1985) and Jewitt (1988)). To our knowledge, there is not much work on how first-

order conditions for contract optimality depend on spillovers.3 Indeed, the extensive

literature on moral hazard beginning with Holmström (1982) focuses mainly on different

questions. In that strand, a key question is how a principal can use observed outcomes to

separately detect agents’ deviations from a desired action profile, often a nearly first-best

one (see, e.g., Mookherjee, 1984; Legros and Matsushima, 1991; Legros and Matthews,

1993). Several features of our model prevent such schemes.4 In this type of situation,

when observability and fine-grained auditing of effort are fundamentally constrained, we

examine how optimal contracts depend on spillovers in the production function.

Some of the closest work on optimal incentives in the presence of spillovers is found

in the literature on networks. This includes, in addition to work already mentioned,

papers such as Candogan, Bimpikis, and Ozdaglar (2012), Bloch (2016), Belhaj and

Deröıan (2018), Galeotti, Golub, and Goyal (2020), Gaitonde, Kleinberg, and Tardos

(2020), and Shi (2022). Our main contribution to this literature is a study of a natural

non-parametric formulation, both in terms of the production function and the form of in-

centives. We show that network game techniques permit some general characterizations

of optimal contracts without the parametric assumptions common in the network games

literature. When we specialize to a canonical parametric environment in Section 5, we

also contrast the more specific implications of our analysis with existing parametric net-

works models—of which the closest is the contemporaneous work by Claveria-Mayol,

Milán, and Oviedo-Dávila (2024) on optimal linear incentive contracts in quadratic net-

work games. Both our analysis and results end up being quite different.

The problem of designing multi-agent contracts has also recently attracted attention in

a new algorithmic contract theory literature—e.g., Dütting, Ezra, Feldman, and Kessel-

heim (2023), Ezra, Feldman, and Schlesinger (2024), and Dütting, Ezra, Feldman, and

Kesselheim (2025). A starting point of this work is that many standard approaches to

finding optimal team contracts may make heavy demands on the analyst’s knowledge

of the entire production function and ability to perform computations on it. This lit-

erature studies environments with finitely many actions where combinatorial problems

3Itoh (1991) allows for a form of spillovers in a two-agent model.
4In particular, the contractible outcome (which has only finitely many possible values) is stochastically
determined by a one-dimensional team performance, and there is limited liability.
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create obstacles to tractable optimization and examines whether contracts can be de-

vised that achieve some fraction of optimal performance. Our approach is very different

methodologically in that actions and team performance are continuous, but the results

give a perspective—complementary to the algorithmic contract theory work—on par-

simonious ways to assess and improve on contract performance. Recent work by Zuo

(2024), which discusses the structure of optimization problems in a model closely related

to some of our special cases, shows that there are interesting computational questions

in our more continuous type of setting as well.

2. Model

We first present the formal structure of the model and then, in Section 2.2, we com-

ment on some issues of interpretation.

There are n agents, N = {1, 2, . . . , n}. The agents take real-valued actions ai ≥ 0,

which can be interpreted as effort levels. These jointly determine a team performance,

given by a function Y : Rn
≥0 → R≥0, which we assume is twice differentiable and strictly

increasing in each of its arguments. This team performance determines the project

outcome, an element of the finite set S. The probability of the outcome s is Ps(Y ),

where for any s ∈ S, the function Ps(·) is strictly positive and twice differentiable.5

There is also one principal. (When we use pronouns, we use “she” for the principal

and “he” for an agent.) The principal receives revenue vs from the outcome s.6 The

principal can make payments contingent on the project outcome but not on agents’

efforts or the team performance Y . The principal commits to a non-negative payment

contingent on the outcome. If outcome s is realized, the principal pays τi(s) to agent i.

The function τ : S → Rn
≥0 is called a contract.

We consider risk-averse agents and a risk-neutral principal.7 The utility to agent i

from a monetary transfer is given by the function ui : R≥0 → R≥0, which is strictly

5The assumption that a probability of outcome function is strictly positive is not crucial to the results.
It is only imposed to simplify some statements. In the absence of this assumption, our results would
hold at outcomes that occur with non-zero probability at the optimal team performance.
6This should be interpreted as the principal’s valuation of that outcome realizing, gross of any payments
she will make to the agents.
7The modeling assumption that a principal is risk-neutral is not crucial to the results. The characteri-
zation of an optimal contract and its consequences can be straightforwardly extended to the case of a
risk-averse principal.
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increasing, concave, and differentiable. Each agent also has a cost-of-effort function

Ci : R≥0 → R≥0, which is strictly increasing, strictly convex, and twice differentiable in

that agent’s action. The marginal cost at zero action is zero: C ′
i(0) = 0. Agent i chooses

ai to maximize his expected payoff from payments minus his cost,

Ui =
∑
s∈S

Ps (Y (ai, a−i))ui (τi(s))− Ci(ai).

The payoff for the principal given a contract τ and team performance Y is the expected

payoff of the outcome minus transfers to agents:∑
s∈S

(
vs −

∑
i

τi(s)

)
Ps(Y ).

The timing is as follows: The principal commits to a contract τ , and then agents

simultaneously choose actions. Our solution concept for the game among the agents is

pure strategy Nash equilibrium; in the remainder of the paper, we simply use the word

equilibrium to refer to this solution.

There may be multiple equilibria under some contracts. Given a contract τ , we as-

sume that agents play an equilibrium a∗(τ ) maximizing the principal’s expected payoff.

Under this selection, a principal’s payoff under a contract is well-defined if at least one

equilibrium exists. Among such contracts, a contract τ is optimal if no other contract

τ̃ gives the principal a higher payoff. Implicit in this definition is the assumption that

contracts without equilibria can never be optimal.

Our analysis will not rely on the existence of an optimal contract, but the following

argument shows an optimal contract exists if we impose a bit of additional structure.

Fact 1. Suppose that the space of contracts giving the principal a non-negative payoff

is compact.8 Then an optimal contract exists.

As examples, this holds if the outcome is binary or if the outcome probabilities Ps(Y )

are uniformly bounded away from zero. The proof uses a compactness argument, taking

a sequence of contracts whose payoffs converge to the supremum of attainable princi-

pal payoffs, along with their corresponding equilibria. By compactness of the contract

space and action space, we can extract convergent subsequences of both the contracts

8We exclude any contracts where no equilibrium exists from this space.
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and equilibrium actions. The limit contract achieves the supremum payoff because equi-

libria are upper-hemicontinuous in the contract and the principal’s payoff function is

continuous in both contracts and actions.

2.1. Simple success-or-failure environments. We introduce a class of simple success-

or-failure environments that will be helpful for illustrating our results.

There are two possible outcomes s ∈ {0, 1}. The revenues from these outcomes are

normalized so that v1 = 1 and v0 = 0. These can be interpreted as success or failure

of the project. The probability of success is P (Y ), where the function P (·) is strictly

increasing and twice differentiable.

Each agent has a quadratic cost of effort.9 Agent i maximizes the expected payoff

given by the expression:

Ui = P (Y )τi(1) + (1− P (Y )) τi(0)−
a2i
2
.

Fact 2. In simple success-or-failure environments, it is optimal for the principal to pay

nothing at the failure outcome—that is, τi(0) = 0 for all agents i. A contract can then

be represented by a n-dimensional vector τ ∈ Rn
≥0 consisting of payments in the success

outcome.

The reason is simple: agents’ incentives depend only on the difference τi(1) − τi(0)

between transfers conditional on success and failure, so we can shift payments and

assume τi(0) = 0. This shift can only improve the principal’s payoff, so it is without

loss of optimality in the principal’s problem. It is without loss of generality to assume

the value v1 of success is 1, and we can then interpret τi(1) as an equity share in the

project’s output.

Within this class of environments, we can define an important leading example, which

we will analyze fully in Section 5.

Example 1. Fix a symmetric matrix G representing an undirected network, with Gij ≥ 0

being the weight of the link from agent i to j, and Gii = 0 for each i. The team

performance is the sum of a term that is linear in actions—corresponding to agents’

9This is not substantively restrictive in that, under smoothness assumptions, a monotone transformation
can be applied to ai to achieve this form.
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standalone contributions—and a quadratic complementarity term:

(1) Y (a) =
∑
i∈N

ai +
1

2

∑
i,j∈N

Gijaiaj.

The structure of this example is simple in several respects: team performance is

quadratic, the outcome is binary, and all agents’ efforts are complementary.

2.2. Remarks on the model. The team performance Y is real-valued, but the outcome

s is discrete. This assumption need not substantively restrict the scope of the model

since the outcome can be, for example, a revenue rounded to the nearest cent. On the

other hand, the fact that outcomes are mediated by a one-dimensional performance level

is important, though, as we discuss in the paper’s concluding remarks, the key ideas have

implications for outcomes determined by a higher-dimensional function of efforts.

We assume that the firm’s output is the only contractible consequence of any agent’s

effort. In other words, agents cannot be paid directly for their efforts ai. In this we follow

the literature stemming from Holmström (1982), which is motivated by the practical

features of contracts and the fact that ai and Y are abstractions that may not have any

specific (and certainly not any feasibly measurable) real-world counterpart.

The principal is not restricted to a budget of vs at outcome s. The principal may be

willing to lose money at some outcomes with the hope of inducing a higher action.

We do not assume that equilibria exist under all contracts in the formulation of the

model or our analysis. For the contract that pays zero in all states, there is always an

equilibrium in which agents take zero actions; this ensures that the principal’s value is

well-defined. For other contracts, existence needs to be analyzed in the environment of

interest; for example, we show equilibria exist for all contracts in the parametric model

in Section 5.

3. Optimal Contracts

This section states our main result characterizing optimal contracts. Defining these

quantities in general is a bit involved, and so to motivate the definitions, we now preview

them in the special case of simple success-or-failure environments.



10 KRISHNA DASARATHA, BENJAMIN GOLUB, AND ANANT SHAH

Consider any contract; let τ be the vector of payments in case of success (recalling

that they are 0 in case of failure). Also, fix an associated equilibrium a∗. Define

αi =
∂Y

∂ai
and Gij =

∂2Y

∂aiaj

to be, respectively the marginal productivity of i at a∗ and the spillover of i’s effort

onto j’s productivity. Write Y for Y (a∗), define the diagonal matrix T = diag(τ ) (with

diagonal entries Tii) and let

c⊤ := α⊤ [I − P ′(Y )TG]
−1

.

This is a standard network centrality measure—the Katz–Bonacich centrality vector in

network TG with weight vector α, with decay factor P ′(Y ). Agent i’s centrality ci

can be interpreted as a measure of connectedness—operationalized as a weighted walk

count—in the network TG, with connectedness to more productive agents weighted

more (see Ballester et al. (2006) and Bloch, Jackson, and Tebaldi (2023)).

A key point of our analysis is that for local perturbations of incentives, the movement

of the equilibrium yields a change in performance satisfying

dY

dτi
∝ αi · ci = productivityi · centralityi.

That is, increasing i’s incentive pay increases output proportional to i’s productivity

times i’s centrality. Therefore, at an optimal contract, these products must be equal

across all agents receiving positive incentive pay. This basic “productivity times central-

ity” formula will appear in the principal’s first-order conditions more generally, along

with a third factor that will arise when we allow utilities that are not linear in money.

We now return to the general setting and give our main definitions.

3.1. Key objects. Fix a contract τ and a corresponding principal-optimal equilibrium

a∗(τ ). Let Y ∗ be the team performance under this equilibrium. We define a series of

objects below—at this equilibrium, under this contract—but in many cases we omit the

dependence on the equilibrium and the contract for brevity.

We will define general versions of the productivity vector α and the spillover matrix

G that appeared in our motivating formulas above. There, costs had a special property:

the cost of effort satisfies C ′′
i (ai) = 1. We introduce a normalization to mimic this in a
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general environment. Let the curvature matrix H be a diagonal matrix where

Hjj := C ′′
j (a

∗
j)

is the second derivative of the cost function for agent j at a∗. In general, when we analyze

how equilibrium actions vary with contract perturbations, an agent’s best response is

less sensitive to increased incentives when C ′′
j (a

∗
j) is larger, and H will help us capture

this effect.

Let ∇Y (a∗) be the gradient of Y (·) at a∗, restricted to the agents that take a strictly

positive action. We define the (normalized) marginal productivity vector α as

α := H− 1
2∇Y (a∗).

The ith element αi captures the marginal effect of i’s action on team performance,

rescaled to adjust for the curvature of i’s cost function.

To analyze how incentives propagate through the team, we consider the Hessian matrix

of the team performance function Y (·) with respect to agent actions. Let G denote

the Hessian matrix of Y restricted to agents that take a strictly positive action in a∗.

Formally, for agents j and k such that a∗j > 0 and a∗k > 0, define

Gjk :=
∂2Y

∂ak∂aj
.

Let the marginal payment utility matrix U be a diagonal matrix where

Ujj :=
∑
s∈S

P ′
s(Y

∗)uj(τj(s))

is the marginal change in agent j’s utility from payments when team performance in-

creases. The increase in Y changes all the probabilities of outcomes, and the agent’s

utility from these outcomes is given by uj(τj(s)), where the contract is held fixed.

We next define an object c that will capture how a change in an agent’s incentives

propagates through the team:

(2) cT := αT
[
I −H− 1

2UGH− 1
2

]−1

.
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The ith element ci of this vector is the total effect on team performance induced by

a marginal change in agent i’s incentive to increase ai. This effect is inclusive of all

spillovers on others’ incentives through strategic interactions.

In simple success-or-failure environments, the formulas recover the simple expressions

that we started the section with. In that case, the matrix H is equal to the identity

matrix I because the cost of each agent is 1
2
a2i . If we further specialize to the setting of

Example 1, then the Hessian matrix G is equal to the matrix in the production function

Y (a) =
∑
i∈N

ai +
1

2

∑
i,j∈N

Gijaiaj,

and productivities are given by α = 1 + Ga. The factors involving the matrix H

account for the fact that a higher curvature of costs attenuates strategic responses and

thus spillovers.

3.2. Balance condition across agents. In this section, we present our main result: a

balance condition across agents at each outcome realization. Our analysis will charac-

terize optimal contracts under the following assumption.

Assumption 1. A differentiable selection a∗(τ ) from the equilibrium correspondence

can be defined in a neighborhood of τ ∗.

This assumption stipulates that equilibrium varies differentiably as we slightly perturb

the contract in a neighborhood of the optimum. We discuss when the assumption holds

and what a first-order approach can tell us without the assumption in the following

subsection. Our main result is a necessary condition characterizing optimal contracts,

subject to Assumption 1:

Theorem 1. Suppose τ ∗ is an optimal contract and Y ∗ is the induced team performance.

There exist constants λs such that for any agent i receiving a positive payment under an

outcome s, we have

αiciu
′
i(τ

∗
i (s)) = λs.

Moreover, the outcome-dependent constants λs satisfy λs ∝ Ps(Y ∗)
P ′
s(Y

∗)
.

This result says that optimal incentives require balance to hold, with the product on

the left being equal across agents. More informally, the balance condition states that
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under an outcome s,

productivityi · centralityi ·marginal utilityi = constant

for all agents paid when that outcome occurs. Below, we will give more intuition for

why this is a necessary condition.

In fact, the proof does not rely on the induced team performance Y ∗ being optimal.

The balance condition at the optimal contract would hold if the principal instead wanted

to implement any desired level of performance with minimal (expected) transfers to

agents.

The key to the proof, formalized in the following lemma, is calculating the effect on

team performance of increasing an agent’s payment under a given outcome. Assump-

tion 1 ensures that these perturbations are well-defined.

Lemma 1. Suppose τ ∗ is an optimal contract with corresponding equilibrium actions a∗

and team performance Y ∗. Consider any agent i receiving a positive payment at some

outcome. For any outcome s, the derivative of team performance in τi(s), evaluated at

τ ∗, is

dY

dτi(s)
= lP ′

s(Y
∗)αiciu

′
i(τ

∗
i (s)),

where l is independent of i and s.

A complete proof for the result above is provided in Appendix A. We provide some

intuition for the various terms in the expression in the lemma.

Intuition for the proof: The lemma characterizes the effect on team performance of

increasing the transfer to agent i under outcome s. We can decompose this effect as the

product of:

(i) a factor P ′
s(Y

∗)αi capturing the sensitivity of the probability of the outcome s to

i’s effort;

(ii) a factor u′
i(τi(s)) capturing the direct effect of increasing τi(s) on i’s utility at

outcome s;

(iii) a term ci capturing the spillovers from changing i’s incentive to exert effort;

(iv) the constant l, which depends on the curvature of the probability Ps(Y ).
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We focus on the first three factors and defer treatment of the fourth term, which is

not central in the basic intuition, to the formal proof in the appendix.

The first two factors measure the principal’s ability to directly incentivize agent i by

rewarding that agent when outcome s is realized. The change in agent i’s marginal

utility of action as τi(s) increases slightly is the product of the marginal effect P ′
s(Y

∗) of

team performance on the probability of outcome s, the effect ∂Y
∂ai

of i’s action on team

performance, and the marginal utility u′
i(τi(s)) of money under outcome s. To obtain

agent i’s direct response to a stronger incentive, we divide by the curvature C ′′
j (a

∗
j) of

the cost (recall C ′′
j (a

∗
j) is the denominator of αi); the curvature of the agent’s cost plays

a role for the same reason that the curvature of his utility of money does.

Multiplying by the second term translates from this direct effect on i’s action to the

overall change in equilibrium actions. The term ci measures the total spillovers induced

by shifting i’s incentive to exert effort. Recall the definition

c⊤ := α⊤
[
I −H− 1

2UGH− 1
2

]−1

.

When H− 1
2UGH− 1

2 has spectral radius less than one, the expansion[
I −H− 1

2UGH− 1
2

]−1

=
∞∑
k=0

(H− 1
2UGH− 1

2 )k,

gives a helpful intuition. The powers capture the initial increase in i’s action, the result-

ing changes in each agent’s best response, the further changes in best responses induced

by these, etc. Thus the full summation captures the change in the equilibrium action

profile due to the exogenous change in i’s incentives—following a standard intuition in

network games (Ballester et al., 2006). Finally, the dot product with the marginal pro-

ductivity vector α translates this change in actions into the change in team performance.

We next discuss some intuition for why Lemma 1 implies Theorem 1. A formal proof

is provided in Appendix A. We want to show that the balance condition

αiciu
′
i(τi(s)) = αjcju

′
j(τj(s)),

must hold under an optimal contract. Suppose that the principal would benefit from a

slightly higher team performance (the case in which the principal prefers a slightly lower

team performance proceeds analogously). Lemma 1 shows that the change in team
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performance from increasing agent i’s payment under outcome s is equal to αiciu
′
i(τi(s))

times terms independent of i, and similarly for agent j. If we had

αiciu
′
i(τi(s)) > αjcju

′
j(τj(s)),

it would be profitable for the principal to pay agent i slightly more and agent j slightly

less under outcome s. The same argument holds in the opposite direction, so the balance

condition is necessary for the contract to be optimal.

As initial illustrations of the theorem, we discuss its consequences in examples with

Cobb–Douglas and constant elasticity of substitution production.

Example 2 (Cobb–Douglas). We work again in the simple success-or-failure environment.

Suppose all agents are risk-neutral and team performance is

Y (a) =
n∏

i=1

aγii ,

where the exponents γi, which we will call the factor shares, can differ across agents. We

assume all agents have the same quadratic effort cost Ci(ai) = a2i /2, but it is straight-

forward to extend the subsequent analysis to heterogeneous quadratic costs by rescaling

actions. One can directly characterize the optimal contract by applying Theorem 1 (see

Zuo (2024), which solves a closely related example). We take an alternate approach of

transforming our problem to a simpler one and then applying Theorem 1.

Consider an equivalent transformed problem in which we replace Y with Ỹ = log(Y )

and P (Ỹ ) with P̃ (Y ) = P (exp(Ỹ )). The problem is now separable:

Ỹ (a) =
n∑

i=1

γi log(ai).

This transformation does not change the optimal contract or the corresponding equilib-

rium actions.

Recall that it is without loss to consider contracts described by payments τi to each

agent conditional on success (and making no payments conditional on failure). Each

agent’s first-order condition is

(3) a∗i =
τiP̃

′(Ỹ ∗)γi
a∗i
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We now compute the quantities in Theorem 1. Differentiating Ỹ , we compute marginal

productivities to be

α̃i =
γi
a∗i

.

Since the transformed problem is separable, the matrix ∂2Ỹ
∂ai∂aj

of spillovers is diagonal

with entries ∂2Ỹ
∂a2i

= − γi
a2i
. We next compute agents’ centralities at equilibrium to be

c̃i = α̃i

(
1 +

τiP̃
′(Ỹ ∗)γi
(a∗i )

2

)−1

=
α̃i

2
by eq. (3).

We can now apply Theorem 1, which states that under any optimal contract satisfying

Assumption 1, the quantity
α̃2
i

2
is equal for all agents and thus all agents have the same

marginal productivity. This tells us that an agent’s equilibrium action is proportional to

γi, the agent’s factor share in the original production function. Given this, Equation (3)

implies that each agent’s payment τi under the optimal contract is proportional to his

factor share γi.

A similar approach allows us to characterize optimal contracts under constant elas-

ticity of substitution production.

Example 3 (Constant elasticity of substitution). The setup is the same as in the previous

example except that production is now

Y (a) =

(
n∑

i=1

γia
ρ
i

)κ/ρ

for a non-zero ρ. The parameter κ captures returns to scale and the coefficients γi, which

we also call factor shares, can differ across agents. Finally, 1/(1 − ρ) is the elasticity

of substitution between agents’ efforts. It is again useful to transform team production:

we consider an equivalent transformed problem in which we replace Y with Ỹ = 1
ρ
Y ρ/κ

and P (Y ) with P̃ (Ỹ ) = P ((ρỸ )κ/ρ). The transformed problem is:

(4) Ỹ (a) =
1

ρ

n∑
i=1

γia
ρ
i .
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This transformation again does not change the optimal contract or the corresponding

equilibrium actions. The role of ρ in the transformation is to ensure that Ỹ is an

increasing function of actions.

We again can consider contracts described by payments τi to each agent conditional

on success. A complication is that it need not be optimal to pay all agents positive

transfers τi. For example, when ρ ≥ 1, optimal contracts will only pay the agent(s)

with the highest factor share(s) γi. We characterize how the optimal contract divides

payments among agents who do receive positive payments. Each of these agents have

first-order conditions

(5) a∗i = τiP̃
′(Ỹ ∗)γi · (a∗i )ρ−1.

We next compute marginal productivities and centralities. Differentiating Ỹ , marginal

productivities are

α̃i = γia
ρ−1
i .

The matrix ∂2Ỹ
∂ai∂aj

of spillovers is again diagonal with entries ∂2Ỹ
∂a2i

= γi(ρ − 1)aρ−2
i . So

agents’ centralities at equilibrium are

c̃i = α̃i

(
1− τiP̃

′(Ỹ ∗)γi(ρ− 1) · (a∗i )ρ−2
)−1

=
α̃i

2− ρ
by eq. (5).

We can now apply Theorem 1, which states that under any optimal contract satisfying

Assumption 1, the quantity
α̃2
i

2−ρ
is equal for all agents and thus all agents have the same

marginal productivity. This tells us that (a∗i )
1−ρ is proportional to γi. Given this, (5)

implies that each agent’s payment τi under the optimal contract is proportional to γ
1

1−ρ

i .

Recall that γi is the factor share of agent i and
1

1−ρ
is the elasticity of substitution. So

the principal pays more to agents with higher factor shares, and this effect is amplified

when inputs are more substitutable and dampened when inputs are less substitutable.

An intuition for this can be seen by considering two cases. In the limit as ρ → −∞, the

production function converges to the Leontief production function Y (a) = min(ai). In

this case, it is optimal to pay all agents equally because inducing one agent to take a

higher action than others does not improve team performance. In the limit as ρ → 0,

the production function approaches Cobb–Douglas, where productivities in (4) are much



18 KRISHNA DASARATHA, BENJAMIN GOLUB, AND ANANT SHAH

more responsive to own effort, and contribute to transformed output in proportion to

γi. Thus compensation is linear in γi (per the previous example).

We will see in Section 5 that Theorem 1 leads to an explicit characterization of con-

tracts when production is determined by a standard network game; the previous two

examples show it also gives explicit characterizations for production functions that have

been difficult to analyze in the network games literature. A key point is that because

we assume outcomes in our model depend on a one-dimensional team performance (via

functions Ps(Y ) that can be quite general), we can apply monotone transformations that

simplify the relevant spillovers between agents.

3.3. Differentiability of equilibrium. Before turning to consequences of Theorem 1,

we briefly discuss the substantive meaning of Assumption 1 and what can be said under

weaker assumptions. The assumption is implied by the following two conditions:

Assumption 2. (a) (Invertibility of utility Hessian) The matrix(
∂2Ui

∂aj∂ai

)
i,j

is non-singular at contract τ ∗ and corresponding equilibrium a∗.

(b) (Strictness) The equilibrium a∗(τ ∗) is strict.

This assumption gives more explicit conditions that guarantee a first-order approach

applies. Part (a) is weaker than requiring stability of equilibrium under best-reply

dynamics. Part (b) can impose more substantive restrictions, as we explain below. We

first show Assumption 2 implies Assumption 1 and then discuss relaxing part (b).

When part (a) of Assumption 2 holds, the implicit function theorem lets us define

action profiles a(τ ) in a neighborhood of τ ∗ such that all agents’ first-order conditions

are satisfied and a(τ ) is continuously differentiable in τ . When the equilibrium a∗(τ ) is

strict (i.e., part (b) of Assumption 2 also holds), the solutions to the first-order conditions

a(τ ) must be equilibria in a neighborhood of τ ∗.

The equilibrium a∗ under τ ∗ is strict when all agents have a unique best response,

as in Section 5 as well as other environments where the costs of effort are sufficiently

convex. But environments that do allow indifferences can pose obstacles. If one or more

agents are indifferent to their equilibrium action and an alternate action that may be
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far away, then perturbing τ ∗ in some directions could make an alternate action more

desirable. So the solution a(τ ) to agents’ first-order conditions need not be optimal

actions for all agents. In this case, the balance conditions in Theorem 1 may not hold;

our analysis there only holds when the local incentive constraints are the binding ones.

Nevertheless, as we show in Appendix B, if contract perturbations in some directions

maintain the existence of an equilibrium near the one of interest,10 we can obtain mod-

ified balance conditions in those directions. The intuition is that the principal must

be indifferent to perturbations to τ ∗ that keep the agent indifferent between his equi-

librium action and the best alternate action. So a first-order condition approach to

characterizing optimal contracts can be more broadly relevant.

4. Comparisons across agents and outcomes

This section derives consequences of the main result for a comparison of payments

made across agents and across outcomes. Section 4.1 shows that agents with symmetric

utility functions can be ranked in terms of payments at the optimal contract. Section 4.2

compares the payments a particular agent receives across different outcomes.

4.1. Ranking agents at the optimal contract. Agents can be ranked in terms of

payments at the optimal contract. To see this, we establish a relationship between the

marginal utilities of agents. An implication of Theorem 1 is that the ratio between

any two agents’ marginal utilities is the same at every outcome such that both receive

positive transfers.

Corollary 1. Consider an optimal contract τ ∗. Let S∗
ij be the set of outcomes at which

agents i and j both receive a positive payment. For any outcome s ∈ S∗
ij, we have

u′
i(τ

∗
i (s))

u′
j(τ

∗
j (s))

=
αjcj
αici

.

10More formally, if the equilibrium correspondence is differentiable when perturbations are confined to
a nontrivial subspace.
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Intuitively, since outcome probabilities are determined by a joint team performance,

agents’ incentives should vary across outcomes in similar ways. The corollary formalizes

this intuition in terms of marginal utilities in each outcome.11

The corollary only applies when the set of outcomes at which agents i and j both

receive a payment is non-empty. Determining when an agent is paid at a given outcome

can be complicated in general, but it is easy to construct settings where the corollary

applies. In Appendix C, for example, we give a class of environments in which an Inada

condition guarantees that all agents are paid at all outcomes where P ′
s(Y

∗) > 0 (and no

other outcomes).

When agents have identical utility functions, agents can be ranked so that an optimal

contract provides stronger incentives to more highly ranked agents.

Proposition 1. Suppose that τ ∗ is an optimal contract. If a pair of agents i and j have

identical strictly concave utility functions ui(·) = uj(·), then

τ ∗i (s) ≥ τ ∗j (s) for all s ∈ S or τ ∗j (s) ≥ τ ∗i (s) for all s ∈ S

(or both).

The intuition is simple: for two agents that derive the same value from a monetary

transfer, the agent with a greater overall effect on team performance at the optimal

contract must be receiving a higher payment.

When all agents have an identical utility function, the optimal contract induces a

complete ranking on the agents. The relative magnitude of payments across agents

depends on the environment. This becomes evident in the parametric example discussed

further in Section 5.

4.2. Payments across outcomes. A second implication of the main balance result is

a relationship between a single agent’s marginal utility across outcomes.

11This contrasts with a literature on optimal compensation when the observed outcome can be used to
identify individuals who deviated from a desired level of effort (e.g., Holmström (1982) and Legros and
Matthews (1993)).
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Corollary 2. Suppose τ ∗ is an optimal contract and Y ∗ is the induced team performance.

If agent i receives positive payments under outcomes s1 and s2, then

u′
i(τ

∗
i (s1))

u′
i(τ

∗
i (s2))

=
Ps1(Y

∗)

P ′
s1
(Y ∗)

·
P ′
s2
(Y ∗)

Ps2(Y
∗)
.

The corollary states that the marginal utility under each outcome is proportional to

the probability of that outcome divided by the marginal change in that probability as

team performance increases. That is, agents are paid more in outcomes that are less

likely and more responsive to team performance. This result generalizes a result in the

single-agent setting of Holmström (1979) concerning how a (single agent’s) payments

should be allocated across outcomes.

A straightforward application of Corollary 2 characterizes the set of outcomes at which

an agent receives a positive payment. If an agent receives a positive payment at some

outcome, the outcomes at which it receives a positive payment must all either have a

positive marginal probability at equilibrium team performance, or a negative marginal

probability. When the team performance function Y (·) is strictly increasing in each of

its arguments, the outcomes at which an agent receives a positive payment all have a

positive marginal probability at equilibrium team performance. (This is formalized as

Lemma 4 in the Appendix).

In the special case that an agent is risk-neutral, a stronger conclusion can be derived

on the outcomes at which the agent is paid. Under a mild assumption on the probability

of outcome function Ps(·), a risk-neutral agent receives a positive payment in at most

one outcome.

Proposition 2. Suppose that for an optimal contract τ ∗ and induced team performance

Y ∗, there does not exist a pair of outcomes s1 and s2 such that

Ps1(Y
∗)

P ′
s1
(Y ∗)

=
Ps2(Y

∗)

P ′
s2
(Y ∗)

.

Then, any risk-neutral agent receives a positive payment in at most one outcome. More-

over, this outcome is unique across all risk-neutral agents.

Risk-averse agents prefer to diversify their payments across outcomes. But a risk-

neutral agent does not have this diversification motive, and therefore is best motivated

by payment in the outcome that responds most to the team’s performance. When all
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agents are risk-neutral, the optimal contract makes a positive payment to the team

at only one outcome. The condition on the functions Ps(Y ) holds at the endogenous

team performance, but it is straightforward to construct functions Ps(Y ) such that the

condition does not hold for any possible team performance Y .

5. Application to a canonical network game

Our main result gives necessary conditions for a contract to be optimal. This result,

however, does not directly characterize how agents’ incentives and equilibrium actions

vary with the environment. Concretely, as we vary parameters affecting an agent’s pro-

ductivity or complementarities, the balance condition must remain satisfied at optimal

contracts, but this might happen via adjustments in any of the three factors in the

balance condition.

In this section, we perform a few exercises to better understand how balance affects

observable outcomes of interest. First, we study a case where the adjustments can

be fully and explicitly characterized—Example 1. The characterization is very differ-

ent from classic results on network games with fixed incentives (Ballester et al., 2006).

With fixed incentives, making an agent more central in the network of complementarities

increases that agent’s productivity. Optimal incentive provision provides a remarkable

countervailing force that mutes technological asymmetries. Specifically, in that example,

the balance condition is achieved by equalizing agents’ endogenous marginal productivi-

ties and centralities, despite their different technological roles. We highlight some other

notable implications: conflicts of interest that arise between the principal and the agents

over technological improvements, which are again caused by optimally designed incen-

tives for effort.

We then generalize the model of Example 1 to allow for different standalone pro-

ductivities, which makes it possible for the model to produce across-agent productivity

differences in equilibrium. We study comparative statics as standalone productivities are

varied and show that contract optimality may require an inverse relationship between

productivity and centrality, in the sense that making an agent more productive may

force that agent to become central at the new equilibrium. This again illustrates some

non-obvious testable implications of the model in particular instances of our setting.



INCENTIVE DESIGN WITH SPILLOVERS 23

5.1. Equilibrium characterization. Throughout Section 5, we study the setup of Ex-

ample 1 from Section 2. Recall there are two outcomes: 1 (success) and 0 (failure). The

probability of success is given by P (·) which is strictly increasing and twice differen-

tiable. Throughout this section, we will additionally maintain the assumption that P (·)
is strictly concave.

Recall that, by Fact 2 in Section 2.1, we may reduce the contract design problem to

choosing a single vector τ ∈ Rn of payments conditional on success.

Proposition 3. Fixing τ , there exists a unique Nash equilibrium. The equilibrium

actions a∗ and team performance Y ∗ solve the equations

(6) [I − P ′(Y ∗)TG]a∗ = P ′(Y ∗)τ and Y ∗ = Y (a∗),

where T = diag(τ ) is the diagonal matrix with entries Tii = τi.

The characterization is reminiscent of the form of actions in standard network games,

and extends the analysis of (Ballester et al., 2006) to a case with nonlinearities arising to

P .12 From this perspective, we can compare the analysis with existing work on planner

interventions—for example Galeotti et al. (2020), or Parise and Ozdaglar (2023). Those

papers typically posit a specific technology of intervention affecting the first (standalone)

term in (1) rather than the complementarities term. Modeling monetary incentives in

line with standard moral hazard theory yields an interestingly different problem, where

planner interventions also affect the effective network of spillovers among the agents.

Note that the result entails a positive equilibrium action for those agents with τi > 0,

and an action of zero otherwise. An agent is said to be active under a given contract

τ if he receives a positive payment τi > 0 and inactive otherwise. We will focus on

characterizing the optimal allocation of shares among active agents. We discuss extensive

margin questions in Section 6.

5.2. Optimal contract. We now characterize the optimal payments and equilibrium

actions among the set of agents receiving positive shares.

12Indeed, dispensing with the interpretation of P as a probability, the same characterization works when
the team members have shares in a common output P (Y ), with the Y = Y (a) given by the formula of
Example 1.
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Proposition 4. Suppose τ ∗ is an optimal contract and a∗ and Y ∗ are the induced

equilibrium actions and team performance, respectively. The following properties are

satisfied:

(a) For any two active agents i and j, we have αi = αj and ci = cj.

(b) Balanced neighborhood actions: There is a constant λ′ > 0 such that for all active

agents i, we have (Ga∗)i = λ′.

(c) Balanced neighborhood equity: There is a constant λ > 0 such that for all active

agents i, we have (Gτ ∗)i = λ.

The result states that all active agents have equal marginal productivities and equal

centralities.

The property of balanced neighborhood actions states that for each active agent i,

the sum of actions of neighbors of i, weighted by the strength of i’s connections to those

neighbors in G, is equal to the same number, λ′. Similarly, the property of balanced

neighborhood equity says that for each active agent i, the sum
∑

j Gijτj of shares given

to neighbors of i, weighted by the strength of i’s connections to those neighbors in G,

is equal to the same number (i.e., is not dependent on i).

Proof of Proposition 4. The characterization of optimal payments in Proposition 4 fol-

lows from the balance result derived in Theorem 1. To see this, first observe the following

immediate corollary of Theorem 1 in the present environment, which follows from the

theorem by observing u′(τi) = 1 for all values of τi.

Corollary 3. At an optimal contract τ ∗, the product αici is a constant across all active

agents.

The following lemma is then the key step in proving Proposition 4.

Lemma 2. If αici is constant across all active agents, then, αi is constant across all

active agents.

The proof of this lemma, which we give in the appendix, starts by differentiating the

production function and using the characterization of equilibrium, yielding the formula

α = ∇Y (a∗),
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= 1+Ga∗,

= [I − P ′(Y ∗)GT ]
−1︸ ︷︷ ︸

M

1.

Corollary 3 implies that the i maximizing αi among active agents must minimize ci.

The fact α = M1, just derived, along with the definition (recall eq. 2) c = Mα can

be combined to show that this is possible only if each entry of α is equal. (In fact the

proof of this fact uses only the two equalities just stated and that M is a nonnegative

matrix.)

This conclusion implies part (b) of the proposition using the formula α = 1 + Ga∗

found above. To show (c), observe that the definition of α and Lemma 2 imply there is

λ1 such that

(1T [I − P ′(Y ∗)TG]−1)i = λ1

for all i. Therefore,

1 = λ1 − P ′(Y ∗)λ1(Gτ )i

for all i, so there exists a constant λ such that (Gτ )i = λ for all i (among the subnetwork

of active agents). □

5.2.1. An explicit characterization of the optimal contract. The system of equations in

part (a) of Proposition 4 can be solved explicitly for the optimal payments τ ∗ as long as

the relevant adjacency matrix G is invertible, which holds for generic weighted networks.

At an optimal solution, the payment to an active agent i is

τ ∗i ∝
(
G̃−11

)
i
,

where G̃ is the subnetwork of active agents for that payment allocation; the same is

true for actions, with a different constant of proportionality. This expression captures a

sense in which more central agents receive stronger incentives, but G̃−11 behaves quite

differently from standard measures of centrality such as Katz–Bonacich centrality. In

particular, the inverse G−1 changes non-monotonically as G changes. This can induce

non-monotonicities in the optimal contract and the resulting actions and utilities. We

next describe several comparative statics exercises that highlight some consequences of

such non-monotonicities.
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5.3. Comparative statics. In this section, we explore how the optimal contract, as

well as the agents’ and principal’s payoffs, vary with the technology of production. The

simple form of the team performance function Y in our environment, as well as the

explicit characterization of incentives and outcomes, facilitate this exercise. We focus

on the effects of two types of changes to the network: a change in an agent’s local com-

plementarities and a change in the overall strength of complementarities. Section 5.3.1

examines how the optimal team performance depends on the network of complementar-

ities G. The results demonstrate some interesting tensions between the principal’s and

the agents’ interests. Section 5.3.2 then explores a practical question about compen-

sation: how the total share of output optimally used for incentive pay depends on the

strength of complementarities.

5.3.1. Varying the network. We look at how the principal’s and agents’ payoff vary as

the network changes.

Proposition 5. The principal’s payoff is weakly increasing in the edge weight Gij = Gji.

The principal obtains weakly higher profits from an increase in edge weights. However,

it need not be the case that agents prefer such a perturbation. We will illustrate this

through a network on three agents (see Figure 1); general comparative statics can be

found in Appendix D.

Without loss of generality, we can assume G12 ≥ G13 ≥ G23 and choose the normal-

ization G12 = 1, so that the adjacency matrix is

G =


0 1 G13

1 0 G23

G13 G23 0

 .

Figure 2 shows the optimal payments and the corresponding equilibrium payoffs as

we vary the link weight G23, under parameter values specified in the caption. Figure 2a

depicts optimal payments to each agent as a function of G23. The payment is non-

monotonic in own links: once payments are nonconstant in the strength of that link,

increasing G23 initially decreases agent 2’s payment. The numerical example also il-

lustrates a corresponding non-monotonicity in payoffs: strengthening one of an agent’s

links can decrease his equilibrium payoff under the optimal contract. Figure 2b depicts
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1

2 3

G12

G23

G13

Figure 1. Three agent weighted graph with weights G12, G13, and G23.

the equilibrium payoffs under optimal payments as a function of G23. Strengthening the

link between agents 2 and 3 can decrease the resulting payoffs for agents 1 and 2.

This finding contrasts with an intuition that one might have from the network games

literature, that agents are better off from becoming more central. Under fixed payments,

all agents’ payoffs are monotone in the network. In the present setting, however, agent

2 can benefit from weakening one of his links.

There is therefore a tension between the network formation incentives of the principal

and the agents. Agents may not be willing to form links that would benefit the principal

or the team as a whole, even if link formation is not costly.

5.3.2. Varying complementarities. We now turn to how total payments change as the

strength of complementarities increases. To operationalize this, we introduce a non-

negative parameter β and set the network G to be

G = βĜ

for some fixed network Ĝ, which allows us to scale complementarities while fixing their

relative levels. The production function in this representation is

Y (a) =
∑
i∈N

ai +
β

2

∑
i,j∈N

Ĝijaiaj.

We study the comparative static in the special case when P (·) is linear in the range of

feasible team performance. We assume for simplicity that the optimal contract is unique,

but could easily relax this assumption. The principal faces a trade-off between keeping

a larger percentage of its value and using larger payments to encourage workers to exert

more effort. The following result states that when complementarities in production are

larger, it is optimal to keep a smaller percentage of a larger pie.
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(a) Optimal payments

(b) Payoffs under optimal payments

Figure 2. The optimal payments and resulting equilibrium payoffs as a
function of the weight G23. Here G13 = 0.8 while P (Y ) = min{0.5Y, 1}
(the kink is not relevant for the principal’s problem). In both diagrams,
the curve corresponding to agent 1 is the topmost (solid blue) one; the
curve corresponding to agent 2 is the second from the top (dashed red);
and the curve corresponding to agent 3 is the lowest (dotted orange) one.
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Proposition 6. Suppose that P (Y ) = κY on an interval [0, Y ] containing the equilib-

rium team performance under any contract and that there is a unique optimal contract

τ ∗. The sum of agents’ payments under the optimal contract is increasing in the strength

of complementarities β, i.e.,
∂
(∑

i∈N τ ∗i
)

∂β
> 0.

The basic idea behind the proof is that the benefits to retaining more of the firm

are linear in the probability of success while the benefits to allocating more shares to

workers are convex, and become steeper as complementarities increase.

If P (Y ) is strictly concave, there is a trade-off between the concavity of P (Y ) and the

convexity of Y (a). Depending on which effect is stronger, the total payments made to

agents may increase or decrease as complementarities grow stronger.

In the rest of the paper, we analyze the example’s original formulation which normal-

izes the complementarity parameter β to 1.

5.4. Trade-off between marginal productivity and centrality. The parametric

setting we have been working with throughout this section has been quite special in that

there was no heterogeneity in standalone productivity—i.e., each agent would have the

same productivity if no other teammates exerted effort. This drove some of the specifics

of how the optimal contract responded to changes in other parameters. Once we move

beyond such a setting, by adding standalone productivity heterogeneity, new phenomena

emerge. In particular, as we will now see, it is possible that agents’ productivities and

centralities must shift in opposite directions to keep the balance condition satisfied.

To formalize this, suppose that τ ∗ is an optimal contract given team performance

Y (a) and probabilities of outcomes Ps(Y ) and τ̂ ∗ is an optimal contract given team

performance Ŷ (a) and probabilities P̂s(Y ).

Corollary 4. Consider a pair of risk-neutral agents i and j, each receiving a positive

payment at some common outcome s under τ ∗ and τ̂ ∗. If αi

αj
is strictly higher (respec-

tively, strictly lower) under contract τ ∗ than τ̂ ∗, then ci
cj

is strictly lower (respectively,

strictly higher) under contract τ ∗ than τ̂ ∗.
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At the optimal contract, the balance condition in Theorem 1 must hold, that is,

αici = αjcj.

If the environment is perturbed so that the relative marginal productivity at the optimal

contract αi

αj
strictly increases, then the relative centrality ci

cj
strictly decreases. This

implication is notable, since contract optimality may require one’s marginal productivity

to respond in the opposite direction of one’s centrality (where both are interpreted in

relative terms).

This raises a question of whether αi

αj
can strictly increase. As we saw in Section 5.2,

there are settings where αi

αj
and ci

cj
both remain constant as the environment changes.

We now show that if we extend the example we have been working with to introduce

heterogeneity in agents’ standalone contributions to team performance, these quantities

do indeed move in opposite directions.

Example 2. Our example is based on the paper’s running example with two agents.

Consider a network with adjacency matrix

G =

[
0 1

1 0

]
.

Suppose team performance is

Y (a) = (1 + δ)a1 + a2 + a1a2,

for a strictly positive δ. The principal observes whether the project succeeds and fails,

with the probability of success given by a strictly increasing, concave and twice differ-

entiable function P (Y ).

Fact 3. Consider any δ > 0. At any optimal contract where both agents receive a

payment, the marginal productivities satisfy α1 > α2.

Corollary 4 implies the centralities must satisfy c1 < c2. Under the principal’s favorite

contract, the agent with a higher standalone contribution to team performance has a

higher marginal productivity but is less central in the endogenous network of spillovers.

The effect elucidated in this section complements our previous analysis. Recall that

our main characterization of optimal incentives requires equalizing (across agents) a
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product of (i) marginal productivities αi; (ii) total effect on team performance ci; and

(iii) expected marginal utility u′
i(·) evaluated at equilibrium payments. The analysis in

Section 4.1 focused on the role of term (iii) in achieving balance, showing that agents

with identical strictly concave utility functions can be ranked in terms of payments,

based on who has the larger product αici. In this section, we turned off that margin of

adjustment, and the consequence is that balance may have to be achieved by reducing

the centrality of those agents who become more productive.

6. Team design under optimal contracts

Our results in Section 5.2 characterized the optimal contract given an active set (the

set of all active agents). We now briefly discuss the problem of determining which agents

should be active. This discrete optimization problem requires new insights beyond the

intensive margin analysis and further demonstrates applications of our balance condition.

We continue in the standard network games setting of Example 1. We have two main

results, which imply considerable structure on the active set. Our first result shows that

optimal active sets are always tightly connected:

Proposition 7. The diameter13 of the active set under any optimal contract is at most

2.

This result implies that any two active agents either have complementarities with each

other or both have complementarities with some shared active neighbor.

For unweighted networks, we can characterize the optimal active set even more pre-

cisely:

Proposition 8. If G is an unweighted network, then any maximum clique14 is the active

set at an optimal contract.

These results suggest that when a firm relies on a single joint outcome to provide in-

centives, teams with dense or tightly-knit complementarities outperform more dispersed

teams. The principal may prefer to make a small team exert large efforts to make the

13Maximum distance between two agents.
14Complete subgraph.
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most use of complementarities, rather than eliciting less effort from a larger group with

more diffuse complementarities.

Economically, this preference for concentrated incentives arises from the structure of

the moral hazard problem. When equity is given to members of a tight-knit group,

the incentives given to one member also motivate effort by the others due to spillovers.

In contrast, if a given amount of equity is divided between two subsets of agents that

are not tightly linked, the equity given to one subset dilutes the incentives of the other

without a strong counteracting beneficial effect of spillovers.

These findings have implications for organizational design, describing an important

force pushing firms to seek teams with dense internal complementarities when relying on

equity-based incentives tied to overall firm performance. Of course, with more steeply

increasing marginal costs of effort, these conclusions would be suitably adjusted. The

main thing we learn from these results is that the extensive margin problem seems

interesting, and intensive-margin incentive design has implications for optimal team

composition. At the opposite extreme, if one would prefer not to think about extensive

margin issues, Appendix C presents some sufficient conditions under which optimal

teams include all agents.

Mathematically, the key to both results is the following reduction:

Lemma 3. A contract τ is optimal among those with a given
∑

i∈N τi = s (sum of

payments in case of success) if and only if it solves

(7)
max

τ
λ

subject to (Gτ )i = λ whenever τi > 0.

This lemma allows us to reformulate the principal’s problem as maximizing the con-

stant λ in the balanced neighborhood equity condition. The proof leverages the fact

that, under balanced equity, we can express team performance as an increasing function

of λ.15 The proof of Proposition 7 proceeds by contradiction: if there were two agents at

distance greater than two, we could construct an improved allocation by concentrating

shares on a pair of agents connected by a high-weight link.

15Specifically, Y (a∗) = (
∑n

i=1 τi)
(

P ′(Y ∗)
1−P ′(Y ∗)λ + P ′(Y ∗)2λ

2(1−P ′(Y ∗)λ)2

)
.
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The proof of Proposition 8 relies on a careful inductive construction. Given an arbi-

trary optimal allocation, we iteratively build a clique within the active set that achieves

the same constant λ. This construction crucially uses the balanced equity condition at

each step.

7. Optimal equity pay

The contracts we have described so far are finely tailored to individual outcomes (see

Corollary 2). In practice, such contracts may be difficult to implement, and firms often

use simple compensation schemes. Our results can be adapted to characterize optimal

contracts within a restricted class. This section provides an illustration by analyzing

one widely used incentive scheme: equity pay. Note that in simple success-or-failure

environments, all optimal contracts feature equity pay, but in general the optimal equity

contract need not match the optimal unrestricted contract.

An equity pay contract pays each agent a fixed share σivs of the surplus vs produced

by the team. For a given equity contract σ, the expected payoff to the principal is(
1−

∑
i∈N

σi

)∑
s∈S

vsPs(Y ).

The expected payoff to agent i from an equity share σi is

Ui =
∑
s∈S

ui (σivs)Ps(Y )− ci(ai).

The result below characterizes an optimal equity contract σ∗. We maintain Assump-

tion 1, which now states that there is a neighborhood of σ∗ in the space of equity

contracts where σ(a∗) is continuously differentiable.

Proposition 9. Suppose σ∗ is an optimal equity contract and Y ∗ is the induced team

performance. There exists a constant λ such that for any agent i receiving a positive

equity payment, we have

αici
∑
s∈S

P ′
s(Y

∗)vsu
′
i(σ

∗
i vs) = λ.

The proof follows a similar approach to the proof of Theorem 1. It involves analyzing

the effect of perturbations to equity payments on the principal’s objective. Perturbations
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in the equity payment of an agent affect payments at all outcomes. The direct effect

of increasing σi on i’s action is proportional to the change in marginal expected utility

from payments, which is given by the expression

αi

∑
s∈S

P ′
s(Y

∗)vsu
′
i (σ

∗
i vs) .

The summation captures the total direct effect of increasing an agent’s equity on team

performance by aggregating across outcomes, and multiplying by ci includes indirect

effects. At an optimal equity contract, the effect of perturbing equity payments on total

team performance must be the same for all agents with positive equity.

In general, the balance condition in Proposition 9 characterizing optimal equity con-

tracts does not match the condition in Section 3 characterizing optimal contracts. An

optimal contract fine-tunes payments at each outcome, incentivizing agents to exert

optimal effort levels. Equity pay imposes a particular linear relationship between the

payments for different outcomes that may be practically convenient but sacrifices some

incentive power. We note the contrast with Dai and Toikka (2022), which finds that lin-

ear contracts are optimal for a principal designing team incentives that must be robust

to uncertainty about the environment.

8. Concluding discussion

We have studied an incentive design problem for a team whose members contribute

via unobserved effort. We investigate how optimal contracts depend on the team’s pro-

duction function. Our main contribution is a necessary condition for contract optimality.

We show that optimal contracts must satisfy a balance condition across agents receiving

positive incentive pay.

The balance result in Theorem 1 generalizes prior work on complementarities in opti-

mal contract design. Beyond the lack of parametric assumptions, our general necessary

condition does not require that strategic interactions take any particular form (such

as strategic complementarities). What is key to our analysis is studying the perturba-

tions of equilibria, and this is possible with general spillovers. Specific assumptions on

spillover structure can, however, be very helpful for guaranteeing equilibrium existence.
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While we have focused on a principal’s optimization, the analysis of how contract

perturbations affect team performance is equally relevant for understanding other design

problems, including cases where there is no principal. The key insight that our exercises

demonstrate is that, under suitable conditions, the first-order conditions of such an

optimization problems involve only the local comparative statics of the equilibrium.

These can be exploited for useful characterizations of optimal designs. We leave fleshing

out these implications to future work.

An important simplifying assumption throughout the analysis is that actions influence

outcomes only via a one-dimensional team performance Y (a). Moving beyond this

assumption to settings where probabilities of outcomes depend in an arbitrary way on

the full action profile, a first-order approach may continue to be fruitful, in that we expect

that generalizations of our balance conditions would hold. But the outcome distribution

may now provide more fine-grained information about an agent’s effort, and the principal

will use this information to design optimal incentives (as in, e.g., Holmström (1982) and

Legros and Matthews (1993)). The generalized balance conditions must incorporate this

along with agents’ centralities and marginal productivities. So the balance conditions

would be suitably adjusted, and rankings such as those in Section 4 would also be affected

by these informational considerations.
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Ballester, C., A. Calvó Armengol, and Y. Zenou (2006): “Who’s who in networks. Wanted:

The key player,” Econometrica, 74, 1403-1417.
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Appendix A. Omitted proofs

A.1. Proof of Fact 1. For contracts in this compact space, agent best responses will

also be contained in a compact space. We want to show the supremum π of attainable

principal contracts is attainable. Choose a sequence of contracts τ (i) giving payoffs

converging to π and let (a∗)(i) be the corresponding equilibria.16 By compactness, we

can choose a subsequence of τ (i) such that τ (i) → τ ∗ and (a∗)(i) → a∗. By upper-

hemicontinuity of equilibrium, the action profile a∗ is an equilibrium under τ ∗. Since

the principal’s payoffs are continuous in the contract and actions, the contract τ ∗ attains

the optimal payoff π.

A.2. Proof of Lemma 1. We begin by observing that under any optimal contract,

a∗i (τ
∗) = 0 ⇐⇒ τ ∗i (s) = 0, for all s ∈ S.

That is, at an optimal contract, an agent i exerts zero effort at equilibrium, if and only

if it does not receive a payment from the contract at any outcome.17

We analyze the change in team performance as the transfers to agents are perturbed.

Consider contract τ and any agent i for which there exists an outcome s′ such that

τi(s
′) > 0. For any outcome s, consider marginally increasing τi(s). The change induced

by this perturbation is

(8)
∂Y

∂τi(s)
= ∇Y (a∗)T · ∂a∗

∂τi(s)
,

where a∗ is the equilibrium action profile for the contract τ . The substance of the proof

is analyzing the second term on the right-hand side of (8).

16If π is zero, then the contract giving zero payments under all outcomes is optimal. So we can assume
that π is positive and thus an equilibrium exists under τ (i) for i sufficiently large.
17Suppose at an optimal contract τ ∗, there is an agent i who receives positive payment τ∗i (s) > 0 under
an outcome s but chooses action a∗i (τ

∗) = 0. Then the principal receives a strictly higher payment

under the contract τ † which sets τ †i (s) = 0 and is otherwise equal to τ ∗. At this contract, agent i
chooses action ai = 0 for any profile of actions a−i played by other agents. Thus, the equilibrium
a∗(τ ∗) under contract τ ∗ is also an equilibrium profile under contract τ †. Since outcome s occurs
with positive probability under any team performance, the principal’s expected payments to agents are
strictly higher under τ ∗ than τ †. The other direction is straightforward.
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First, consider any agent j such that a∗j(τ ) = 0. The change in their equilibrium

action due to an increase in τi(s) is zero. The utility to agent j at contract τ is

Uj =
∑
s′∈S

Ps′(Y
∗)uj(τj(s

′))− Cj(aj).

At contract τ , agent j receives no payment under any outcome, so has a unique best

response of a∗j = 0.

It is thus without loss to analyze the change in equilibrium actions of agents j that

take a strictly positive action in profile a∗, that is, a∗j > 0. The analysis from here on

focuses on such agents, overloading notation to represent the actions of these agents by

a∗.

We will show that the change in equilibrium actions a∗ as the transfer τi(s) increases

is

(9)

∂a∗

∂τi(s)
= H− 1

2

[
I −H− 1

2UGH− 1
2

]−1

H− 1
2


0

∂Y
∂ai

P ′
s(Y )u′

i(τi(s))

0

+ ∂Y

∂τi(s)
[H −UG]−1 d,

for some vector d.

Consider the equilibrium action profile a∗. For an agent j, the first-order conditions

imply a∗j must solve the equation

(10) C ′
j(aj) =

(∑
s′∈S

P ′
s′(Y )uj(τj(s

′))

)
∂Y

∂aj
.

To arrive at (9), let us implicitly differentiate (10) with respect to τi(s). The resulting

expression depends on the identity of agent j in comparison to i, the agent whose

payment is perturbed. For all j ̸= i,

(11) C ′′
j (a

∗
j)

∂a∗j
∂τi(s)

=

(∑
s′∈S

P ′
s′(Y )uj(τj(s

′))

)(
n∑

k=1

∂2Y

∂ak∂aj
· ∂a∗k
∂τi(s)

)
+

∂Y

∂aj
· ∂Y

∂τi(s)
·
∑
s′∈S

P ′′
s′(Y )uj(τj(s

′)).

On the other hand, for j = i,
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(12) C ′′
j (a

∗
j)

∂a∗j
∂τi(s)

=

(∑
s′∈S

P ′
s′(Y )uj(τj(s

′))

)(
n∑

k=1

∂2Y

∂ak∂aj
· ∂a∗k
∂τi(s)

)

+
∂Y

∂aj
P ′
s(Y )u′

j(τj(s)) +
∂Y

∂aj
· ∂Y

∂τi(s)

∑
s′∈S

P ′′
s′(Y )uj(τj(s

′)).

We can combine (11) and (12) to write the resulting expression in vector form below

∂a∗

∂τi(s)
= [H −UG]−1


0

∂Y
∂ai

P ′
s(Y )u′

i(τi(s))

0

+
∂Y

∂τi(s)
[H −UG]−1 d,

where d is a vector with jth element defined as

dj :=
∂Y

∂aj
·
∑
s′∈S

P ′′
s′(Y )uj(τj(s

′)).

The expression in (9) follows.

Substituting (9) into (8), the change in team performance as the transfer τi(s) increases

is

∂Y

∂τi(s)
= ∇Y (a∗)TH− 1

2

[
I −H− 1

2UGH− 1
2

]−1

H− 1
2


0

∂Y
∂ai

P ′
s(Y )u′

i(τi(s))

0

+

∂Y

∂τi(s)
∇Y (a∗)T [H −UG]−1 d.

Applying the definitions of αi and ci, we obtain

∂Y

∂τi(s)
= αiciP

′
s(Y )u′

i(τi(s)) +
∂Y

∂τi(s)
∇Y (a∗)T [H −UG]−1 d.

Rearranging,

∂Y

∂τi(s)
=

1

1−∇Y (a∗)T [H −UG]−1 d
· αiciP

′
s(Y )u′

i(τi(s)).

Setting l = 1
1−∇Y (a∗)T [H−UG]−1d

and observing l does not depend on i, we obtain the

desired result.
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A.3. Proof of Theorem 1. The expected payoff for the principal under contract τ

and corresponding equilibrium actions a∗ is∑
s′∈S

(
vs′ −

∑
i∈N

τi(s
′)

)
Ps′(Y (a∗)).

Suppose τ ∗ is an optimal contract inducing equilibrium a∗(τ ∗) with team performance

Y ∗. Consider outcome s and any agent i such that τ ∗i (s) > 0. Then the first-order

condition for τ ∗i (s) implies that

dY

dτi(s)

∑
s′∈S

(
vs′ −

∑
i∈N

τ ∗i (s
′)

)
P ′
s′(Y

∗)︸ ︷︷ ︸
D

= Ps(Y
∗).

The left-hand side is the benefit from increasing τ ∗i (s) while the right-hand side is the

expected additional transfer required. Since Ps(Y
∗) > 0 by assumption, the summation

labeled D is nonzero.

Substituting Lemma 1 in the above equation, we obtain

lαiciP
′
s(Y

∗)u′
i(τ

∗
i (s)) =

Ps(Y
∗)

D
,

⇐⇒ αiciu
′
i(τ

∗
i (s)) = λs,

where λs = Ps(Y
∗)/(lP ′

s(Y
∗)D). Observing that λs is independent of i, the statement

of the result follows.

A.4. Proof of Corollary 1. Let S∗
ij have at least 2 outcomes. (If |S∗

ij| ≤ 1, the

statement holds vacuously.) By Theorem 1, for any s ∈ S∗
ij, there is a constant λs ̸= 0

such that

αiciu
′
i(τ

∗
i (s)) = λs, and αjcju

′
j(τ

∗
j (s)) = λs.

It follows that
u′
i(τ

∗
i (s))

u′
j(τ

∗
j (s))

=
αjcj
αici

.

The right-hand side is independent of s, so the result follows with λij equal to this

right-hand side.
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A.5. Proof of Proposition 1. We prove a couple of lemmas which help in proving

the proposition statement. The first lemma gives a condition which must hold for all

outcomes at which an agent receives a positive payment.

Lemma 4. Suppose τ ∗ is an optimal contract and Y ∗ is the induced team performance.

For all s in the set of outcomes S∗
i where i receives a positive payment, P ′

s(Y
∗) > 0.

Proof. Consider agent i and let S∗
i be the set of outcomes at which agent i receives a

positive payment. If S∗
i is the empty set, the result holds vacuously. Otherwise, we will

show that, either

P ′
s(Y

∗) > 0, for all s ∈ S∗
i , or, P ′

s(Y
∗) < 0, for all s ∈ S∗

i .(13)

Recall from the proof of Theorem 1 that

lαiciP
′
s(Y

∗)u′
i(τ

∗
i (s)) =

Ps(Y
∗)∑

s′∈S
(
vs′ −

∑
i∈N τi(s′)

)
P ′
s′(Y

∗)
, ∀s ∈ S∗

i .

Since every outcome occurs with non-zero probability, it must be that P ′
s(Y

∗) ̸= 0 for

any outcome in S∗
i . In the case S∗

i has exactly 1 outcome, it follows that P ′
s(Y

∗) > 0 or

P ′
s(Y

∗) < 0 for s ∈ S∗
i . Thus, suppose S∗

i has at least 2 outcomes. Taking the ratio of

the above equation for any pair of outcomes s1, s2 ∈ S∗
i , we obtain

u′
i(τ

∗
i (s1))

u′
i(τ

∗
i (s2))

=
Ps1(Y

∗)

P ′
s1
(Y ∗)

·
P ′
s2
(Y ∗)

Ps2(Y
∗)
.

Since the utility function ui(·) is strictly increasing, we must have either

P ′
s(Y

∗) > 0 for s ∈ {s1, s2}, or, P ′
s(Y

∗) < 0 for s ∈ {s1, s2}.

The statement in (13) follows. We now show that

P ′
s(Y

∗) > 0, for all s ∈ S∗
i .

The equilibrium condition for agent i is

C ′
i(a

∗
i ) =

∂Y

∂ai

∑
s∈S

P ′
s(Y

∗)ui(τ
∗
i (s)).
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Since
∑

s∈S P
′
s(Y ) = 0, the equilibrium condition can be rewritten as

C ′
i(a

∗
i ) =

∂Y

∂ai

∑
s∈S∗

i

P ′
s(Y

∗) (ui(τ
∗
i (s))− ui(0)) .

By assumption we have a positive marginal productivity, that is, ∂Y
∂ai

> 0. The cost

of effort is strictly increasing, that is, C ′
i(·) > 0. The utility function ui(·) is strictly

increasing in payments. Thus,

P ′
s(Y

∗) > 0, for all s ∈ S∗
i

as desired. □

The second lemma shows the existence of a common outcome at which agents receiving

a positive payment are paid.

Lemma 5. Suppose τ ∗ is an optimal contract. Consider a pair of agents i and j,

each with strictly concave utility functions. If there exist outcomes si and sj such that

τ ∗i (si) > 0 and τ ∗j (sj) > 0, then there exists an outcome s ∈ S such that

τ ∗i (s) > 0 and τ ∗j (s) > 0.

Proof. Suppose there does not exist an outcome at which both agents receive a positive

payment. Thus, the payments τ ∗i (sj) = 0 and τ ∗j (si) = 0. The KKT first-order conditions

at optimal contract τ ∗ are

lDαkcku
′
k(τ

∗
k (sk))P

′
sk
(Y ∗)− Psk(Y

∗) = 0 for k ∈ {i, j}.(14)

In addition to the above set of equations, we also have

lDαkcku
′
k(0)P

′
s{i,j}\k

(Y ∗)− Ps{i,j}\k(Y
∗) ≤ 0 for k ∈ {i, j}.(15)

Recall S∗
i is the set of outcomes where agent i receives a positive payment under contract

τ ∗.

Since P ′
s(Y

∗) > 0 for any s ∈ S∗
i (see Lemma 4), we must have lDαici > 0. Consider

the following chain of inequalities for agent i:

Psi(Y
∗)

P ′
si
(Y ∗)

< lDαiciu
′
i(0) ≤

Psj(Y
∗)

P ′
sj
(Y ∗)

.(16)
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Both the inequalities follow from applying (14) and (15) to agent i. We utilize the fact

that ui(·) is strictly concave. We also utilize the observation that, since agent i and j

receive a positive payment at outcome si and sj, Lemma 4 tells us that P ′
si
(Y ∗) > 0 and

P ′
sj
(Y ∗) > 0. Following the same computation for agent j, we obtain the inequalities

Psj(Y
∗)

P ′
sj
(Y ∗)

< lDαjcju
′
j(0) ≤

Psi(Y
∗)

P ′
si
(Y ∗)

.(17)

This contradicts inequality (16). Thus, if two agents receive a positive payment at some

(potentially different) outcomes under the optimal contract, then there must exist an

outcome at which both agents receive a positive payment. □

Proof of Proposition 1. Consider agents i and j with identical strictly concave utility

functions ui(·) = uj(·). The statement trivially holds if either agent i or agent j receives

a 0 payment at all outcomes. Thus, consider a scenario where there exist outcomes si

and sj such that

τ ∗i (si) > 0 and τ ∗j (sj) > 0.

By Lemma 5, it suffices to show that when there exists an outcome such that both

agents i and j receive a positive payment at this outcome, then

τ ∗i (s) ≥ τ ∗j (s) for all s ∈ S or τ ∗j (s) ≥ τ ∗i (s) for all s ∈ S

(or both).

Let S∗
ij be the set of outcomes at which both agents receive a positive payment under

contract τ ∗. The set S∗
ij is non-empty. We can assume without loss of generality that

τ ∗i (s) ≥ τ ∗j (s) for some outcome s ∈ S∗
ij. We show that then

τ ∗i (s) ≥ τ ∗j (s) for all s ∈ S.

Applying Corollary 1, it holds that

|αici| ≥ |αjcj|.
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Additionally, αici and αjcj are either both positive or negative. Further applying Corol-

lary 1 to any outcome s′ ∈ S∗
ij, the ratio of marginal utilities satisfies

u′
i(τ

∗
i (s

′))

u′
j(τ

∗
j (s

′))
=

αjcj
αici

≤ 1.

This implies that agent i receives a weakly larger payment than agent j under all out-

comes in S∗
ij, that is,

τ ∗i (s) ≥ τ ∗j (s) for all s ∈ S∗
ij.

We will show that this ordering on payments holds for outcomes in the set S \ S∗
ij as

well. The ordering trivially holds at outcomes where τ ∗j (s) = 0. Consider an outcome

s at which τ ∗j (s) > 0 but τ ∗i (s) = 0. We show that such an outcome cannot exist at an

optimal contract τ ∗. We showed in the proof of Theorem 1 that the first-order condition

for the principal is

lDαjcju
′
j(τ

∗
j (s))P

′
s(Y

∗)− Ps(Y
∗) = 0.

Since the utility to agent j is strictly increasing, it must hold that

lDαjcjP
′
s(Y

∗) > 0.

Recall, |αici| ≥ |αjcj| and they are either both positive or negative. Using the fact that

ui(·) and uj(·) are strictly increasing identical utility functions, and thus u′
i(0) = u′

j(0) >

0, we conclude

lDαiciu
′
i(0)P

′
s(Y

∗) ≥ lDαjcju
′
j(0)P

′
s(Y

∗).(18)

Now, consider the following chain of inequalities:

lDαiciu
′
i(0)P

′
s(Y

∗)− Ps(Y
∗) ≥ lDαjcju

′
j(0)P

′
s(Y

∗)− Ps(Y
∗),

> lDαjcju
′
j(τ

∗
j (s))P

′
s(Y

∗)− Ps(Y
∗),

= 0.

The first inequality follows from (18). The second inequality follows from the fact that

uj(·) is strictly concave and lDαjcjP
′
s(Y

∗) > 0. The left-hand side in the above chain
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of inequalities is the derivative of the principal’s objective in τi(s). The derivative being

positive contradicts the optimality of τ ∗, so the statement of the proposition holds. □

A.6. Proof of Corollary 2. Recall from the proof of Theorem 1 that

lαiciP
′
s(Y

∗)u′
i(τ

∗
i (s)) =

Ps(Y
∗)∑

s′∈S
(
vs′ −

∑
i∈N τi(s′)

)
P ′
s′(Y

∗)
, ∀s ∈ S∗

i .

Taking the ratio of the above equation for any pair of outcomes s1, s2 ∈ S∗
i , we obtain

u′
i(τ

∗
i (s1))

u′
i(τ

∗
i (s2))

=
Ps1(Y

∗)

P ′
s1
(Y ∗)

·
P ′
s2
(Y ∗)

Ps2(Y
∗)
.

The statement is proved.

A.7. Proof of Proposition 2. For a risk-neutral agent i, the marginal value of money

is constant: u′
i(·) = ai for some ai > 0. If at the optimal contract, the agent receives a

positive payment under two outcomes s1 and s2 that occur with positive probability at

Y ∗, Corollary 2 implies

u′
i(τ

∗
i (s1))

u′
i(τ

∗
i (s2))

= 1 ̸= Ps1(Y
∗)

P ′
s1
(Y ∗)

·
P ′
s2
(Y ∗)

Ps2(Y
∗)
.

We assumed the right hand side is not equal to 1 in the statement of Proposition 2. This

gives a contradiction, so agent i can receive a positive payment in at most one outcome.

It remains to show all risk-neutral agents receive a payment at the same outcome.

The arguments are essentially the same as those used to prove Lemma 5. Consider risk-

neutral agents i and j. Suppose that agent i receives a positive payment at outcome

si while agent j receives a positive payment at a distinct outcome sj. Applying the

arguments in Lemma 5, the inequality obtained for agent i is

Psi(Y
∗)

P ′
si
(Y ∗)

≤ lαiciu
′
i(0) ≤

Psj(Y
∗)

P ′
sj
(Y ∗)

.

Similarly, the inequality obtained for agent j is

Psj(Y
∗)

P ′
sj
(Y ∗)

≤ lαiciu
′
i(0) ≤

Psi(Y
∗)

P ′
si
(Y ∗)

.
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These inequalities imply
Psi (Y

∗)

P ′
si
(Y ∗)

=
Psj (Y

∗)

P ′
sj
(Y ∗)

, again contradicting our assumption these

values are distinct. Thus, it must be that the risk-neutral agents receive a positive

payment at the same outcome.

A.8. Proof of Proposition 3. Fixing shares τ and others’ strategies, agent i’s ex-

pected payoff is strictly concave in his action ai because Y (a) is linear in ai, the success

probability P (Y ) is concave in Y , and the effort cost is strictly convex. So agent i has a

unique best response, meaning we need only consider pure-strategy equilibria. Moreover

marginal costs at ai = 0 are zero while marginal benefits at ai = 0 are strictly positive

if τi > 0 and zero if τi = 0. Since Ui is concave in ai, this rules out a boundary solution

where the first-order condition ∂Ui

∂ai
= 0 is not satisfied. So the first-order condition is

necessary and sufficient for a best-response.

It follows that the following equations are necessary and sufficient for the vector a∗

to be a Nash equilibrium:

[I − P ′(Y ∗)TG]a∗ = P ′(Y ∗)τ and Y ∗ = Y (a∗).

Given a constant y such that P ′(y)ρ(TG) ̸= 1, where ρ(TG) is the spectral radius of

TG, we can define actions by

a∗(y) = [I − P ′(y)TG]−1P ′(y)τ .

Solutions of the first-order conditions then correspond to solutions to

Y (a∗(y)) = y.

The function Y (a∗(y)) is strictly increasing in each coordinate of a∗(y). We analyze

how a∗(y) changes as y increases. Consider the set

yR := {y : P ′(y)ρ(TG) < 1}.

Observe that because P (·) is concave, if y ∈ yR then y + ϵ ∈ yR for any ϵ > 0. We show

that constrained to the set yR, there exists a unique fixed point to the function Y (a∗(y)).

Each coordinate of a∗(y) is weakly decreasing in y since P ′(·) is weakly decreasing (by

our assumption P (·) is concave). So Y (a∗(y)) is decreasing, meaning there is at most

one solution to Y (a∗(y)) = y. It remains to show a solution to this equation exists.
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We claim that we can find y such that Y (a∗(y)) ≥ y and P ′(y)ρ(TG) < 1. If

P ′(0)ρ(TG) < 1, the claim holds with y = 0 since Y (a∗(0)) ≥ 0. Otherwise, define y0

by P ′(y0)ρ(TG) = 1. A solution to this equation exists since P ′(y) is continuous and

converges to zero as y → ∞. Then Y (a∗(y)) → ∞ as y → y0 from above, so we have

Y (a∗(y0+ ϵ)) ≥ y0+ ϵ for ϵ > 0 sufficiently small. This completes the proof of the claim.

Since Y (a∗(y)) is decreasing in y, we can also choose y large enough such that y >

Y (a∗(y)). Since Y (a∗(y)) is continuous in y, by the intermediate value theorem this

function has a fixed point, denoted by y∗. We conclude that there exists a unique

solution to Y (a∗(y)) = y in the set yR and a corresponding profile a∗ of equilibrium

actions.

It remains to show that there does not exist an equilibrium a∗ with corresponding

team performance Y ∗ such that P ′(Y ∗)ρ(TG) ≥ 1. The case τ = 0 is immediate as

the only equilibrium is a∗ = 0. Take τ not identically zero and suppose there exists an

equilibrium a∗ such that P ′(Y ∗)ρ(TG) ≥ 1. It must solve the necessary and sufficient

conditions

(19) [I − P ′(Y ∗)TG]a∗ = P ′(Y ∗)τ and Y ∗ = Y (a∗).

By the Perron-Frobenius theorem,18 there exists a left-eigenvector v of the matrix

P ′(Y ∗)TG such that v has strictly positive entries. Multiplying the LHS of (19) by

the vector v, we get

vT [I − P ′(Y ∗)TG]a∗ = [1− P ′(Y ∗)ρ(TG)]vTa∗

≤ 0,

where the inequality follows from the assumption P ′(Y ∗)ρ(TG) ≥ 1 and the fact that

a∗ has strictly positive elements. However, we also compute

vT [I − P ′(Y ∗)TG]a∗ = vTP ′(Y ∗)τ by (19)

> 0,

18For this argument, it is without loss to assume the matrix TG is irreducible. If not, since G is
symmetric, we can rewrite TG in a block diagonal form with irreducible blocks. Then P ′(Y ∗)ρ(TG)
must be an eigenvalue of at least one block of the matrix P ′(Y ∗)TG. We can drop agents in all other
blocks and apply the remainder of the argument to this block.
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where the inequality holds because the entries of v are all positive and the entries of τ are

all non-negative and not identically zero. This is a contradiction, so there does not exist

an equilibrium a∗ with corresponding team performance Y ∗ such that P ′(Y ∗)ρ(TG) ≥ 1.

We conclude the equilibrium described above is the unique one.

A.9. Proof of Lemma 2. By Theorem 1, we have that

αici is constant across agents i.

Suppose that there exist two agents i∗ ∈ N with i∗ = argmink∈N αk and j∗ ∈ N with

j∗ = argmaxk∈N αk such that αi∗ < αj∗ .
19

Then we have that, for agent i∗,

(20) αi∗ci∗ < αi∗αj∗

∑
j∈N

[I − P ′(Y ∗)GT ]
−1
i∗j = (αi∗)

2αj∗ ,

using the maximality of αj∗ among the αj and the definitions of ci∗ and αi∗ . But we

similarly have that, for agent j∗,

(21) αj∗cj∗ > αj∗αi∗

∑
i∈N

[I − P ′(Y ∗)GT ]
−1
j∗i = αi∗(αj∗)

2.

Theorem 1 implies that αi∗ci∗ = αj∗cj∗ for any two agents i∗ and j∗, and so combining

(20) and (21) implies

(αi∗)
2αj∗ > αi∗(αj∗)

2.

This contradicts our assumption αj∗ > αi∗ , so we must have αi equal to some constant

λ1 for all i in N .

A.10. Proof of Proposition 5. Suppose τ ∗ is an optimal contract for network G with

equilibrium team performance Y ∗(G, τ ∗). Consider a perturbed network G̃ generated

by increasing edge weight Gij to Gij + ϵ for some ϵ > 0. We will show that contract τ ∗

performs weakly better on network G̃ than on G. Since we will be comparing τ ∗ across

networks, we suppress the dependence of equilibrium team performance on the contract.

19We are grateful to Michael Ostrovsky for suggesting the argument in the next paragraph.
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Consider contract τ ∗ and network G̃. We want to show that the equilibrium team

performance Y ∗(G̃) is at least Y ∗(G). The equilibrium actions solve

a∗(G̃) = P ′(Y ∗(G̃))
[
I − P ′(Y ∗(G̃))T ∗G̃

]−1

τ ∗.

Suppose Y ∗(G̃) < Y ∗(G). It follows that a∗(G̃) is point-wise strictly greater than

a∗(G), because of the concavity of P (·) and the fact that G̃ is point-wise weakly greater

than G. However, this is a contradiction to Y ∗(G̃) < Y ∗(G) because

Y (a,G) =
∑
i

ai +
1

2

∑
i,j

Gijaiaj.

Thus, we must have Y ∗(G̃) ≥ Y ∗(G). The profits to the principal under contract τ ∗

are thus weakly higher on network G̃ than on network G:(
1−

∑
i

τ ∗i

)
P
(
Y ∗(G̃)

)
≥

(
1−

∑
i

τ ∗i

)
P (Y ∗ (G)) .

Finally, the optimal contract for network G̃ must deliver at least as high a payoff as

contract τ ∗ does on network G̃.

A.11. Proof of Proposition 6. We can assume without loss of generality that all

agents in Ĝ are active under τ ∗ (by dropping any inactive agents from the network).

Consider a feasible contract τ satisfying the balanced neighborhood equity condition

Ĝτ = λ1 and let s =
∑

i τi ∈ [0, 1] be the sum of shares under this contract. Such a

contract will exist for any s ∈ [0, 1], as Ĝ is the optimal active set and thus
(
Ĝ−11

)
i
> 0

for all i in Ĝ. The balanced neighborhood equity condition implies that

λ =
s

1T Ĝ−11
.

At any solution which satisfies the balanced equity condition and allocates a fraction s

of shares to agents, the team performance

Y ∗ = 1Ta∗ +
β

2
(a∗)T Ĝa∗

can be rewritten as

(22) Y ∗ =

(
P ′(Y ∗)

1− βP ′(Y ∗)λ
+

βP ′(Y ∗)2λ

2(1− βP ′(Y ∗)λ)2

)
s.
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Applying (42) to the linear output setting with complementarity parameter β, we can

write the profit for the principal under this contract as

V (s, β) = κ2s(1− s)

 1

1− βκ s

1T Ĝ−11

+
βκ s

1T Ĝ−11

2
(
1− βκ s

1T Ĝ−11

)2
 .

So for a fixed β for which τ ∗ is an optimal contract, the total payments under this

contract solves the optimization problem

V ∗(β) = max
s∈[0,1]

s(1− s)

 1

1− βκ s

1T Ĝ−11

+
βκ s

1T Ĝ−11

2
(
1− βκ s

1T Ĝ−11

)2
 .

We will characterize the solution to this optimization problem. We define k∗ :=

1T Ĝ−11 and claim that βκ < k∗. We must have β ∈
(
0, 1

κ
1

ρ(TĜ)

)
by our assumption

that equilibrium team performance is in [0, Y ]. Observe that for any fixed s ∈ [0, 1], the

balance constant λ = s/k∗ is an eigenvalue for the matrix TĜ with right eigenvector τ .

Thus we have
s

k∗ ≤ ρ(TĜ) <
1

βκ
.

Choosing s = 1 then verifies the claim βκ < k∗.

We now return to the problem of maximizing V (s, β). Taking the partial derivative

with respect to s, we find

∂V (s, β)

∂s
=

k∗κ2 (−(βκ)2s3 + 3βκk∗s2 − 4(k∗)2s+ 2(k∗)2)

2 (k∗ − βκs)3
.

It suffices to study the behavior of V (s, β) when s ∈ [0, 1]. Define

p(s, β) := −(βκ)2s3 + 3βκk∗s2 − 4(k∗)2s+ 2(k∗)2

to be the numerator of V (s, β). The partial derivative of p(s, β) with respect to s is

∂p(s, β)

∂s
= −3(βκ)2s2 + 6βκk∗s− 4(k∗)2 < −3(βκs+ k∗)2.

Since the right-hand expression is strictly negative, the function p(s, β) is strictly de-

creasing in s ∈ [0, 1]. Thus p(·, β) has only one real root for each β.
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We claim that this root lies in
(
1
2
, 1
)
. At s = 1

2
, we have

p

(
1

2
, β

)
=

(
−(βκ)2 · 1

8
+ 3κβk∗ · 1

4

)
> 0,

for any βκ < k∗. At s = 1, we have

p(1, β) = (k∗ − βκ)(βκ− 2k∗) < 0,

for any βκ < k∗. This proves the claim.

For s ∈ [0, 1], the denominator of V (s, β) is strictly positive for any βκ < k∗. So for

each β, the sum of shares s at the optimal contract is characterized by p(s, β) = 0. We

calculate
∂p(s, β)

∂β
= 3κk∗s2 − 2βκ2s3 = κs2 (3k∗ − 2βκs) > 0,

where the inequality holds for all s ∈ (0, 1). Since p(s, β) is strictly decreasing in s for

each β, the sum of shares s at the optimal contract is increasing in β.

A.12. Details of Example from 5.4. We verify the fact from the example by explicitly

solving for the marginal contribution and centrality. For a contract τ , equilibrium

actions are

a∗1 =
P ′(Y ∗)

1− P ′(Y ∗)2τ1τ2
((1 + δ)τ1 + P ′(Y ∗)τ1τ2) ,

and a∗2 =
P ′(Y ∗)

1− P ′(Y ∗)2τ1τ2
(τ2 + (1 + δ)P ′(Y ∗)τ1τ2) .

Since both agents are active, we must have P ′(Y ∗)2τ1τ2 < 1.

The marginal contributions of the agents are

α1 = 1 + δ + a∗2 and α2 = 1 + a∗1.

The difference in their marginal contributions is

α1 − α2 = δ + (a∗2 − a∗1) ,(23)

= δ +
P ′(Y ∗)

1− P ′(Y ∗)2τ1τ2
(τ2 − τ1(1 + δ) + δP ′(Y ∗)τ1τ2) ,(24)

=
δ + P ′(Y ∗)τ2 − P ′(Y ∗)τ1(1 + δ)

1− P ′(Y ∗)2τ1τ2
.(25)
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The equation above will be used to show that α1 > α2 at an optimal contract.

The centrality of each agent is

c⊤ = α⊤ [I − P ′(Y ∗)TG]
−1

.

This simplifies to

c1 =
α1 + P ′(Y ∗)τ2α2

1− τ1τ2P ′(Y ∗)2
and c2 =

α2 + P ′(Y ∗)τ1α1

1− τ1τ2P ′(Y ∗)2
.(26)

At the optimal contract, the balance condition α1c1 = α2c2 must hold. Substituting (26)

to the balance condition, we obtain

α2
1 − α2

2 = P ′(Y ∗)α1α2 (τ1 − τ2) .(27)

We want to show that τ1 > τ2, and will do so by ruling out τ1 = τ2 and τ1 < τ2.

Suppose first that τ1 = τ2. Substituting this contract in (23), we get

α1 − α2 =
δ − δP ′(Y ∗)τ1
1− P ′(Y ∗)2τ 21

,

=
δ

1 + P ′(Y ∗)τ1
,

> 0.

This is a contradiction to (27), so τ1 ̸= τ2.

Now suppose that τ2 > τ1. Recall that P
′(Y ∗)2τ1τ2 < 1. Since τ2 > τ1 by assumption,

we get P ′(Y ∗)τ1 < 1. Substituting this in (23), we get

α1 − α2 =
δ − P ′(Y ∗)τ1δ + P ′(Y ∗)τ2 − P ′(Y ∗)τ1

1− P ′(Y ∗)2τ1τ2
,

> 0.

This is again a contradiction to (27), so we also cannot have τ1 > τ2. Thus, at the

optimal contract, we have τ1 > τ2 and consequently α1 > α2.

A.13. Proof of Proposition 9. We begin with a lemma, which adapts Lemma 1.

Lemma 6. Suppose σ∗ is an optimal equity contract with corresponding equilibrium ac-

tions a∗ and team performance Y ∗. For any agent i, the derivative of team performance
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in σi, evaluated at σ∗, is

dY

dσi

= lαici
∑
s∈S

P ′
s(Y

∗)vsu
′
i (σ

∗
i vs) ,

where l is independent of i and s.

Proof. The steps taken in this proof are exactly the same as those taken in the proof

of Lemma 1. We analyze the change in team performance as the equity transfer to an

agent is perturbed. Consider an equity payment scheme τ ∗ and any agent i. Consider

marginally increasing σi. The change induced by this perturbation is

(28)
∂Y

∂σi

= ∇Y (a∗)T · ∂a
∗

∂σi

,

where a∗ is the equilibrium action profile for the contract τ . The substance of the proof

is analyzing the second term on the right-hand side of (28).

As in Lemma 1, it is without loss to analyze the change in the action of agent i and

actions of agents j that take strictly positive actions in profile a∗. The analysis from

here on focuses on such agents, overloading notation to represent the actions of these

agents by a∗.

We will show that the change in equilibrium actions a∗ as the equity σi increases is

(29)

∂a∗

∂σi

= H− 1
2

[
I −H− 1

2UGH− 1
2

]−1

H− 1
2


0

∂Y
∂ai

∑
s∈S P

′
s(Y )vsu

′
i(σivs)

0

+∂Y

∂σi

[H −UG]−1 d.

Consider the equilibrium action profile a∗. For an agent j, the first-order conditions

imply a∗j must solve the equation

(30) C ′
j(aj) =

(∑
s∈S

P ′
s(Y )uj(σjvs)

)
∂Y

∂aj
.

To arrive at (29), let us implicitly differentiate (30) with respect to σi. For all j ̸= i,

C ′′
j (a

∗
j)
∂a∗j
∂σi

=

(∑
s∈S

P ′
s(Y )uj (σjvs)

)(
n∑

k=1

∂2Y

∂ak∂aj
· ∂a

∗
k

∂σi

)
(31)
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+
∂Y

∂aj
· ∂Y
∂σi

·
∑
s∈S

P ′′
s (Y )uj(σjvs).(32)

Similarly for j = i,

C ′′
j (a

∗
j)
∂a∗j
∂σi

=

(∑
s∈S

P ′
s(Y )uj(σjvs)

)(
n∑

k=1

∂2Y

∂ak∂aj
· ∂a

∗
k

∂σi

)
(33)

+
∂Y

∂aj

∑
s∈S

P ′
s(Y )vsu

′
j(σjvs) +

∂Y

∂aj
· ∂Y
∂σi

∑
s∈S

P ′′
s (Y )uj(σjvs).(34)

We can combine (31) and (33) in vector form:

∂a∗

∂σi

= [H −UG]−1


0

∂Y
∂ai

∑
s∈S P

′
s(Y )vsu

′
i(σivs)

0

+
∂Y

∂σi

[H −UG]−1 d.

The expression in (29) follows.

Substituting (29) into (28), the change in team performance as the equity payment σi

increases is

∂Y

∂σi

= ∇Y (a∗)TH− 1
2

[
I −H− 1

2UGH− 1
2

]−1

H− 1
2


0

∂Y
∂ai

∑
s∈S P

′
s(Y )vsu

′
i(σivs)

0


+

∂Y

∂σi

∇Y (a∗)T [H −UG]−1 d.

Applying the definitions of αi and ci, we obtain

∂Y

∂σi

= αici
∑
s∈S

P ′
s(Y )vsu

′
i(σivs) +

∂Y

∂σi

∇Y (a∗)T [H −UG]−1 d.

Rearranging,

∂Y

∂σi

=
1

1−∇Y (a∗)T [H −UG]−1 d
· αici

∑
s∈S

P ′
s(Y )vsu

′
i(σivs).

Setting l = 1
1−∇Y (a∗)T [H−UG]−1d

and observing l does not depend on i, we obtain the

desired result. □
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Proof of Proposition 9. The expected payoff for the principal under equity payment σ

and corresponding equilibrium actions a∗ is(
1−

∑
i∈N

σi

)∑
s∈S

vsPs(Y (a∗)).

Suppose σ∗ is an optimal equity contract inducing equilibrium a∗(σ∗) with team per-

formance Y ∗. Consider agent i such that σ∗
i > 0. Then the first-order condition for σ∗

i

implies that

dY

dσi

·

(
1−

∑
i∈N

σ∗
i

)∑
s∈S

vsP
′
s(Y

∗)︸ ︷︷ ︸
D

=
∑
s∈S

vsPs(Y
∗).

The left-hand side is the benefit from increasing σ∗
i while the right-hand side is the

expected additional transfer required. Since each outcome occurs with non-zero proba-

bility, the summation labeled D is nonzero.

Substituting Lemma 6 in the above equation, we obtain

lαici
∑
s∈S

P ′
s(Y

∗)vsu
′
i(σ

∗
i vs) =

∑
s∈S vsPs(Y

∗)

D
,

⇐⇒ αici
∑
s∈S

P ′
s(Y

∗)vsu
′
i(σ

∗
i vs) = λ,

where λ =
∑

s∈S vsPs(Y
∗)/(lD). Observing that λ is independent of i and the outcome

s, the statement of the result follows. □

Appendix B. Optimal Contracts without Assumption 1

A key assumption behind our our main result is that when we perturb the optimal

contract in any direction, the induced equilibrium varies in a differentiable way (As-

sumption 1). This section shows modified balance conditions can continue to hold when

the induced equilibrium varies differentiably as the contract is perturbed in some, but

not necessarily all, directions. The underlying idea is that the principal may only have

available perturbations that preserve some global constraints along with the first-order

conditions.
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Consider an optimal contract τ ∗ and a corresponding equilibrium a∗(τ ∗) that is sta-

ble but not strict. Then the implicit function theorem ensures that as we perturb the

contract τ ∗ to τ locally, there is an action profile a(τ ) satisfying agents’ first-order con-

ditions that is continuously differentiable in τ . Since the equilibrium is no longer strict,

however, these action profiles need not be equilibria for all τ : if agent i is indifferent to

his equilibrium action a∗(τ ∗)i and some alternative, then after perturbing the contract

the locally optimal action a(τ )i need no longer be globally optimal. Then there could

be perturbations for which the principal would prefer a(τ ) to a∗(τ ∗), so our full balance

conditions need no longer hold. But if there are perturbations such that a(τ ) remains

an equil. ibrium, then we can obtain balance conditions in the directions of all such

perturbations.

Consider increasing payments to agent i in the direction ti, where ti(s) specifies the

change in payments to agent i in each outcome s. We hold fixed payments to all other

agents j ̸= i.

Definition. We say equilibrium is maintained in direction ti if there exist a one-

parameter family τ (x) of contracts with τ (0) = τ ∗ such that τ ′i(0) = ti, τ
′
j(0) = 0 for

j ̸= i, and such that a(τ (x)) is an equilibrium for x in some neighborhood of 0.

When there are directions where equilibrium is maintained, we obtain balance condi-

tions in those directions. The statements of these conditions must be modified since we

now change payments under multiple outcomes.

Theorem 2. Suppose τ ∗ is an optimal contract inducing equilibrium a∗ with team per-

formance Y ∗. For all directions ti such that equilibrium is maintained and τ ∗i (s) > 0

whenever ti(s) > 0, we have

qαici

(∑
s∈S

P ′
s(Y

∗)ti(s)u
′
i(τ

∗
i (s))

)
=
∑
s∈S

Ps(Y
∗)ti(s)

for a constant q that is independent of the direction ti and agent i.

Proof. The proof follows a similar approach to the proof of Theorem 1. Consider any

agent i receiving a payment at at least one outcome. Also, consider a direction of

payment perturbation ti. As before, we can ignore agents that receive a zero payment
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at the optimal contract as they continue to take a zero action and not contribute to the

change in equilibrium team performance. The change induced by such perturbation ti

is

dY (ti) = ∇Y (a∗)T · da∗(ti),

where dY (·) is the directional derivative of equilibrium team performance and da∗(·) is
the directional derivative of equilibrium actions. We state a lemma which characterizes

the change in equilibrium actions for such a perturbation.

Lemma 7. The change in equilibrium team performance as payments to agent i are

perturbed in direction ti is

dY (ti) = lαici
∑
s∈S

P ′
s(Y

∗)ti(s)u
′
i(τi(s)),

for some constant l.

Proof. Consider the equilibrium action profile a∗. For an agent j, the first-order condi-

tions imply a∗j must solve the equation

(35) C ′
j(aj) =

(∑
s′∈S

P ′
s′(Y )uj(τj(s

′))

)
∂Y

∂aj
.

Let us take the directional derivative of (35) in direction ti. The expression we obtain

depends on whether j = i. For all j ̸= i,

C ′′
j (aj)da

∗
j(ti) =

(∑
s∈S

P ′
s(Y )uj(τj(s))

)
n∑

k=1

∂2Y

∂ak∂aj
da∗k(ti)

+
∂Y

∂aj
dY (ti)

∑
s∈S

P ′′
s (Y )uj(τj(s)).

On the other hand, for j = i

C ′′
j (aj)da

∗
j(ti) =

(∑
s∈S

P ′
s(Y )uj(τj(s))

)
n∑

k=1

∂2Y

∂ak∂aj
da∗k(ti)

+
∂Y

∂aj

∑
s∈S

P ′
s(Y )tj(s)u

′
j(τj(s)) +

∂Y

∂aj
dY (ti)

∑
s∈S

P ′′
s (Y )uj(τj(s)).
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We can combine these equations to write the resulting expression in vector form as

da∗(ti) = [H −UG]−1


0

∂Y
∂ai

·
∑

s∈S P
′
s(Y )ti(s)u

′
i(τi(s))

0

+ dY (ti) [H −UG]−1 d,

where d is a vector with jth element defined as

dj :=
∂Y

∂aj
·
∑
s∈S

P ′′
s (Y )uj(τj(s)).

The change in equilibrium team performance is

dY (ti) = ∇Y (a∗)T [H −UG]−1


0

∂Y
∂ai

·
∑

s∈S P
′
s(Y )ti(s)u

′
i(τi(s))

0


+ dY (ti)∇Y (a∗)T [H −UG]−1 d.

Applying the definitions of αi and ci while rearranging the equation, we obtain

dY (ti) =
1

1−∇Y (a∗)T [H −UG]−1 d
αici

∑
s∈S

P ′
s(Y

∗)ti(s)u
′
i(τi(s)),

= lαici
∑
s∈S

P ′
s(Y

∗)ti(s)u
′
i(τi(s)),

where l = 1
1−∇Y (a∗)T [H−UG]−1d

. Observing that r does not depend on i, we obtain the

desired result. □

To prove the theorem, we utilize this expression for change in team performance

to analyze the principal’s first-order condition. For any agent i, consider a direction

of perturbation ti such that whenever ti(s) > 0, the optimal contract is such that

τ ∗i (s) > 0. Because equilibrium is maintained in direction ti , the following principal

first-order condition must hold:

dY (ti)
∑
s∈S

(
vs −

n∑
i=1

τi(s)

)
P ′
s(Y

∗)︸ ︷︷ ︸
D

=
∑
s∈S

Ps(Y
∗)ti(s)
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Substituting the expression in Lemma 7, we get

lDαici
∑
s∈S

P ′
s(Y

∗)ti(s)u
′
i(τi(s)) =

∑
s∈S

Ps(Y
∗)ti(s).

The expression in the theorem follows by taking q = lD. □

Appendix C. Sufficient conditions for positive payments

The balance result in Theorem 1 only applies to agents receiving a positive payment

under a given outcome. As discussed in Section 5, not all agents necessarily receive pos-

itive payments at the optimal contract. In this section, we provide sufficient conditions

on the environment which guarantee every agent receives a positive payment at some

outcome.

Assumption 3. The environment is such that:

(a) The contract giving payments τi(s) = 0 for all i and s is not optimal.

(b) For every agent i, limτ→0 u
′
i(τ) = ∞.

(c) For any pair of agents i and j and any action profile a,

∂2Y (a)

∂aj∂ai
≥ 0.

Part (a) ensures that the principal finds it optimal to pay at least one agent in the

team. Part (b) is a standard Inada condition for the agent’s utility. Part (c) says

that agents’ actions are complements in the sense that an agent’s effort increases team

performance more when other agents exert more effort.

Under these assumptions, all agents are paid precisely at the outcomes that are more

likely when team performance increases slightly.

Proposition 10. Suppose τ ∗ is an optimal contract with induced team performance Y ∗.

For any agent i and any outcome s,

τ ∗i (s) > 0 if and only if P ′
s(Y

∗) > 0.

In general, it can be optimal to exclude some agents from the optimal team (by offering

them no incentives). The proposition states that when agents are sufficiently risk averse

and actions are complementary, it is optimal to include all agents. Moreover, all agents

are paid under all outcomes that would become more likely if they increased their effort.
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The remainder of this section proves the proposition. We begin by stating a key

lemma, which will help show that at any optimal contract all agents have positive cen-

tralities.

Lemma 8. At any optimal contract τ ∗, the spillover matrix H− 1
2UGH− 1

2 has spectral

radius strictly smaller than 1.

Proof. We will use ρ to denote the spectral radius of H− 1
2UGH− 1

2 . We will show that

the spillover matrix cannot have ρ ≥ 1 at any optimal contract. To do so, we will

construct a perturbation of the contract giving the principal a higher payoff.

By definition (see Section 3.1),

cT
[
I −H− 1

2UGH− 1
2

]
= αT .

It is helpful to recall the definitions of the terms in the spillover matrix. The matrix U

is diagonal with entries

Ujj =
∑
s∈S

P ′
s(Y

∗)uj(τ
∗
j (s)).

We showed in Lemma 4 that any agent receives a positive payment under an optimal

contract τ ∗ only at outcomes where P ′
s(Y

∗) > 0. An implication of this is each diagonal

entry in U is positive. The matrix G is non-negative by Part (c) of Assumption 3. The

matrix H is diagonal with entries

Hjj = C ′′
j (a

∗
j).

Since we assume cost functions are strictly convex, these diagonal entries are positive.

It follows that H− 1
2UGH− 1

2 is non-negative, so by the Perron-Frobenius theorem this

matrix has a right eigenvector p with non-negative real entries and a positive real eigen-

value. Then

cT
[
I −H− 1

2UGH− 1
2

]
p = αTp,

which can be simplified to

(1− ρ)cTp = αTp.(36)
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Now, suppose that H− 1
2UGH− 1

2 has spectral radius ρ ≥ 1. By assumption, the

team performance Y (·) is strictly increasing in each of its arguments. It follows the

right-hand side of (36) is positive. If the spillover matrix has spectral radius equal to 1,

the left-hand is 0 while the right-hand is positive. Thus, we cannot have spectral radius

1.

We must show we cannot have a spectral radius ρ > 1. Since 1 − ρ is negative, this

implies cTp is negative. We will construct a direction t such that when the optimal con-

tract τ ∗ is perturbed in direction t, the agents’ individual incentives moves in direction

−p. The resulting change in the equilibrium team performance is proportional to −cTp,

which is positive. This will contradict the optimality of contract τ ∗.

We now state a lemma that characterizes the change in team performance when the

contract is perturbed in some direction t, where ti(s) specifies the change in payments

to agent i in each outcome s. (Payments only to agents receiving a positive payment

are perturbed.) The result below generalizes Lemma 1 to any arbitrary direction.

Lemma 9. The change in equilibrium team performance as payments to agents are

perturbed in direction t is

dY (t) = l
∑
i

αici

(∑
s∈S

P ′
s(Y

∗)ti(s)u
′
i(τ

∗
i (s))

)
,

for some constant l.

The proof of the result above follows the exact approach as the proof of Lemma 7

so we omit it for brevity. We utilize this expression of change in team performance to

analyze the principal’s first-order condition. The derivative of the principal’s objective

is:

dY (t)
∑
s∈S

(
vs −

n∑
i=1

τi(s)

)
P ′
s(Y

∗)︸ ︷︷ ︸
D

−
∑
i

∑
s∈S

Ps(Y
∗)ti(s)

Substituting the expression in Lemma 9, we get

(37) lD
∑
i

αici
∑
s∈S

P ′
s(Y

∗)ti(s)u
′
i(τi(s))−

∑
i

∑
s∈S

Ps(Y
∗)ti(s).
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Suppose lD > 0 at the optimal contract (a similar argument will hold when lD < 0.).

We will show there exists a direction of perturbation t satisfying the following properties:

• Every element of eigenvector p satisfies

pi = −αi

∑
s∈S

P ′
s(Y

∗)ti(s)u
′
i(τ

∗
i (s)),

• ti(s) ≤ 0 for any agent i and outcome s, and

• ti(s) < 0 only if τ ∗i (s) > 0.

For each agent i, choose an outcome si where he receives a positive payment. (Recall

we have already restricted to the set of agents who receive a positive payment at some

outcome, so this is possible.) At such an outcome si, the probability P ′
si
(Y ∗) > 0. For

outcome si, define

ti(si) := − pi
αiP ′

si
(Y ∗)u′

i(τ
∗
i (si))

.

We have ti(si) ≤ 0 because αi > 0 and the entries of p are non-negative. For any other

outcomes s ∈ S \ si, define ti(s) := 0.

Substituting in (37), the derivative of the principal’s objective in direction t is

−lDcTp−
∑
i

Psi(Y
∗)ti(si) > 0.(38)

Recall, by assumption lD > 0. Combining this with cTp < 0 it follows that the first

term −lDcTp > 0. The inequality in (38) follows from noting that ti(si) ≤ 0 for every

agent i.

Since τ ∗i (s) > 0 whenever ti(s) ̸= 0, a sufficiently small perturbation in direction t is

feasible. So τ ∗ cannot be optimal, which gives a contradiction. We conclude that at the

optimal contract τ ∗, the spillover matrix H− 1
2UGH− 1

2 has spectral radius ρ < 1. □

To characterize whether an agent receives a positive payment, it is useful to know

whether the agent’s centrality is positive. We can apply (8) to show that the centrality

of each agent receiving a positive payment is strictly positive. To see this, recall that

centralities are defined by

cT = αT
[
I −H− 1

2UGH− 1
2

]−1

.
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Since at an optimal contract the spectral radius of H− 1
2UGH− 1

2 is strictly smaller than

1, we can expand the right-hand side as a power series:

cT = αT

∞∑
k=0

(
H− 1

2UGH− 1
2

)k
.

The spillover matrix H− 1
2UGH− 1

2 is non-negative (see the proof of Lemma 8) while

each entry of α is strictly positive. We conclude that the centrality ci of each agent

receiving a positive payment is strictly positive.

Unfortunately, this does not allow us to conclude that all agents receive a payment.

Suppose some agent received payment zero under τ ∗. The Inada condition guarantees a

small payment to that agent under suitable outcomes would provide a large incentive to

work. But whether this incentive helps the principal depends on the sign of that agent’s

centrality. We will now show that agents that do not receive a payment at the optimal

contract have a strictly positive centrality as well.

Our definition of centrality in Section 3.1 focused on agents that receive a payment.

We will extend the definition to all agents. To do so, we extend various other definitions

to allow entries for every agent. Define the matrix H̃ ∈ Rn×n to be diagonal with entries

H̃jj := C ′′
j (a

∗
j).

Define the vector α̃ by

α̃ := H̃− 1
2∇Y (a∗).

Define the matrix Ũ ∈ Rn×n to be diagonal with entries

Ũjj :=
∑
s∈S

P ′
s(Y

∗)uj(τ
∗
j (s)).

For any agent that does not receive positive payments under any outcome, the diagonal

entry is 0. Define G̃ ∈ Rn×n to be the transpose of the Hessian matrix, i.e.,

G̃jk :=
∂2Y

∂ak∂aj
.
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Observe that the Hessian G defined for agents that receive a payment is a submatrix of

G̃. We can now define all agents centralities given the optimal contract τ ∗ by

c̃T := α̃T
[
I − H̃− 1

2 ŨG̃H̃− 1
2

]−1

.(39)

Lemma 10. Suppose τ ∗ is an optimal contract. For any agent i, the centrality c̃i > 0.

Proof. We first verify for agents that receive a payment that their centrality defined in c̃

is equal to their centrality as defined in c. For an ease of notation, let the spillover matrix

on all agents S̃ = H̃− 1
2 ŨG̃H̃− 1

2 and for those with a payment S = H− 1
2UGH− 1

2 .

We will show that S̃ and S have the same non-zero eigenvalues. Consequently, they

have the same spectral radius. Suppose µ is an eigenvalue of S with corresponding

eigenvector v. Then, µ is also an eigenvalue of S̃. To see this, suppose (without loss of

generality) agents with a payment are labeled {1, . . . , k}. Rows (k + 1) onwards in S̃

have all zeros. The matrix S is the top-left (k × k) dimensional submatrix of S̃. We

can define a n-dimensional vector ṽ as ṽi := vi when i ≤ k and ṽi := 0 when i > k. It is

straightforward to see ṽ is an eigenvector of S̃ with eigenvalue µ. We will now prove the

other direction. Suppose µ̃ is a non-zero eigenvalue of S̃ with corresponding eigenvector

ṽ. Since rows (k+1) onwards in S̃ have all zeros, it must be that ṽi = 0 for components

i ≥ (k + 1). But this implies v, corresponding to the first k components of ṽ, is an

eigenvector of S with eigenvalue µ̃. Applying Lemma 8 tells us the spectral radius of S̃

is strictly smaller than 1.

So we have the following power series expansion of (39):

(40) c̃T = α̃T

∞∑
ℓ=0

S̃ℓ.

We can write for any ℓ ≥ 1

S̃ℓ =

[
Sℓ J

0 0

]
,

where J is a matrix that does not contribute to the centrality. Substituting in (40) and

noting that the first k elements of α̃ are just the vector α, we get c̃i = ci for agents that

receive a payment. The centrality c̃i for an agent without a payment will affect overall

team performance when their payment at a particular outcome is perturbed.
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All that remains to show is that c̃i > 0 for every agent. This followsfrom (40): S̃ is

non-negative and every element of α̃ is strictly positive. □

We now complete the proof of the proposition.

Proof of Proposition 10. The proof involves analyzing the derivative of the principal’s

objective with respect to payments made to the agents. Consider any agent i. As shown

in the proof of Theorem 1, the derivative of the principal’s objective with respect to

τi(s) is

lDαiciu
′
i(τ

∗
i (s))P

′
s(Y

∗)− Ps(Y
∗).

Forward direction: Let S∗
i be the set of outcomes at which an agent i receives a positive

payment. Then

P ′
s(Y

∗) > 0 for all s ∈ S∗
i .

The statement of the forward direction is exactly Lemma 4. Note that the arguments

to prove the lemma did not require an Inada condition.

Backward direction: Any agent i receives a strictly positive payment at all outcomes

where P ′
s(Y

∗) > 0.

By Part (a) of Assumption 3, at the optimal contract τ ∗, there exists some agent i

receiving a positive payment at some outcome s. Note that from the forward direction,

we must have P ′
s(Y

∗) > 0. The principal’s first-order condition (see proof of Theorem 1),

applied to agent i is

lDαiciu
′
i(τ

∗
i (s))P

′
s(Y

∗)− Ps(Y
∗) = 0.

This implies lD > 0, because ci > 0 by Lemma 10. For any other agent j, recall from

the proof of Theorem 1 that the derivative of the principal’s objective in τj(s), is given

by the expression

lDαjcju
′
j(τ

∗
j (s))P

′
s(Y

∗)− Ps(Y
∗).
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This expression was stated for any agent receiving a positive payment at some outcome,

but also holds for agents receiving a zero payment at all outcomes as long as the pertur-

bation is made at an outcome s at which P ′
s(Y

∗) > 0.20 It is straightforward to verify

that cj is exactly the term that appears in the centrality vector c̃ defined in the proof

of Lemma 10. By the Inada condition on the marginal utility function, the observation

that lDcj > 0 (which holds because cj > 0 as shown in Lemma 10), and the fact that

P ′
s(Y

∗) > 0

lim
τ∗j (s)→0

lDαjcju
′
j(τ

∗
i (s))P

′
s(Y

∗)− Ps(Y
∗) > 0.

Thus, we cannot have τ ∗j (s) = 0 at an optimal contract. □

Appendix D. Comparative statics as the network changes

This section provides two additional comparative statics results in the quadratic set-

ting of Section 5. We strengthen a link and ask (1) how the optimal contract changes

and (2) how the induced team performance changes.

We first describe how the optimal equity shares vary as the network changes. We

write ∂
∂Gjk

for the derivative in the weight Gjk = Gkj of the link between j and k. Recall

that given a contract, we write G̃ for the adjacency matrix restricted to active agents.

Proposition 11. Suppose that under G there is a unique optimal contract τ ∗, with

agents i, j, and k all active. The derivative of agent i’s optimal share as we vary the

20Recall that Lemma 1 was defined for any agent receiving a positive payment at some outcome. We
show that the result also holds for agents receiving zero payments at all outcomes, when the perturbation
in payments is made in an outcome where P ′

s(Y
∗) > 0. For any agent i taking action a∗i > 0, the first-

order conditions at equilibrium imply that a∗i solves

C ′
i(ai) =

(∑
s′∈S

P ′
s′(Y )ui(τi(s

′))

)
∂Y

∂ai
.

We show the equation must also hold if a∗i = 0. To see this, recall that a∗i = 0 if and only if τi(s) = 0
at all outcomes s. Consider the first order-condition when a∗i = 0 and τi(s) = 0 for all s:

C ′
i(0) =

(∑
s′∈S

P ′
s′(Y )ui(0)

)
∂Y

∂ai
.

The left-hand side is zero because C ′(0) = 0. The right-hand side is zero since
∑

s′∈S P ′
s′(Y ) = 0. So

the first-order condition holds in this case as well. It follows that the first-order condition binds when
payments are perturbed for such an agent at an outcome where P ′

s(Y
∗) > 0.
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weight of the link between j and k is

∂τ ∗i
∂Gjk

= −(G̃−1)ikτ
∗
j − (G̃−1)ijτ

∗
k +

∂λ

∂Gjk

τ ∗i
λ
,

where λ is the constant from Proposition 4.

The value λ is the total equity in each neighborhood, which Proposition 4 shows is

constant across agents. The proof is based on the matrix calculus expression

(41)
∂G(t)−1

∂t
= −G(t)−1∂G(t)

∂t
G(t)−1

for the derivative of the inverse of a matrix. The result provides a fairly explicit expres-

sion for the impact of changing a link on equity allocations.

Proof of Proposition 11. Proposition 4 tells us that, for all agents such that τ ∗i > 0, we

have

τ ∗ = λG̃−11.

We will use the matrix calculus expression

∂G(t)−1

∂t
= −G(t)−1∂G(t)

∂t
G(t)−1.

Taking the derivative with respect to Gjk, we have that

∂τ ∗

∂Gjk

= −λG̃−1 ∂G̃

∂Gjk

G̃−11+
∂λ

∂Gjk

G̃−11.

Analyzing the ith element in this vector gives

∂τ ∗i
∂Gjk

= −λ(G̃−11)j(G̃
−1)ik − λ(G̃−11)k(G̃

−1)ij +
∂λ

∂Gjk

· (G̃−11)i.

The result follows from τ ∗i = λ(G̃−11)i and the analogous expressions with indices j

and k. □

We next look at how team performance under an optimal contract varies as the net-

work changes. Recall that Y ∗ denotes the equilibrium team performance under an

optimal contract. Then ∂Y ∗

∂Gij
is the change in this team performance as the weight on

the link between agent i and j increases.
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Proposition 12. Suppose τ ∗ is an optimal contract. Then the change in equilibrium

team performance as Gij varies can be expressed as

∂Y ∗

∂Gij

= τ ∗i τ
∗
j h,

where h does not depend on the identities of i or j.

The proposition says that the increase in team performance from strengthening a

link is precisely proportional to the product of the payments given to the two agents

connected by that link. The proof gives an explicit formula for the quantity h, which

depends on the model parameters and the contract.

The proposition has implications for a designer who can make small changes in the

network of complementarities. If the principal could marginally strengthen some links,

she would want to focus on links between pairs of agents with large payments.

Proof of Proposition 12. We want to calculate the derivative of the team performance Y ∗

under the optimal contract as Gij increases. By the envelope theorem, we can calculate

this derivative by holding fixed the contract τ ∗. To do so, we calculate the derivative of

the equilibrium team performance Y ∗ for a given contract τ as Gij increases. We will

then substitute τ = τ ∗.

Letting a∗ be the equilibrium action profile under the contract τ , we calculate

∂Y

∂Gij

=
∂1Ta∗ + 1

2
(a∗)TGa∗

∂Gij

,

= 1T ∂a∗

∂Gij

+ (a∗)TG
∂a∗

∂Gij

+
1

2
(a∗)T

∂G

∂Gij

a∗,

=
[
1T + (a∗)TG

] ∂a∗

∂Gij

+ a∗i a
∗
j .
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The equilibrium action satisfies a∗ = P ′(Y )TGa∗ + P ′(Y )T1. Thus, we can write

∂a∗

∂Gij

= P ′(Y )T
∂G

∂Gij

a∗ + P ′(Y )TG
∂a∗

∂Gij

+ (TGa∗ + T1)
∂P ′(Y )

∂Gij

,

=



0

τia
∗
j

0

τja
∗
i

0


P ′(Y ) + P ′(Y )TG

∂a∗

∂Gij

+ (TGa∗ + T1)P ′′(Y )
∂Y

∂Gij

.

where T ∂G
∂Gij

a∗ is a vector with the ith element equal to τia
∗
j , the jth element equal to

τja
∗
i and the rest of the elements equal to zero. Solving for ∂a∗

∂Gij
gives

∂a∗

∂Gij

= [I − P ′(Y )TG]
−1


P ′(Y )



0

τia
∗
j

0

τja
∗
i

0


+ T [1+Ga∗]P ′′(Y )

∂Y

∂Gij


.

Substituting into the expression for ∂Y
∂Gij

gives

∂Y

∂Gij

[
1− (1+Ga∗)T [I − P ′(Y )TG]

−1
T (1+Ga∗)P ′′(Y )

]

= P ′(Y )
[
1T + (a∗)TG

]
[I − P ′(Y )TG]

−1



0

τia
∗
j

0

τja
∗
i

0


+ a∗i a

∗
j .

We now use the optimality of τ , which implies the equality a∗ = τ ∗ P ′(Y )
1−λP ′(Y )

by

Proposition 4. Applying this, we obtain

∂Y ∗

∂Gij

= τ ∗i τ
∗
j P

′(Y ∗)2

(
2

(1−λP ′(Y ∗))3
+ 1

(1−λP ′(Y ∗))2

)
1− P ′′(Y ∗)

∑
i τ

∗
i

(1−λP ′(Y ∗))3

.

The right-hand side has the desired form. □
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Appendix E. Proofs for Characterizing the Active Set

Proof of Lemma 3. By Proposition 4, there exists a constant c such that for all agents

that get a strictly positive equity at the optimal solution, (Gτ ∗)i = λ. At any solution

which satisfies the balanced equity condition and allocates a fraction s of shares to

agents, the team performance Y ∗ = 1Ta∗ + 1
2
(a∗)TGa∗ can be rewritten as

(42) Y ∗ =

(
P ′(Y ∗)

1− P ′(Y ∗)λ
+

P ′(Y ∗)2λ

2(1− P ′(Y ∗)λ)2

)
s.

We will conclude from the above expression that team performance is increasing in

λ. For a given c, the team performance Y ∗(λ) is the solution to f(y, λ) = y, where we

define

f(y, λ) :=

(
P ′(y)

1− P ′(y)λ
+

P ′(y)2λ

2(1− P ′(y)λ)2

)
s.

By assumption P (·) is concave and twice differentiable, so f(y, λ) is decreasing in y.

Since we have also assumed P (·) is strictly increasing, we have ∂f
∂λ

> 0 for all y and thus

Y ∗(λ) is increasing in λ. □

Proof of Proposition 7. We consider the success probability objective as the argument is

essentially the same for both objectives. By Lemma 3, any optimal allocation maximizes

(Gτ )i for active agents i among allocations τ satisfying the balanced equity condition.

Let g = maxi,j Gij and choose i and j such that the link between i and j obtains this

maximum weight. Setting τi = τj =
1
2
and all other τk = 0 gives (Gτ )i = (Gτ )j = g/2.

We now show this value cannot be obtained with an active set with diameter greater

than 2.

Suppose there is an optimal allocation τ ∗ with an active set A∗ with diameter greater

than 2. Choose active agents i and j such that the distance between i and j is at least

2. The subsets {i}, {j}, N(i) ∩ A∗, and N(j) ∩ A∗ of the active set are all disjoint.

The balanced equity condition implies that (Gτ ∗)i = (Gτ ∗)j = λ for some constant

λ, and we have

2λ = (Gτ ∗)i + (Gτ ∗)j

≤ g
∑

k∈N(i)∪N(j)

τ ∗k
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< g,

where the last inequality holds because τ ∗i > 0 so
∑

k∈N(i)∪N(j) τ
∗
k < 1. Since we showed

we can obtain a value of λ = g/2, this contradicts the optimality of τ ∗. □

Proof of Proposition 8. We consider the success probability objective as the argument is

essentially the same for both objectives. By Lemma 3, any optimal allocation maximizes

the constant λ = (Gτ )i for active agents i among allocations τ satisfying the balanced

equity condition.

Let the size of the maximum clique in the network be k. Proposition 4 implies that the

optimal allocation with active set a clique of size k gives all active agents equal shares
1
k
. Under this allocation, the balanced equity condition holds with constant λ = k−1

k
.

Suppose an allocation τ satisfies the balanced neighborhood equity condition with

constant λ > k−1
k
. We will show the active set under this allocation must contain

a clique of size at least k + 1, which contradicts our assumption that the size of the

maximum clique is k.

Define

k∗ = argmax
k∈Z

{
λ−

(
k − 1

k

)
> 0

}
.

We will show that the active set under τ contains a clique of size k∗ + 1 > k. Call the

set of vertices of this active set by A∗. First observe that the equity that each agent gets

is at most (1−λ). This is because each agent’s neighbors receive equity shares summing

to λ and the total of all equity shares is 1.

We will define a sequence of agents i0, . . . , ik
∗
inductively such that i0, i1, . . . , ik is

a clique for all k. Fix some i0 in the active set and define NS(i
0) := N(i0). Given

i0, i1, . . . , ik for any k < k∗, we define

NS(i
k) :=

k⋂
l=0

N(il).

Given i0, . . . , ik with 0 ≤ k < k∗, we want to choose ik+1 to be an arbitrary agent in

NS(i
k). To do so, we must show NS(i

k) is non-empty.
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We will prove that the total equity in NS(i
k) is at least (k + 1)λ− k, i.e.,∑

i∈NS(ik)

τi ≥ (k + 1)λ− k.

We show this by induction on k. The base case k = 0 holds by the balanced neighborhood

equity condition.

The inductive hypothesis is ∑
i∈NS(ik−1)

τi ≥ kλ− (k − 1).

This implies

(43)
∑

i∈N(i0)\NS(ik−1)

τi ≤ (k − 1)(1− λ)

since
∑

i∈N(i0) τi = λ.

Since ik is active, we also have
∑

i∈N(ik) τi = λ. We can decompose the equity in this

neighborhood, potentially along with additional agents’ shares, as∑
i∈A∗\N(i0)

τi +
∑

i∈N(i0)\NS(ik−1)

τi +
∑

i∈NS(ik)

τi ≥ λ.

By the balanced neighborhood equity condition for agent i0 and (43), this implies∑
i∈NS(ik)

τi ≥ (k + 1)λ− k,

completing the induction. Since λ > k∗−1
k∗

, this implies that NS(i
k) is non-empty for

each k ∈ {1, . . . , k∗ − 1}. So we can construct i0, . . . , ik
∗
as described above.

By construction, the subnetwork {i0, . . . , ik∗} is a clique of size k∗ + 1. Since we have

assumed the maximum clique has size k, this contradicts the existence of an allocation

τ satisfying the balanced neighborhood equity condition with constant λ > k−1
k
. Thus

the maximum clique must be an optimal allocation. □
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