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1. Introduction

A popular method of motivating the members of a team to work toward a common

goal is giving them performance incentives that depend on jointly achieved outcomes.

Compensation instruments of this form commonly used in practice include options

on the firm’s stock, bonuses for achieving sales targets, and profit-sharing. How

should such incentive schemes be designed, and how should they take into account

the structure of production on the team?

We examine these questions in a simple non-parametric model of a team working

on a joint project. Each worker chooses how much costly effort to exert. These

actions jointly determine a real-valued team performance—for example, the quality

of a product. This performance, in turn, determines a probability distribution over

possible project outcomes—observable realizations that yield monetary revenues for

a principal. For example, the outcome may be the sales of the product, with the

probability of various sales outcomes depending on the team’s performance; the un-

certainty reflects stochastic factors outside the team’s control. While it is not possible

to write contracts contingent on individual actions or the team performance, the prin-

cipal can commit to a contract specifying payments to each agent contingent on each

possible project outcome. The principal’s goal is to design this contract in a way that

maximizes profit: revenue minus bonus payments.

A principal designing such a contract should take the team’s production function

into account. To illustrate why, imagine that the principal slightly adjusts the contract

of particular agent, Bengt, in a way that motivates him to take a slightly different,

higher-cost action. In team production, changing one team member’s action can

change the (local) effects of other agents’ actions on team performance. That, in turn,

changes the incentives that these other agents face, even if the payments promised

to them in various outcomes do not change. For example, those whose actions are

complements to Bengt’s are now motivated to work harder, while those whose actions

are substitutes have incentives to free-ride on his higher effort. Ultimately, all agents’

equilibrium incentives and actions may respond to the initial perturbation, and this

makes the design of all the different agents’ contracts interconnected.
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We do not have a good understanding of how the principal should account for

the structure of the team’s production function in this design problem. When are

there gains available from reallocating incentive pay among agents? At an optimal

allocation of incentive pay, how do agents’ contracts depend on organizational roles?

Our main contribution in this paper is a characterization, without parametric as-

sumptions, of optimal incentives in the environment we have described. In brief, the

results state that optimal contracts must allocate steeper incentives to agents who

have higher productivity and those who are organizationally central, in the sense that

they have high direct and indirect complementarities with productive agents.

Central to these results is a concise description of the marginal benefit to the

principal of allocating incentive pay to an agent in any contract (optimal or not). This

marginal benefit is proportional to three terms. The first term, an agent’s marginal

contribution, is the partial derivative of team performance in an individual’s action,

holding others’ actions fixed. The second term is called an agent’s total spillover. It

captures the total equilibrium effect on team performance of increasing the agent’s

incentives to take higher actions, accounting for all the spillover effects discussed

above. The third term is an agent’s marginal utility of money : it accounts for the

fact that an agent who has a low valuation of an additional dollar is, all else equal, a

less responsive and less appealing recipient of incentive pay.

Our first main result is that, generically, optimal contracts satisfy a balance condi-

tion: the three-term product described above is equal across all agents receiving any

performance pay. It turns out that the balance condition is necessary if the princi-

pal does not want to shift compensation across agents in any state—something that

must hold at any optimum. The condition is interpretable, identifying the quantities

that must be measured to assess the optimality of a contract. If the condition is not

satisfied, the result also yields guidance for modifying a suboptimal incentive scheme

to a better one.

Our model allows quite flexible production functions for the team. For example,

the team’s production function could depend jointly on the efforts of arbitrary sub-

sets of the team—working in threes, fours, and so on. But our characterization of
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optimal contracts depends (locally) only on bilateral spillovers. Indeed, a key obser-

vation behind our results is that to check for localoptimality of a contract, one can

approximate the effort provision game with a quadratic network game. Links in the

network record bilateral spillovers, and the relevant centrality terms are essentially

Bonacich centralities in this network.

We next apply our balance result to describe how incentives are allocated across

agents and across states. Agents’ marginal utilities across outcomes obey a propor-

tionality condition: if i’s marginal utility is twice j’s under one outcome, the same

holds under any other outcome. When utilities are identical, for example, agents’

compensations are ranked across all outcomes by a single ordering. We also charac-

terize how bonuses should be allocated across different outcomes, showing that under

concave utility, agents should be paid more in outcomes that are less likely and more

sensitive to changes in output. This generalizes a famous Holmström (1979) result

on optimally targeting performance pay across outcomes to multi-agent teams.

In a parametric case where the team’s performance is determined by a quadratic

network game with complementarities (as in Ballester, Calvó Armengol, and Zenou

(2006)), we derive a simple relationship between the optimal payment to an agent and

his network position. For this exercise, we assume that agents are risk neutral and

differ only in their network positions. These assumptions imply that marginal costs

of compensation and productivities are equal across agents, so the optimal contract

balances centralities in an endogenous network of spillovers. The resulting incentives

are quite different than those that appear in related models, such as payments pro-

portional to agents’ centralities (as in Mayol (2023) and Milán and Dávila (2024)).

To illustrate this, we show optimal payments and outcomes can respond in coun-

terintuitive ways to the network of complementarities (but this would not happen if

payments were proportional to centrality).

We also study settings where contracts are constrained to take specific forms, such

as equity pay—a contract linear in the principal’s revenue. Even in this more restric-

tive contracting environment, our results imply that a compensation index computed
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at an agent’s optimal equity share is proportional to the product of his productiv-

ity and centrality. This finding shows our insights are applicable in realistic settings

where contracts cannot be perfectly tailored to states.

Related literature. Broadly, we contribute to the literature on incentive design

when production features spillovers across agents. This is related to the literature

on moral hazard in teams, going back to the classic work of Holmström (1982). We

adapt that model allowing for a flexible production function and specification of the

principal’s signal about the team’s output, generalizing the “imperfect observability”

modeling of Holmström (1979) to the multi-agent case. Our model uncovers a set of

simple relationships between optimal compensation and effort spillovers that are new

to this literature.1

The general topic of optimally setting incentives in the presence of spillovers has

recently attracted interest in the literature on networks. This includes, in addition to

the work cited above, papers such as Bloch (2016), Galeotti, Golub, and Goyal (2020),

Belhaj and Deröıan (2018), and Shi (2022). Most closely related, contemporaneous

papers by Mayol (2023) and Milán and Dávila (2024) study optimal contracts in a

quadratic network game framework. Their analyses are closest to our applications in

Section 5, though we find quite different contracts are optimal.2 Our main contribu-

tion to this literature is a study of a natural and non-parametric formulation, both in

terms of the production function and the form of incentives. We show that network

game techniques permit some general characterizations of optimal outcomes without

the strong parametric assumptions common in the network games literature.

The problem of designing multi-agent contracts has also recently attracted atten-

tion in the algorithmic game theory community. Dütting, Ezra, Feldman, and Kessel-

heim (2023) consider the problem of efficiently computing an optimal linear contract

1We are also related to papers in this literature on partnerships, such as Legros and Matsushima
(1991) and Levin and Tadelis (2005) which analyze optimal sharing of project returns to provide
incentives, but which ask questions different from ours.
2Agents’ compensations under optimal contracts in Mayol (2023) and Milán and Dávila (2024) are
variants of their Bonacich centralities. We find that rather than choosing payments equal to Bonacich
centralities, the optimal contract equalizes the Bonacich centralities of agents (with respect to an
endogenous network of spillovers).
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in the multi-agent setting for a specific class of output functions. This matches our

analysis of the class of equity contracts in Section 5 and Section 6, but in general we

allow arbitrary (potentially non-linear) contracts. The other main contrast between

our work and this literature is that the computational literature has focused more

on the extensive margin question of which agents should be included in a team—i.e.,

given any incentive to work (Ezra, Feldman, and Schlesinger, 2023, 2024). We ad-

dress the important complementary question of optimizing on the intensive margin of

exactly how much incentive pay to give agents, with or without linearity restrictions

on the contract.

Finally, there is a considerable amount of recent pure and applied theoretical work

in economics under the general umbrella of contract design for teams. We give just

a few examples: Rayo (2007) consider a relational contract setting where soft infor-

mation about agents’ effort levels is observable and used in relational enforcement.

Dai and Toikka (2022) study robust multi-agent contracts and give foundations for

a principal’s use of linear contracts such as equity. Starmans (2022) is motivated

by questions related to ours, examining how moral hazard affects the type of team

a principal prefers; the modeling approach there is different, with particular addi-

tive specifications of effort, in contrast to the flexible technologies we study. Sugaya

and Wolitzky (2023) focus on issues of dynamic enforcement in team projects. Our

main contribution is a simple static model of optimal allocation of incentives across

agents, with obvious potential to interact with the many questions—especially dy-

namic ones—that are of interest in this literature.

2. Model

There are n agents, N = {1, 2, . . . , n}, and one principal. The agents take real-

valued actions ai ≥ 0, which can be interpreted as effort levels. These jointly deter-

mine a team performance, given by a function Y : Rn
≥0 → R≥0 which we assume is

twice differentiable and strictly increasing in each of its arguments. The team perfor-

mance determines the project outcome, an element of the finite set S. The probability
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of outcome s is Ps(Y ), where for any s ∈ S, the function Ps(·) is strictly positive and

twice differentiable. 3 The principal receives revenue vs from the outcome s.4

The principal observes the project outcome but does not observe agents’ actions

or the team performance Y . (When we use pronouns, we use “she” for the principal

and “he” for an agent.) To maximize revenue by incentivizing agents’ actions, the

principal makes a non-negative payment contingent on the outcome. Upon realization

of outcome s, agent i receives payment τi(s). The payments are denoted by τ : S →
Rn

≥0; such a function is called a contract.

We consider risk-averse agents and a risk-neutral principal. 5 The utility to agent

i from a monetary transfer is given by the function ui : R≥0 → R≥0, which is strictly

increasing, concave and differentiable . Each agent also has a private cost function

ci : R≥0 → R≥0, which is strictly increasing, strictly convex and twice differentiable

in that agent’s action. The marginal cost at zero action is zero, that is, c′i(0) = 0.

Agent i maximizes the expected payoff from payments minus the private cost of the

action ai,

Ui =
∑
s∈S

Ps (Y )ui (τi(s))− ci(ai).

The payoff for the principal given a contract τ and team performance Y is the

expected payoff of the outcome minus transfers to agents:∑
s∈S

(
vs −

∑
i

τi(s)

)
Ps(Y ).

The timing is as follows: The principal commits to a contract τ , following which

agents’ simultaneously choose actions. Our solution concept for the game among the

agents is pure strategy Nash equilibrium, which we refer to as the equilibrium for the

remainder of the paper.

3The assumption that a probability of outcome function is strictly positive is not crucial to the
results. It is only made for an easy exposition of statements. In the absence of this assumption,
the results must be holding at outcomes that occur with non-zero probability at the optimal team
performance.
4This should be interpreted as the principal’s valuation of that state realizing, gross of any payments
she will make to the agents.
5The modelling assumption that a principal is risk-neutral is not crucial to the results. The charac-
terization of an optimal contract and its consequences holds for a risk-averse agent as well.
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There may be multiple equilibria under some contracts. Given a contract τ , we

assume that agents play an equilibrium a∗(τ ) maximizing the principal’s expected

payoff. Under this selection, a principal’s payoff under a contract is well-defined if

at least one equilibrium exists. Among such contracts, a contract τ is optimal if no

other contract τ̃ gives the principal a higher payoff. Implicit in this definition is the

assumption that contracts without equilibria can never be optimal.

We illustrate a parametric example of the model. This example will be used

throughout the paper to provide some intuition for different results pertaining to

an optimal contract, and will be the focus of Section 5.

Example 1. There is a symmetric matrix G, representing an undirected network; so

Gij ≥ 0 is the weight of the link from agent i to j, and Gii = 0 for each i. The team

performance is the sum of a term that is linear in actions—corresponding to agents’

standalone contributions—and a quadratic complementarity term:

Y (a) =
∑
i∈N

ai +
β

2

∑
i,j∈N

Gijaiaj, for β > 0.

There are two possible outcomes s ∈ {0, 1}. The revenues from these outcomes are

normalized so that v1 = 1 and v0 = 0. These can be interpreted as success or failure

of the project. The probability of success is P (Y ), where the function P (·) is strictly
increasing, concave, and twice differentiable.

Agents are risk-neutral over monetary transfers and have a quadratic cost of effort.

Agent i maximizes the expected payoff given by the expression:

Ui = P (Y )τi(1) + (1− P (Y )) τi(0)−
a2i
2
.

The principal is risk-neutral as well. It will be optimal for the principal to not

pay anything to agents at the failure outcome, that is, τi(0) = 0 for all agents i

(see the proof of equilibrium characterization in Section 5). A contract can then be

represented by a n-dimensional vector τ ∈ Rn
≥0.

The example features simple structure in several respects: a quadratic polynomial

team performance function, the binary nature of the outcome, and the fact that all
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agents’ efforts are complementary. It may be evident to the reader that the exam-

ple is an extension of a standard linear-quadratic network game (see Ballester et al.

(2006)). The principal’s problem is to optimally choose an intervention that affects

both private returns to action and the network of complementarities. This is in con-

trast to existing work on planner interventions — for example Galeotti et al. (2020),

Leister, Zenou, and Zhou (2022), Parise and Ozdaglar (2023) — that typically affect

a nodes’ incentives. The necessary conditions at an optimal contract in the general

model leads to a simple characterization of optimal interventions for an exogenous

network; a result that may be of independent interest.

2.1. Remarks on the model. The team performance Y is real-valued, but the

outcome s is discrete. This assumption has little substantive content, since the out-

come can be, for example, a revenue rounded to the nearest cent. The fact that

outcomes are mediated by a one-dimensional performance level is the main feature

of the model, though as we discuss at the end, the key ideas have implications for

outcomes determined by a higher-dimensional function of efforts.

The principal is not restricted to a budget of vs at outcome s. The principal may

be willing to lose money at some outcome with the hope of inducing higher action.

We do not assume that equilibria exist under all contracts in the formulation of the

model or our analysis. We establish equilibria exist for all contracts in the parametric

model in Section 5 and give broader sufficient conditions ensuring equilibria exist

under a large class of contracts in Appendix C.

The principal’s problem raises several natural questions: Broadly, what do pay-

ments at an optimal contract look like? Which agents should receive stronger incen-

tives from the principal; how does this depend on agents’ individual characteristics

and the spillovers among various agents? Does the principal benefit from paying

all agents at an optimal contract? Which outcomes should the principal reward the

most?
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3. Optimal Contracts

This section states our main result: a balance condition that must hold at optimal

contracts. Before giving this result, we define some key notation that will be used in

the subsequent analysis.

3.1. Important notation. Fix a contract τ and a corresponding principal-optimal

equilibrium a∗(τ ). Let Y ∗ be the team performance under this equilibrium. We

define a series of objects below locally at this equilibrium under this contract, but in

many cases we omit the dependence on the equilibrium and the contract to save on

notation. Let the curvature matrix H be a diagonal matrix where

Hjj := c′′j (a
∗
j)

is the curvature of the cost function for agent j at a∗. Analyzing perturbations as we

vary a contract involves analyzing how equilibrium actions vary as incentives change.

An agent’s best response is less sensitive to increased incentives when c′′j (a
∗
j) is larger.

Let∇Y (a∗) be the gradient of Y (·) at a∗, restricted to the agents that take a strictly

positive action in a∗. We define the (normalized) marginal contribution vector κ as

κ := H− 1
2∇Y (a∗).

The ith element κi captures the marginal effect of i’s action on team performance,

rescaled to adjust for the curvature of i’s cost function.

Example 1 (Continued). Recall that team performance is given by the function

Y (a) =
∑
i

ai +
β

2

∑
i,j∈N

Gijaiaj,

and the cost of effort is quadratic, given by ci(ai) =
a2i
2
. The formula for κi at

equilibrium actions a∗ is

κi = 1 + β
∑
j∈N

Gija
∗
j .

The marginal effect of i’s action on team performance is a standalone effect of 1 in

addition to the term β
∑

j∈N Gija
∗
j arising from complementarities.
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To analyze how incentives propagate through the team, we consider the Hessian

matrix of the team performance function Y (·) with respect to agent actions. Let H

denote the transpose of the Hessian matrix restricted to agents that take a strictly

positive action in a∗. Formally, for agents j and k such that a∗j > 0 and a∗k > 0,

define,

Gjk :=
∂2Y

∂ak∂aj
.

Let the marginal payment utility matrix U be a diagonal matrix where

Ujj :=
∑
s∈S

P ′
s(Y

∗)uj(τj(s))

is the marginal change in agent j’s utility when team performance increases.

We next define an object κ̄ that will capture how a change in an agent’s incentives

propagates through the team:

(1) κ̄T := κT
[
I−H− 1

2UGH− 1
2

]−1

.

The ith element κ̄i of this vector is the total effect on team performance induced by

a marginal change in agent i’s incentive to increase ai. This effect is inclusive of all

spillovers on others’ incentives through strategic interactions, as we will now illustrate

using our running example.

Example 1 (Continued). Recall that it is optimal for the principal to not pay any

agent upon observing the failure outcome. Thus, a contract can be represented by a

n-dimensional vector τ . Let us define the diagonal matrix T := diag(τ ). The formula

for the vector κ̄ is

κ̄ = [I− βP ′(Y ∗)GT]
−1

κ.

The matrix [I− βP ′(Y ∗)GT]−1 is the Bonacich matrix for network GT. An element

of this matrix, indexed by (i, j), captures total discounted paths from agent i to agent

j (Ballester et al., 2006). The total effect on team performance due to a unit increase

in action from equilibrium by agent i is a weighted sum of these paths across all other

agents. The weight on the jth term in the sum is agent j’s marginal contribution.
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3.2. Balance condition across agents. In this section, we present our main result:

a balance condition across agents at each outcome realization. We begin by stating a

technical condition on the optimal contract τ ∗, which holds whenever the equilibrium

is stable.

Assumption 1. A differentiable selection a∗(τ ) from the equilibrium correspondence

can be defined in a neighborhood of τ ∗.

The above assumption is a regularity condition that permits the use of calculus to

study perturbations of the optimal contract.6

Theorem 1. Suppose τ ∗ is an optimal contract and Y ∗ is the induced team per-

formance. There exists a constant cs such that for any agent i receiving a positive

payment under s, we have

κiκ̄iu
′
i(τ

∗
i (s)) = cs.

This result says that optimal incentives require balance to hold, with the product

on the left being equal across agents. Below, we will give more intuition for why this

is a necessary condition.

In fact, the proof does not rely on the induced team performance Y ∗ being opti-

mal. The balance condition at the optimal contract would hold if the principal instead

wanted to implement any desired level of performance with minimal (expected) trans-

fers to agents.

The key to the proof is calculating the effect on team performance of increasing an

agent’s payment under a given outcome. Assumption 1 ensures that these perturba-

tions are well-defined.

6If the equilibrium is strict (i.e. no agent is indifferent between his equilibrium action and some
other action) at the contract τ ∗, this condition is equivalent to the statement that the matrix

I − H− 1
2 (UG+Q)H− 1

2 is non-singular, where Q := V∇Y (a∗)∇Y (a∗)T , for diagonal matrix V
with entries

Vjj :=
∑
s∈S

P ′′
s (Y

∗)uj(τj(s)).

This captures the curvature of the probability of outcome function Ps(·).
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Lemma 1. Suppose τ ∗ is an optimal contract with corresponding equilibrium actions

a∗ and team performance Y ∗. Consider any agent i receiving a positive payment

at some outcome. For any outcome s, the derivative of team performance in τi(s),

evaluated at τ ∗, is

dY

dτi(s)
= lP ′

s(Y
∗)u′

i(τ
∗
i (s))κiκ̄i,

where l is independent of i and s.

A complete proof for the result above is provided in Appendix A. We provide some

intuition for the various terms in the expression in the lemma.

Sketch of the proof: The lemma characterizes the effect on team performance of

increasing the transfer to agent i under outcome s. We can decompose this effect as

the product of three terms:

(i) a term P ′
s(Y

∗)u′
i(τi(s))κi capturing the direct effect of increasing τi(s) on i’s

incentive to exert effort;

(ii) a term κ̄i capturing the spillovers from changing i’s incentive to exert effort;

(iii) the constant l, which depends on the curvature of the probability Ps(Y ).

We focus on the first two terms and defer treatment of the third term, which is not

central in the basic intuition, to the formal proof in the appendix.

The first term measures the principal’s ability to directly incentivize agent i by

rewarding that agent when outcome s is realized. To calculate this (locally near the

initial equilibrium), we compare the curvature of i’s utility from taking an action to

the curvature of i’s cost of an action. The change in agent i’s marginal utility of

action, as τi(s) increases slightly, is the product of (a) the marginal effect P ′
s(Y

∗) of

team performance on the probability of outcome s, (b) the effect ∂Y
∂ai

of i’s action on

team performance, and (c) the marginal utility u′
i(τi(s)) of money under outcome s.

To obtain agent i’s direct response to a stronger incentive, we divide by the curvature

c′′j (a
∗
j) of the cost (recall c′′j (a

∗
j) is the denominator of κi).

Multiplying by the second term translates from this direct effect on i’s action to

the overall change in equilibrium actions. The term κ̄i measures the total spillovers
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induced by shifting i’s incentive to exert effort. Recall the definition

κ̄T := κT
[
I−H− 1

2UGH− 1
2

]−1

.

When H− 1
2UGH− 1

2 has spectral radius less than one, the expansion[
I−H− 1

2UGH− 1
2

]−1

=
∞∑
k=0

(H− 1
2UGH− 1

2 )k,

gives a helpful intuition. The powers capture the initial increase in i’s action, the

resulting changes in each agent’s best response, the further changes in best responses

induced by these, etc. Thus the full summation captures the change in the equilibrium

action profile due to the exogenous change in i’s incentives—following a standard

intuition in network games (Ballester et al., 2006). Finally, the dot product with the

marginal contribution vector κ translates this change in actions into the change in

team performance.

We next discuss some intuition for why Lemma 1 implies Theorem 1. A formal

proof is provided in Appendix A. We want to show that the balance condition

κiκ̄iu
′
i(τi(s)) = κjκ̄ju

′
j(τj(s)),

must hold under an optimal contract. Suppose that the principal would benefit from

a slightly higher team performance (the case in which the principal prefers a slightly

lower team performance proceeds analogously). Lemma 1 shows that the change in

team performance from increasing agent i’s payment under outcome s is equal to

κiκ̄iu
′
i(τi(s)) times terms independent of i, and similarly for agent j. If we had

κiκ̄iu
′
i(τi(s)) > κjκ̄ju

′
j(τj(s)),

it would be profitable for the principal to pay agent i slightly more and agent j

slightly less under outcome s. The same argument holds in the opposite direction, so

the balance condition is necessary for the contract to be optimal.
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4. Comparisons across agents and outcomes

This section derives consequences of the main result for a comparison of payments

made across agents and across outcomes. Section 4.1 shows that agents with sym-

metric utility functions can be ranked in terms of payments at the optimal contract.

Section 4.2 compares the payments a particular agent receives across different out-

comes.

4.1. Ranking agents at the optimal contract. Agents can be ranked in terms of

payments at the optimal contract. To see this, we establish a relationship between the

marginal utilities of agents. An implication of Theorem 1 is that the ratio between

any two agents’ marginal utilities is the same at every outcome such that both receive

positive transfers.

Corollary 1. Consider an optimal contract τ ∗. Let S∗
ij be the set of outcomes at

which agents i and j both receive a positive payment. For any outcome s ∈ S∗
ij, we

have

u′
i(τ

∗
i (s))

u′
j(τ

∗
j (s))

=
κjκ̄j

κiκ̄i

.

Intuitively, since outcome probabilities are determined by a joint team performance,

agents’ incentives should vary across outcomes in similar ways. The corollary formal-

izes this intuition in terms of marginal utilities in each outcome.7

The corollary only applies when agents i and j are both paid at a non-empty

set of outcomes. Determining when an agent is paid at a given outcome can be

complicated in general, but it is easy to construct settings where the corollary applies.

In Appendix B, for example, we give a class of environments in which an Inada

condition guarantees that all agents are paid at all outcomes where P ′
s(Y

∗) > 0 (and

no other outcomes).

When agents have identical utility functions, agents can be ranked so that an

optimal contract provides stronger incentives to more highly ranked agents.

7This contrasts with a literature on optimal compensation when the observed outcome can be used
to identify individuals who deviated from an desired level of effort (e.g., Holmström (1982) and
Legros and Matthews (1993)).
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Proposition 1. Suppose that τ ∗ is an optimal contract. If a pair of agents i and j

have identical strictly concave utility functions ui(·) = uj(·), then

τ ∗i (s) ≥ τ ∗j (s) for all s ∈ S or τ ∗j (s) ≥ τ ∗i (s) for all s ∈ S

(or both).

Th intuition is simple: for two agents that derive the same value from a monetary

transfer, the agent with a greater overall effect on team performance at the optimal

contract must be receiving a higher payment.

When all agents have an identical utility function, the optimal contract induces a

complete ranking on the agents. The relative magnitude of payments across agents

depends on the environment. This becomes evident in the parametric example dis-

cussed further in Section 5.

4.2. Payments across outcomes. A second implication of the main balance result

is a relationship between a single agent’s marginal utility across outcomes.

Corollary 2. Suppose τ ∗ is an optimal contract and Y ∗ is the induced team perfor-

mance. If agent i receives positive payments under outcomes s1 and s2, then

u′
i(τ

∗
i (s1))

u′
i(τ

∗
i (s2))

=
Ps1(Y

∗)

P ′
s1
(Y ∗)

·
P ′
s2
(Y ∗)

Ps2(Y
∗)
.

The corollary states that the marginal utility under each outcome is proportional

to the probability of that outcome divided by the marginal change in that probability

as team performance increases. That is, agents are paid more in outcomes that are

less likely and more responsive to team performance. This result generalizes a result

in the single-agent setting of Holmström (1979) concerning how a (single agent’s)

payments should be allocated across states.

A straightforward application of Corollary 2 characterizes the set of outcomes at

which an agent receives a positive payment. If an agent receives a positive payment

at some outcome, the outcomes at which it receives a positive payment must all either

have a positive marginal probability at equilibrium team performance, or a negative

marginal probability. When the team performance function Y (·) is strictly increasing
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in each of its arguments, the outcomes at which an agent receives a positive payment

all have a positive marginal probability at equilibrium team performance. (This is

formalized as Lemma 3 in the Appendix).

In the special case that an agent is risk-neutral, a stronger conclusion can be

derived on the outcomes at which the agent is paid. Under a mild assumption on the

probability of outcome function Ps(·), a risk-neutral agent receives a positive payment

in at most one outcome.

Proposition 2. Suppose that for an optimal contract τ ∗ and induced team perfor-

mance Y ∗, there does not exist a pair of outcomes s1 and s2 such that

Ps1(Y
∗)

P ′
s1
(Y ∗)

=
Ps2(Y

∗)

P ′
s2
(Y ∗)

.

Then, any risk-neutral agent receives a positive payment in at most one outcome.

Moreover, this outcome is unique across all risk-neutral agents.

Risk-averse agents prefer to diversify their payments across outcomes. But a risk-

neutral agent does not have this diversification motive, and therefore is best motivated

by payment in the outcome that responds most to the team’s performance. When all

agents are risk-neutral, the optimal contract makes a positive payment to the team

at only one outcome. The condition on the functions Ps(Y ) holds at the endogenous

team performance, but it is straightforward to construct functions Ps(Y ) such that

the condition does not hold for any possible team performance Y .

5. Applications

Our main result gives necessary conditions for a contract to be optimal. As we have

discussed, these conditions involve balancing across agents a product of (i) marginal

contributions κi; (ii) total effect on team performance κ̄i; and (iii) expected marginal

utility u′
i(·) evaluated at equilibrium payments.

This result, however, does not directly characterize how agents’ incentives and

equilibrium actions vary with the environment. Concretely, as an agent’s role in

the organization changes, the balance condition must remain satisfied at optimal

contracts, but this might happen via adjustments in any of the three terms.
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In this section, we study a canonical case where these adjustments can be fully

characterized—our running example with an exogenously given network of strategic

complementarities. Applying our main result to this example yields a complete and

explicit characterization of nonnegative optimal payments. Our results on this tie

into the literature on network games, because the running example adapts the canon-

ical network game of strategic complements. The crucial distinction is that, rather

than taking the agents’ incentives to contribute as exogenous, we make them the

endogenous outcome of the contract design problem.

Our main message is that optimal incentives and the associated equilibria exhibit

some interesting phenomena. In particular, the balance condition is achieved by

equalizing agents’ endogenous marginal contributions to production, despite their

different technological roles. In other words, optimal contracts mute pre-existing

centrality differences. This contrasts with the standard results on such games under

exogenous incentives. We then flesh some implications, including conflicts of interest

that arise between the principal and the agents over technological improvements,

which are again caused by optimally designed incentives for effort.

5.1. Equilibrium characterization. Throughout Section 5, we study the setup of

Example 1 from Section 2. Recall there are two states: 1 (success) and 0 (failure).

Because agents’ incentives depend only on the difference τi(1)−τi(0) between transfers

conditional on success and failure, we can shift payments and assume τi(0) = 0. This

shift can only improve the principal’s payoff, so it is without loss of optimality in the

principal’s problem. Thus, from now on, we will let contracts be described by equity

shares τi for each agent in the good state, stacked in a vector τ ∈ Rn
≥0.

Proposition 3. Fixing τ , there exists a unique Nash equilibrium. The equilibrium

actions a∗ and team performance Y ∗ solve the equations

(2) [I− P ′(Y ∗)βTG]a∗ = P ′(Y ∗)τ and Y ∗ = Y (a∗),

where T = diag(τ ) is the diagonal matrix with entries Tii = τi.

The characterization is reminiscent of the form of actions in standard network

games (Ballester et al., 2006), and applies here despite the nonlinearities due to P .
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Note that the result entails a positive equilibrium action for those agents with

τi > 0, and an action of zero otherwise. An agent is said to be active under a

given contract τ if he receives a positive payment τi > 0 and inactive otherwise.

We will focus on characterizing the optimal allocation of shares among active agents.

Determining the set of active agents is a complex problem, and interested readers can

find results about the active set in an earlier version of this paper (Dasaratha, Golub,

and Shah (2023)).

5.2. Optimal contract. We now characterize the optimal payments and equilibrium

actions among the set of agents receiving positive shares.

Proposition 4. Suppose τ ∗ is an optimal contract and a∗ and Y ∗ are the induced

equilibrium actions and team performance, respectively. The following properties are

satisfied:

(a) For any two active agents i and j, we have κi = κj and κ̄i = κ̄j.

(b) Balanced neighborhood actions: There is a constant c′ > 0 such that for all

active agents i, we have (Ga∗)i = c′.

(c) Balanced neighborhood equity: There is a constant c > 0 such that for all active

agents i, we have (Gτ ∗)i = c.

The result states that all active agents make equal marginal contributions and have

equal centralities.

The property of balanced neighborhood actions states that for each active agent

i, the sum of actions of neighbors of i, weighted by the strength of i’s connections

to those neighbors in G, is equal to the same number, c′. Similarly, the property of

balanced neighborhood equity says that for each active agent i, the sum
∑

j Gijτj of

shares given to neighbors of i, weighted by the strength of i’s connections to those

neighbors in G, is equal to the same number (i.e., is not dependent on i).

Proof of Proposition 4. The characterization of optimal payments in Proposition 4

follows from the balance result derived in Theorem 1. To see this, first observe the

following immediate corollary of Theorem 1 in the present environment, which follows

from the theorem by observing u′(τi) = 1 for all values of τi.
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Corollary 3. At an optimal contract τ ∗, the product κiκ̄i is a constant across all

active agents.

The following lemma is then the key step in proving Proposition 4.

Lemma 2. If κiκ̄i is constant across all active agents, then, κi is constant across all

active agents.

The proof of this lemma, which we give in the appendix, starts by differentiating

the production function and using the characterization of equilibrium, yielding the

formula

κ = ∇Y (a∗),

= 1+ βGa∗,

= [I− βP ′(Y ∗)GT]
−1︸ ︷︷ ︸

M

1.

Corollary 3 implies that the i maximizing κi among active agents must minimize κ̄i.

The fact κ = M1 just derived along with the definition (recall eq. 1) κ̄ = Mκ can be

combined to show that this is possible only if κ is constant. (In fact the proof of this

fact uses only the two equalities just stated and that M is a nonnegative matrix.)

This conclusion implies part (b) of the proposition using the formula κ = 1+βGa∗

found above. To show (c), observe that the definition of κ and Lemma 2 imply there

is c1 such that

(1T [I− P ′(y∗)βTG]−1)i = c1

for all i. Therefore,

1 = c1 − P ′(y∗)βc1(Gτ )i

for all i, so there exists a constant c such that (Gτ )i = c for all i (among the

subnetwork of active agents). □

5.2.1. An explicit characterization of the optimal contract. The system of equations

in part (a) of Proposition 4 can be solved explicitly for the optimal payments τ ∗ as

long as the relevant adjacency matrixG is invertible, which holds for generic weighted
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networks. At an optimal solution, the payment to an active agent i is

τ ∗i ∝
(
G̃−11

)
i
,

where G̃ is the subnetwork of active agents for that payment allocation; the same is

true for actions, with a different constant of proportionality. This expression captures

a sense in which more central agents receive stronger incentives, but G̃−11 behaves

quite differently from standard measures of centrality such as Bonacich centrality.

In particular, the inverse G−1 changes non-monotonically as G changes. This can

induce non-monotonicities in the optimal allocation and the resulting actions and

utilities. We next describe several comparative statics exercises that highlight some

consequences of such non-monotonicities.

5.3. Comparative statics. In this section, we explore how the optimal contract, as

well as the agents’ and principal’s payoffs, vary with the technology of production.

The simple form of the team performance function Y in our environment, as well as

the explicit characterization of incentives and outcomes, facilitate this exercise. We

focus on the effects of changes in the network G and the parameter β describing the

strength of complementarities. Section 5.3.1 examines how the optimal team perfor-

mance depends on the network of complementarities. The results demonstrate some

interesting tensions between the principal’s and the agents’ interests. Section 5.3.2

then explores an interesting practical question about compensation: how the total

share of output optimally used for incentive pay depends on the strength of comple-

mentarities.

5.3.1. Varying the network. We look at how the principal’s and agents’ payoff vary

as the network changes.

Proposition 5. The principal’s payoff is weakly increasing in the edge weight Gij =

Gji.

The principal obtains weakly higher profits from an increase in edge weights. How-

ever, it need not be the case that agents prefer such a perturbation. We will illustrate
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1

2 3

G12

G23

G13

Figure 1. Three agent weighted graph with weights G12, G13, and
G23.

this through a network on three agents (see Figure 1); general comparative statics

can be found in Appendix D.

Without loss of generality, we can assume G12 ≥ G13 ≥ G23 and choose the nor-

malization G12 = 1, so that the adjacency matrix is

G =


0 1 G13

1 0 G23

G13 G23 0

 .

Figure 2 shows the optimal payments and the corresponding equilibrium payoffs

as we vary the link weight G23, under parameter values specified in the caption.

Figure 2a depicts optimal payments to each agent as a function of G23. The payment

is non-monotonic in own links: increasing G23 initially decreases agent 2’s payment.

The numerical example also illustrates a corresponding non-monotonicity in payoffs:

strengthening one of an agent’s links can decrease his equilibrium payoff under the

optimal contract. Figure 2b depicts the equilibrium payoffs under optimal payments

as a function of G23. Strengthening the link between agents 2 and 3 can decrease the

resulting payoffs for agents 1 and 2.

This finding contrasts with an intuition that one might have from the network

games literature, that agents are better off from becoming more central. Under fixed

payments, all agents’ payoffs are monotone in the network. In the present setting,

however, agent 2 can benefit from weakening one of his links.
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There is therefore a tension between the network formation incentives of the prin-

cipal and the agents. Agents may not be willing to form links that would benefit the

principal or the team as a whole, even if link formation is not costly.

5.3.2. Varying complementarities. We now turn to how total payments change as

the complementarity parameter β increases. We study the comparative static in

the special case when P (·) is linear in the range of feasible team performance. We

assume for simplicity that the optimal allocation is unique, but could easily relax this

assumption. The principal faces a trade-off between keeping a larger percentage of

its value and using larger payments to encourage workers to exert more effort. The

following result states that when complementarities in production are larger, it is

optimal to keep a smaller percentage of a larger pie.

Proposition 6. Suppose that P (Y ) = αY on an interval [0, Y ] containing the equi-

librium team performance under any feasible allocation and that there is a unique

optimal allocation τ ∗. The sum of agents’ payments under the optimal allocation is

increasing in β, i.e.,
∂
(∑

i∈N τ ∗i
)

∂β
> 0.

The basic idea behind the proof is that the benefits to retaining more of the firm

are linear in the probability of success while the benefits to allocating more shares to

workers are convex, and become steeper as complementarities increase.

If P (Y ) is strictly concave, there is a trade-off between the concavity of P (Y ) and

the convexity of Y (a). Depending on which effect is stronger, the total payments

made to agents may increase or decrease as complementarities grow stronger.

5.4. Trade-off between marginal contribution and centrality. In this section,

we explore the trade-off between the marginal contribution and spillovers of an agent

at the optimal contract. We showed in Section 5.2 that when team performance is

Y (a) =
∑
i∈N

ai +
β

2

∑
i,j∈N

Gijaiaj, for β > 0,

the marginal contribution κi is equalized across active agents at the optimal con-

tract. This team performance assume each agent would have the same productivity
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(a) Optimal payments

(b) Payoffs under optimal payments

Figure 2. The optimal payments and resulting equilibrium payoffs as
a function of the weightG23. HereG13 = 0.8 and β = 0.1, while P (Y ) =
min{0.9Y, 1} (the kink is not relevant for the principal’s problem). In
both diagrams, the curve corresponding to agent 1 is the topmost (solid
blue) one; the curve corresponding to agent 2 is the second from the
top (dashed red); and the curve corresponding to agent 3 is the lowest
(dotted orange) one.
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if no other teammates exerted effort, and we now extend the example to relax this

assumption.

We illustrate some basic forces through a two agent example. Without loss of

generality, the adjacency matrix is

G =

[
0 1

1 0

]
.

Suppose team performance is

Y (a) = (1 + δ)a1 + a2 + βa1a2.

We analyze how κi varies across agents at the optimal contract for a strictly positive

δ. At the optimal contract, the balance condition in Corollary 3 must hold, that is,

κ1κ̄1 = κ2κ̄2.

So the agent with higher individual productivity cannot have larger marginal contri-

bution κi and larger spillovers, captured by κ̄i.

When δ = 1 and β = 1, for example, the marginal contributions satisfy κ1 > κ2.

Applying the balance condition, it must have been that the spillovers are different with

κ̄1 < κ̄2. Under the principal’s favorite contract, the agent with a higher individual

productivity has a higher marginal contribution but is less central in the endogenous

network of spillovers.

6. Optimal equity pay

The contracts we have described so far are finely tailored to individual outcomes

(see Corollary 2). In practice such contract may be difficult to implement, and firms

often use simple compensation schemes. Our results can be adapted to characterize

optimal contracts within a restricted class. This section provides an illustration by

analyzing one widely used incentive scheme: equity pay. Note that equity pay is

optimal in our simple running example, but in general the optimal equity contract

need not match the optimal unrestricted contract.
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An equity pay contract pays each agent a fixed share σivs of the surplus vs produced

by the team. For a given equity contract σ, the expected payoff to the principal is(
1−

∑
i∈N

σi

)∑
s∈S

vsPs(Y ).

The expected payoff to agent i from an equity share σi is

Ui =
∑
s∈S

ui (σivs)Ps(Y )− ci(ai).

The result below characterizes an optimal equity contract σ∗. We continue to assume

Assumption 1, which now states that there is a neighborhood of σ∗ in the space of

equity contracts where σ(a∗) is continuously differentiable.

Proposition 7. Suppose σ∗ is an optimal equity contract and Y ∗ is the induced team

performance. There exists a constant c such that for any agent i receiving a positive

equity payment, we have

κiκ̄i

∑
s∈S

P ′
s(Y

∗)vsu
′
i(σ

∗
i vs) = c.

The proof follows a similar approach to the proof of Theorem 1. It involves an-

alyzing the effect of perturbations to equity payments on the principal’s objective.

Perturbations in the equity payment of an agent affect payments at all outcomes. The

direct effect of increasing σi on i’s action is proportional to the change in marginal

expected utility from payments, which is given by the expression

κi

∑
s∈S

P ′
s(Y

∗)vsu
′
i (σ

∗
i vs) .

The summation captures the total direct effect of increasing an agent’s equity on team

performance by aggregating across states, and multiplying by κ̄i includes indirect

effects. At an optimal equity contract, the effect of perturbing equity payments on

total team performance must be the same for all agents with positive equity.

In general, the balance condition in Proposition 7 characterizing optimal equity

contracts does not match the condition in Section 3 characterizing optimal contracts.

An optimal contract fine-tunes payments at each outcome, incentivizing agents to
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exert optimal effort levels. Equity pay imposes a particular relationship between the

payments for different outcomes that may be practially convenient but sacrifices some

incentive power.

7. Concluding discussion

We have studied a fairly general incentive design problem for a team whose members

contribute via unobserved effort. We investigate how optimal contracts depend on

the team’s production function. Our main contribution is a necessary condition for

contract optimality. We show that optimal contracts must satisfy a balance condition

across agents receiving positive incentive pay.

The balance result in Theorem 1 generalizes prior work on complementarities in

optimal contract design. Beyond the lack of parametric assumptions, our general

necessary condition does not require that strategic interactions take any particular

form (such as strategic complementarities). What is key to our analysis is studying

the perturbations of equilibria, and this is possible with general spillovers. Specific

assumptions on spillover structure can, however, be very helpful for guaranteeing

equilibrium existence.

There are several natural avenues for future work. First, we have, for simplicity,

focused on a one-dimensional function as the mediator between efforts and the con-

tractible outcome. The model could be generalized to a multi-dimensional Y ∈ Rn.

This would introduce new incentive spillovers, but a local analysis of necessary con-

ditions for optimality seems interesting and feasible. Spillovers between different

agents and different dimensions of Y will be relevant under the realistic assumption

that individual efforts are not perfectly identifiable.
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Appendix A. Omitted proofs

A.1. Proof of Lemma 1. We begin by observing that under any optimal contract,

a∗i (τ
∗) = 0 ⇐⇒ τ ∗i (s) = 0, for all s ∈ S.

That is, at an optimal contract, an agent i exerts zero effort at equilibrium, if and

only if it does not receive a payment from the contract at any outcome.8

We analyze the change in team performance as the transfers to agents are per-

turbed. Consider contract τ and any agent i for which there exists an outcome s′

such that τi(s
′) > 0. For any outcome s, consider marginally increasing τi(s). The

change induced by this perturbation is

(3)
∂Y

∂τi(s)
= ∇Y (a∗)T · ∂a∗

∂τi(s)
,

where a∗ is the equilibrium action profile for the contract τ . The substance of the

proof is analyzing the second term on the right-hand side of (3).

First, consider any agent j such that a∗j(τ ) = 0. The change in their equilibrium

action due to an increase in τi(s) is zero. The utility to agent j at contract τ is

Uj =
∑
s′∈S

Ps′(Y
∗)uj(τj(s

′))− cj(aj).

At contract τ , agent j receives no payment under any outcome, so has a unique best

response of a∗j = 0.

It is thus without loss to analyze the change in equilibrium actions of agents j that

take a strictly positive action in profile a∗, that is, a∗j > 0. The analysis from here on

8Suppose at an optimal contract τ ∗, there is an agent i who receives positive payment τ∗i (s) > 0 under
an outcome s but chooses action a∗i (τ

∗) = 0. Then the principal receives a strictly higher payment

under the contract τ † which sets τ †i (s) = 0 and is otherwise equal to τ ∗. At this contract, agent i
chooses action ai = 0 for any profile of actions a−i played by other agents. Thus, the equilibrium
a∗(τ ∗) under contract τ ∗ is also an equilibrium profile under contract τ †. Since outcome s occurs
with positive probability under any team performance, the principal’s expected payments to agents
are strictly higher under τ ∗ than τ †. The other direction is straightforward.
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focuses on such agents, overloading notation to represent the actions of these agents

by a∗.

We will show that the change in equilibrium actions a∗ as the transfer τi(s) increases

is

(4)

∂a∗

∂τi(s)
= H− 1

2

[
I−H− 1

2UGH− 1
2

]−1

H− 1
2


0

∂Y
∂ai

P ′
s(Y )u′

i(τi(s))

0

+ ∂Y

∂τi(s)
[H−UG]−1 d.

Consider the equilibrium action profile a∗. For an agent j, the first-order conditions

imply a∗j must solve the equation

(5) c′j(aj) =

(∑
s′∈S

P ′
s′(Y )uj(τj(s

′))

)
∂Y

∂aj
.

To arrive at (4), let us implicitly differentiate (5) with respect to τi(s). The resulting

expression depends on the identity of agent j in comparison to i, the agent whose

payment is perturbed. For all j ̸= i,

(6) c′′j (a
∗
j)

∂a∗j
∂τi(s)

=

(∑
s′∈S

P ′
s′(Y )uj(τj(s

′))

)(
n∑

k=1

∂2Y

∂ak∂aj
· ∂a∗k
∂τi(s)

)
+

∂Y

∂aj
· ∂Y

∂τi(s)
·
∑
s′∈S

P ′′
s′(Y )uj(τj(s

′)).

On the other hand, for j = i,

(7) c′′j (a
∗
j)

∂a∗j
∂τi(s)

=

(∑
s′∈S

P ′
s′(Y )uj(τj(s

′))

)(
n∑

k=1

∂2Y

∂ak∂aj
· ∂a∗k
∂τi(s)

)

+
∂Y

∂aj
P ′
s(Y )u′

j(τj(s)) +
∂Y

∂aj
· ∂Y

∂τi(s)

∑
s′∈S

P ′′
s′(Y )uj(τj(s

′)).

We can combine (6) and (7) to write the resulting expression in vector form below

∂a∗

∂τi(s)
= [H−UG]−1


0

∂Y
∂ai

P ′
s(Y )u′

i(τi(s))

0

+
∂Y

∂τi(s)
[H−UG]−1 d,
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where d is a vector with jth element defined as

dj :=
∂Y

∂aj
·
∑
s′∈S

P ′′
s′(Y )uj(τj(s

′)).

The expression in (4) follows.

Substituting (4) into (3), the change in team performance as the transfer τi(s)

increases is

∂Y

∂τi(s)
= ∇Y (a∗)TH− 1

2

[
I−H− 1

2UGH− 1
2

]−1

H− 1
2


0

∂Y
∂ai

P ′
s(Y )u′

i(τi(s))

0

+

∂Y

∂τi(s)
∇Y (a∗)T [H−UG]−1 d.

Applying the definitions of κi and κ̄i, we obtain

∂Y

∂τi(s)
= κiκ̄iP

′
s(Y )u′

i(τi(s)) +
∂Y

∂τi(s)
∇Y (a∗)T [H−UG]−1 d.

Rearranging,

∂Y

∂τi(s)
=

1

1−∇Y (a∗)T [H−UG]−1 d
· κiκ̄iP

′
s(Y )u′

i(τi(s)).

Setting l = 1
1−∇Y (a∗)T [H−UG]−1d

and observing l does not depend on i, we obtain the

desired result.

A.2. Proof of Theorem 1. The expected payoff for the principal under contract τ

and corresponding equilibrium actions a∗ is∑
s′∈S

(
vs′ −

∑
i∈N

τi(s
′)

)
Ps′(Y (a∗)).

Suppose τ ∗ is an optimal contract inducing equilibrium a∗(τ ∗) with team performance

Y ∗. Consider outcome s and any agent i such that τ ∗i (s) > 0. Then the first-order
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condition for τ ∗i (s) implies that

dY

dτi(s)

∑
s′∈S

(
vs′ −

∑
i∈N

τ ∗i (s
′)

)
P ′
s′(Y

∗)︸ ︷︷ ︸
D

= Ps(Y
∗).

The left-hand side is the benefit from increasing τ ∗i (s) while the right-hand side is

the expected additional transfer required. Since Ps(Y
∗) > 0 by assumption, the

summation labeled D is nonzero.

Substituting Lemma 1 in the above equation, we obtain

lκiκ̄iP
′
s(Y

∗)u′
i(τ

∗
i (s)) =

Ps(Y
∗)

D
,

⇐⇒ κiκ̄iu
′
i(τ

∗
i (s)) = cs,

where cs = Ps(Y
∗)/(lP ′

s(Y
∗)D). Observing that cs is independent of i, the statement

of the result follows.

A.3. Proof of Corollary 1. Let S∗
ij have at least 2 outcomes. (If |S∗

ij| ≤ 1, the

statement holds vacuously.) By Theorem 1, for any s ∈ S∗
ij, there is a constant cs ̸= 0

such that

κiκ̄iu
′
i(τ

∗
i (s)) = cs, and κjκ̄ju

′
j(τ

∗
j (s)) = cs.

It follows that
u′
i(τ

∗
i (s))

u′
j(τ

∗
j (s))

=
κjκ̄j

κiκ̄i

.

The right-hand side is independent of s, so the result follows with cij equal to this

right-hand side.

A.4. Proof of Proposition 1. We prove a couple of lemmas which help in proving

the proposition statement. The first lemma gives a condition which must hold for all

outcomes at which an agent receives a positive payment.

Lemma 3. Suppose τ ∗ is an optimal contract and Y ∗ is the induced team perfor-

mance. For all s in the set of outcomes S∗
i where i receives a positive payment,

P ′
s(Y

∗) > 0.
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Proof. Consider agent i and let S∗
i be the set of outcomes at which agent i receives

a positive payment. If S∗
i is the empty set, the result holds vacuously. Otherwise,

either

P ′
s(Y

∗) > 0, for all s ∈ S∗
i , or, P ′

s(Y
∗) < 0, for all s ∈ S∗

i .(8)

Recall from the proof of Theorem 1 that

lκiκ̄iP
′
s(Y

∗)u′
i(τ

∗
i (s)) =

Ps(Y
∗)∑

s′∈S
(
vs′ −

∑
i∈N τi(s′)

)
P ′
s′(Y

∗)
, ∀s ∈ S∗

i .

Taking the ratio of the above equation for any pair of outcomes s1, s2 ∈ S∗
i , we obtain

u′
i(τ

∗
i (s1))

u′
i(τ

∗
i (s2))

=
Ps1(Y

∗)

P ′
s1
(Y ∗)

·
P ′
s2
(Y ∗)

Ps2(Y
∗)
.

Since the utility function ui(·) is strictly increasing, we must have either

P ′
s(Y

∗) > 0 for s ∈ {s1, s2}, or, P ′
s(Y

∗) < 0 for s ∈ {s1, s2}.

The statement in (8) follows. We now show that

P ′
s(Y

∗) > 0, for all s ∈ S∗
i .

The equilibrium condition for agent i is

c′i(a
∗
i ) =

∂Y

∂ai

∑
s∈S

P ′
s(Y

∗)ui(τ
∗
i (s)).

Since
∑

s∈S P
′
s(Y ) = 0, the equilibrium condition can be rewritten as

c′i(a
∗
i ) =

∂Y

∂ai

∑
s∈S∗

i

P ′
s(Y

∗) (ui(τ
∗
i (s))− ui(0)) .

By assumption we have a positive marginal contribution, that is, ∂Y
∂ai

> 0. The cost

of effort is strictly increasing, that is, c′i(·) > 0. The utility function ui(·) is strictly
increasing in payments. Thus,

P ′
s(Y

∗) > 0, for all s ∈ S∗
i

as desired. □
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The second lemma shows the existence of a common outcome at which agents

receiving a positive payment are paid.

Lemma 4. Suppose τ ∗ is an optimal contract. Consider a pair of agents i and j,

each with strictly concave utility functions. If there exist outcomes si and sj such that

τ ∗i (si) > 0 and τ ∗j (sj) > 0, then there exists an outcome s ∈ S such that

τ ∗i (s) > 0 and τ ∗j (s) > 0.

Proof. Suppose there does not exist an outcome at which both agents receive a positive

payment. Thus, the payments τ ∗i (sj) = 0 and τ ∗j (si) = 0. The KKT first-order

conditions at optimal contract τ ∗ are

lDκkκ̄ku
′
k(τ

∗
k (sk))P

′
sk
(Y ∗)− Psk(Y

∗) = 0 for k ∈ {i, j}.(9)

In addition to the above set of equations, we also have

lDκkκ̄ku
′
k(0)P

′
s{i,j}\k

(Y ∗)− Ps{i,j}\k(Y
∗) ≤ 0 for k ∈ {i, j}.(10)

Recall S∗
i is the set of outcomes where agent i receives a positive payment under

contract τ ∗. Since P ′
s(Y

∗) > 0 for any s ∈ S∗
i (see Lemma 3), we must have lDκiκ̄i >

0. Consider the following chain of inequalities for agent i:

Psi(Y
∗)

P ′
si
(Y ∗)

< lDκiκ̄iu
′
i(0) ≤

Psj(Y
∗)

P ′
sj
(Y ∗)

.(11)

Both the inequalities follow from applying (9) and (10) to agent i. We utilize the

fact that ui(·) is strictly concave. We also utilize the observation that, since agent

i and j receive a positive payment at outcome si and sj, Lemma 3 tells us that

P ′
si
(Y ∗) > 0 and P ′

sj
(Y ∗) > 0. Following the same computation for agent j, we obtain

the inequalities

Psj(Y
∗)

P ′
sj
(Y ∗)

< lDκjκ̄ju
′
j(0) ≤

Psi(Y
∗)

P ′
si
(Y ∗)

.(12)

This contradicts inequality (11). Thus, if two agents receive a positive payment at

some (potentially different) outcomes under the optimal contract, then there must

exist an outcome at which both agents receive a positive payment. □
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Proof of Proposition 1. Consider agents i and j with identical strictly concave utility

functions ui(·) = uj(·). The statement trivially holds if either agent i or agent j

receives a 0 payment at all outcomes. Thus, consider a scenario where there exist

outcomes si and sj such that

τ ∗i (si) > 0 and τ ∗j (sj) > 0.

By Lemma 4, it suffices to show that when there exists an outcome s ∈ S such

that both agents i and j receive a positive payment at this outcome, then

τ ∗i (s) ≥ τ ∗j (s) for all s ∈ S or τ ∗j (s) ≥ τ ∗i (s) for all s ∈ S

(or both).

Let S∗
ij be the set of outcomes at which both agents receive a positive payment under

contract τ ∗. The set S∗
ij is non-empty. We can assume without loss of generality that

τ ∗i (s) ≥ τ ∗j (s) for some outcome s ∈ S∗
ij. We show that then

τ ∗i (s) ≥ τ ∗j (s) for all s ∈ S.

Applying Corollary 1, it holds that

|κiκ̄i| ≥ |κjκ̄j|.

Additionally, κiκ̄i and κjκ̄j are either both positive or negative. Further applying

Corollary 1 to any outcome s′ ∈ S∗
ij, the ratio of marginal utilities satisfies

u′
i(τ

∗
i (s

′))

u′
j(τ

∗
j (s

′))
=

κjκ̄j

κiκ̄i

≤ 1.

This implies that agent i receives a weakly larger payment than agent j under all

outcomes in S∗
ij, that is,

τ ∗i (s) ≥ τ ∗j (s) for all s ∈ S∗
ij.

This ordering on payments holds for outcomes in the set S \S∗
ij as well. The ordering

trivially holds at outcomes where τ ∗j (s) = 0. Consider an outcome s at which τ ∗j (s) >

0 but τ ∗i (s) = 0. We show that such an outcome cannot exist at an optimal contract

τ ∗. We showed in the proof of Theorem 1 that the first-order condition for the
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principal is

lDκjκ̄ju
′
j(τ

∗
j (s))P

′
s(Y

∗)− Ps(Y
∗) = 0.

Since the utility to agent j is strictly increasing, it must hold that

lDκjκ̄jP
′
s(Y

∗) > 0.

Now, consider the following chain of inequalities:

lDκiκ̄iu
′
i(0)P

′
s(Y

∗)− Ps(Y
∗) ≥ lDκjκ̄ju

′
j(0)P

′
s(Y

∗)− Ps(Y
∗),

> lDκjκ̄ju
′
j(τ

∗
j (s))P

′
s(Y

∗)− Ps(Y
∗),

= 0.

The first inequality holds because |κiκ̄i| ≥ |κjκ̄j| along with both terms having the

same sign and ui(·) = uj(·). The second inequality follows from the fact that uj(·)
is strictly concave and lDκjκ̄jP

′
s(Y

∗) > 0. The left-hand side in the above chain

of inequalities is the derivative of the principal’s objective in τi(s). The derivative

being positive contradicts the optimality of τ ∗, so the statement of the proposition

holds. □

A.5. Proof of Corollary 2. Recall from the proof of Theorem 1 that

lκiκ̄iP
′
s(Y

∗)u′
i(τ

∗
i (s)) =

Ps(Y
∗)∑

s′∈S
(
vs′ −

∑
i∈N τi(s′)

)
P ′
s′(Y

∗)
, ∀s ∈ S∗

i .

Taking the ratio of the above equation for any pair of outcomes s1, s2 ∈ S∗
i , we obtain

u′
i(τ

∗
i (s1))

u′
i(τ

∗
i (s2))

=
Ps1(Y

∗)

P ′
s1
(Y ∗)

·
P ′
s2
(Y ∗)

Ps2(Y
∗)
.

The statement is proved.

A.6. Proof of Proposition 2. For a risk-neutral agent i, the marginal value of

money is constant: u′
i(·) = ai for some ai > 0. If at the optimal contract, the agent

receives a positive payment under two outcomes s1 and s2 that occur with positive
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probability at Y ∗, Corollary 2 implies

u′
i(τ

∗
i (s1))

u′
i(τ

∗
i (s2))

= 1 ̸= Ps1(Y
∗)

P ′
s1
(Y ∗)

·
P ′
s2
(Y ∗)

Ps2(Y
∗)
.

We assumed the right hand side is not equal to 1 in the statement of Proposition 2.

This gives a contradiction, so agent i can receive a positive payment in at most one

outcome.

It remains to show all risk-neutral agents receive a payment at the same outcome.

The arguments are essentially the same as those used to prove Lemma 4. Consider

risk-neutral agents i and j. Suppose that agent i receives a positive payment at out-

come si while agent j receives a positive payment at a distinct outcome sj. Applying

the arguments in Lemma 4, the inequality obtained for agent i is

Psi(Y
∗)

P ′
si
(Y ∗)

≤ lκiκ̄iu
′
i(0) ≤

Psj(Y
∗)

P ′
sj
(Y ∗)

.

Similarly, the inequality obtained for agent j is

Psj(Y
∗)

P ′
sj
(Y ∗)

≤ lκiκ̄iu
′
i(0) ≤

Psi(Y
∗)

P ′
si
(Y ∗)

.

These inequalities imply
Psi (Y

∗)

P ′
si
(Y ∗)

=
Psj (Y

∗)

P ′
sj
(Y ∗)

, again contradicting our assumption these

values are distinct. Thus, it must be that the risk-neutral agents receive a positive

payment at the same outcome.

A.7. Proof of Proposition 7. We begin with a lemma, which adapts Lemma 1.

Lemma 5. Suppose σ∗ is an optimal equity contract with corresponding equilibrium

actions a∗ and team performance Y ∗. For any agent i, the derivative of team perfor-

mance in σi, evaluated at σ∗, is

dY

dσi

= lκiκ̄i

∑
s∈S

P ′
s(Y

∗)vsu
′
i (σ

∗
i vs) ,

where l is independent of i and s.

Proof. The steps taken in this proof are exactly the same as those taken in the proof

of Lemma 1. We analyze the change in team performance as the equity transfer to an
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agent is perturbed. Consider an equity payment scheme τ ∗ and any agent i. Consider

marginally increasing σi. The change induced by this perturbation is

(13)
∂Y

∂σi

= ∇Y (a∗)T · ∂a
∗

∂σi

,

where a∗ is the equilibrium action profile for the contract τ . The substance of the

proof is analyzing the second term on the right-hand side of (13).

As in Lemma 1, it is without loss to analyze the change in the action of agent i

and actions of agents j that take strictly positive actions in profile a∗. The analysis

from here on focuses on such agents, overloading notation to represent the actions of

these agents by a∗.

We will show that the change in equilibrium actions a∗ as the equity σi increases is

(14)

∂a∗

∂σi

= H− 1
2

[
I−H− 1

2UGH− 1
2

]−1

H− 1
2


0

∂Y
∂ai

∑
s∈S P

′
s(Y )vsu

′
i(σivs)

0

+∂Y

∂σi

[H−UG]−1 d.

Consider the equilibrium action profile a∗. For an agent j, the first-order conditions

imply a∗j must solve the equation

(15) c′j(aj) =

(∑
s∈S

P ′
s(Y )uj(σjvs)

)
∂Y

∂aj
.

To arrive at (14), let us implicitly differentiate (15) with respect to σi. For all j ̸= i,

c′′j (a
∗
j)
∂a∗j
∂σi

=

(∑
s∈S

P ′
s(Y )uj (σjvs)

)(
n∑

k=1

∂2Y

∂ak∂aj
· ∂a

∗
k

∂σi

)
(16)

+
∂Y

∂aj
· ∂Y
∂σi

·
∑
s∈S

P ′′
s (Y )uj(σjvs).(17)

Similarly for j = i,

c′′j (a
∗
j)
∂a∗j
∂σi

=

(∑
s∈S

P ′
s(Y )uj(σjvs)

)(
n∑

k=1

∂2Y

∂ak∂aj
· ∂a

∗
k

∂σi

)
(18)

+
∂Y

∂aj

∑
s∈S

P ′
s(Y )vsu

′
j(σjvs) +

∂Y

∂aj
· ∂Y
∂σi

∑
s∈S

P ′′
s (Y )uj(σjvs).(19)
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We can combine (16) and (18) in vector form:

∂a∗

∂σi

= [H−UG]−1


0

∂Y
∂ai

∑
s∈S P

′
s(Y )vsu

′
i(σivs)

0

+
∂Y

∂σi

[H−UG]−1 d.

The expression in (14) follows.

Substituting (14) into (13), the change in team performance as the equity payment

σi increases is

∂Y

∂σi

= ∇Y (a∗)TH− 1
2

[
I−H− 1

2UGH− 1
2

]−1

H− 1
2


0

∂Y
∂ai

∑
s∈S P

′
s(Y )vsu

′
i(σivs)

0


+

∂Y

∂σi

∇Y (a∗)T [H−UG]−1 d.

Applying the definitions of κi and κ̄i, we obtain

∂Y

∂σi

= κiκ̄i

∑
s∈S

P ′
s(Y )vsu

′
i(σivs) +

∂Y

∂σi

∇Y (a∗)T [H−UG]−1 d.

Rearranging,

∂Y

∂σi

=
1

1−∇Y (a∗)T [H−UG]−1 d
· κiκ̄i

∑
s∈S

P ′
s(Y )vsu

′
i(σivs).

Setting l = 1
1−∇Y (a∗)T [H−UG]−1d

and observing l does not depend on i, we obtain the

desired result. □

Proof of Proposition 7. The expected payoff for the principal under equity payment

σ and corresponding equilibrium actions a∗ is(
1−

∑
i∈N

σi

)∑
s∈S

vsPs(Y (a∗)).

Suppose σ∗ is an optimal equity contract inducing equilibrium a∗(σ∗) with team

performance Y ∗. Consider agent i such that σ∗
i > 0. Then the first-order condition
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for σ∗
i implies that

dY

dσi

·

(
1−

∑
i∈N

σ∗
i

)∑
s∈S

vsP
′
s(Y

∗)︸ ︷︷ ︸
D

=
∑
s∈S

vsPs(Y
∗).

The left-hand side is the benefit from increasing σ∗
i while the right-hand side is the

expected additional transfer required. Since each outcome occurs with non-zero prob-

ability, the summation labeled D is nonzero.

Substituting Lemma 5 in the above equation, we obtain

lκiκ̄i

∑
s∈S

P ′
s(Y

∗)vsu
′
i(σ

∗
i vs) =

∑
s∈S vsPs(Y

∗)

D
,

⇐⇒ κiκ̄i

∑
s∈S

P ′
s(Y

∗)vsu
′
i(σ

∗
i vs) = c,

where c =
∑

s∈S vsPs(Y
∗)/(lD). Observing that c is independent of i and the outcome

s, the statement of the result follows. □

A.8. Proof of Proposition 3. Fixing shares τ and others’ strategies, agent i’s

expected payoff is strictly concave in his action ai because Y (a) is linear in ai, the

success probability P (Y ) is concave in Y , and the effort cost is strictly convex. So

agent i has a unique best response, meaning we need only consider pure-strategy

equilibria. Moreover marginal costs at ai = 0 are zero while marginal benefits at

ai = 0 are strictly positive if τi > 0 and zero if τi = 0. Since Ui is concave in ai, this

rules out a boundary solution where the first-order condition ∂Ui

∂ai
= 0 is not satisfied.

So the first-order condition is necessary and sufficient for a best-response.

It follows that the following equations are necessary and sufficient for the vector a∗

to be a Nash equilibrium:

[I− P ′(Y ∗)βTG]a∗ = P ′(Y ∗)τ and Y ∗ = Y (a∗).

Given a constant y such that P ′(y)βρ(TG) ̸= 1, where ρ(TG) is the spectral radius

of TG, we can define actions by

a∗(y) = [I− P ′(y)βTG]−1P ′(y)τ .



40 KRISHNA DASARATHA, BENJAMIN GOLUB, AND ANANT SHAH

Solutions of the first-order conditions then correspond to solutions to

Y (a∗(y)) = y.

The function Y (a∗(y)) is strictly increasing in each coordinate of a∗(y). We analyze

how a∗(y) changes as y increases. Consider the set

yR := {y : P ′(y)βρ(TG) < 1}.

Observe that because P (·) is concave, if y ∈ yR then y + ϵ ∈ yR for any ϵ > 0. We

show that constrained to the set yR, there exists a unique fixed point to the function

Y (a∗(y)). Each coordinate of a∗(y) is weakly decreasing in y since P ′(·) is weakly

decreasing (by our assumption P (·) is concave). So Y (a∗(y)) is decreasing, meaning

there is at most one solution to Y (a∗(y)) = y. It remains to show a solution to this

equation exists.

We claim that we can find y such that Y (a∗(y)) ≥ y and P ′(y)βρ(TG) < 1. If

P ′(0)βρ(TG) < 1, the claim holds with y = 0 since Y (a∗(0)) ≥ 0. Otherwise, define

y0 by P ′(y0)βρ(TG) = 1. A solution to this equation exists since P ′(y) is continuous

and converges to zero as y → ∞. Then Y (a∗(y)) → ∞ as y → y0 from above, so we

have Y (a∗(y0 + ϵ)) ≥ y0 + ϵ for ϵ > 0 sufficiently small. This completes the proof of

the claim.

Since Y (a∗(y)) is decreasing in y, we can also choose y large enough such that

y > Y (a∗(y)). Since Y (a∗(y)) is continuous in y, by the intermediate value theorem

this function has a fixed point, denoted by y∗. We conclude that there exists a unique

solution to Y (a∗(y)) = y in the set yR and a corresponding profile a∗ of equilibrium

actions.

It remains to show that there does not exist an equilibrium a∗ with corresponding

team performance Y ∗ such that P ′(Y ∗)βρ(TG) ≥ 1. The case τ = 0 is immediate as

the only equilibrium is a∗ = 0. Take τ not identically zero and suppose there exists

an equilibrium a∗ such that P ′(Y ∗)βρ(TG) ≥ 1. It must solve the necessary and

sufficient conditions

(20) [I− P ′(Y ∗)βTG]a∗ = P ′(Y ∗)τ and Y ∗ = Y (a∗).
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By the Perron-Frobenius theorem,9 there exists a left-eigenvector v of the matrix

P ′(Y ∗)βTG such that v has strictly positive entries. Multiplying the LHS of (20) by

the vector v, we get

vT [I− P ′(Y ∗)βTG]a∗ = [1− P ′(Y ∗)βρ(TG)]vTa∗

≤ 0,

where the inequality follows from the assumption P ′(Y ∗)βρ(TG) ≥ 1 and the fact

that a∗ has strictly positive elements. However, we also compute

vT [I− P ′(Y ∗)βTG]a∗ = vTP ′(Y ∗)τ by (20)

> 0,

where the inequality holds because the entries of v are all positive and the entries

of τ are all non-negative and not identically zero. This is a contradiction, so there

does not exist an equilibrium a∗ with corresponding team performance Y ∗ such that

P ′(Y ∗)βρ(TG) ≥ 1. We conclude the equilibrium described above is the unique one.

A.9. Proof of Lemma 2. By Theorem 1, we have that

κiκi is constant across agents i.

Suppose that there exist two agents i∗ ∈ N with i∗ = argmink∈N κk and j∗ ∈ N with

j∗ = argmaxk∈N κk such that κi∗ < κj∗ .
10

Then we have that, for agent i∗,

(21) κi∗κi∗ < κi∗κj∗

∑
j∈N

[I− P ′(Y ∗)GT]
−1
i∗j = (κi∗)

2κj∗ ,

9For this argument, it is without loss to assume the matrix TG is irreducible. If not, since G is sym-
metric, we can rewrite TG in a block diagonal form with irreducible blocks. Then P ′(Y ∗)βρ(TG)
must be an eigenvalue of at least one block of the matrix P ′(Y ∗)βTG. We can drop agents in all
other blocks and apply the remainder of the argument to this block.
10We are grateful to Michael Ostrovsky for suggesting the argument in the next paragraph.
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using the maximality of κj∗ among the κj and the definitions of κi∗ and κi∗ . But we

similarly have that, for agent j∗,

(22) κj∗κj∗ > κj∗κi∗

∑
i∈N

[I− P ′(Y ∗)GT]
−1
j∗i = κi∗(κj∗)

2.

Theorem 1 implies that κi∗κi∗ = κj∗κj∗ for any two agents i∗ and j∗, and so combining

(21) and (22) implies

(κi∗)
2κj∗ > κi∗(κj∗)

2.

This contradicts our assumption κj∗ > κi∗ , so we must have κi equal to some constant

c1 for all i in N .

A.10. Proof of Proposition 5. Suppose τ ∗ is an optimal contract for network G

with equilibrium team performance Y ∗(G, τ ∗). Consider a perturbed network G̃

generated by increasing edge weight Gij to Gij + ϵ for some ϵ > 0. We will show

that contract τ ∗ performs weakly better on network G̃ than on G. Since we will

be comparing τ ∗ across networks, we suppress the dependence of equilibrium team

performance on the contract.

Consider contract τ ∗ and network G̃. We want to show that the equilibrium team

performance Y ∗(G̃) is at least Y ∗(G). The equilibrium actions solve

a∗(G̃) = P ′(Y ∗(G̃))
[
I− βP ′(Y ∗(G̃))T∗G̃

]−1

τ ∗.

Suppose Y ∗(G̃) < Y ∗(G). It follows that a∗(G̃) is point-wise strictly greater than

a∗(G), because of the concavity of P (·) and the fact that G̃ is point-wise weakly

greater than G. However, this is a contradiction to Y ∗(G̃) < Y ∗(G) because

Y (a,G) =
∑
i

ai +
β

2

∑
i,j

Gijaiaj.

Thus, we must have Y ∗(G̃) ≥ Y ∗(G). The profits to the principal under contract τ ∗

are thus weakly higher on network G̃ than on network G:(
1−

∑
i

τ ∗i

)
P
(
Y ∗(G̃)

)
≥

(
1−

∑
i

τ ∗i

)
P (Y ∗ (G)) .
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Finally, the optimal contract for network G̃ must deliver at least as high a payoff as

contract τ ∗ does on network G̃.

A.11. Proof of Proposition 6. We can assume without loss of generality that all

agents in G are active under τ ∗ (by dropping any inactive agents from the network).

Consider a feasible allocation τ satisfying the balanced neighborhood equity condition

Gτ = c1 and let s =
∑

i τi ∈ [0, 1] be the sum of shares under this allocation. Such

an allocation will exist for any s ∈ [0, 1], as G is the optimal active set and thus

(G−11)i > 0 for all i in G. The balanced neighborhood equity condition implies that

c =
s

1TG−11
.

At any solution which satisfies the balanced equity condition and allocates a fraction

s of shares to agents, the team performance

Y ∗ = 1Ta∗ +
β

2
(a∗)TGa∗

can be rewritten as

(23) Y ∗ =

(
P ′(Y ∗)

1− βP ′(Y ∗)c
+

βP ′(Y ∗)2c

2(1− βP ′(Y ∗)c)2

)
s.

Applying (23) to the linear output setting, we can write the profit for the principal

under this allocation as

V (s, β) = α2s(1− s)

(
1

1− βα s
1TG−11

+
βα s

1TG−11

2
(
1− βα s

1TG−11

)2
)
.

So for a fixed β for which τ ∗ is an optimal contract, the total payments under this

contract solves the optimization problem

V ∗(β) = max
s∈[0,1]

s(1− s)

(
1

1− βα s
1TG−11

+
βα s

1TG−11

2
(
1− βα s

1TG−11

)2
)
.

We will characterize the solution to this optimization problem. We define k∗ :=

1TG−11 and claim that βα < k∗. We must have β ∈
(
0, 1

α
1

ρ(TG)

)
by our assumption

that equilibrium team performance is in [0, Y ]. Observe that c = s/k∗ is an eigenvalue
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for the matrix TG for any s ∈ [0, 1], with right eigenvector τ . Thus we have

s

k∗ ≤ ρ(TG) <
1

βα
.

Choosing s = 1 then verifies the claim βα < k∗.

We now return to the problem of maximizing V (s, β). Taking the partial derivative

with respect to s, we find

∂V (s, β)

∂s
=

k∗α2 (−(βα)2s3 + 3βαk∗s2 − 4(k∗)2s+ 2(k∗)2)

2 (k∗ − βαs)3
.

It suffices to study the behavior of V (s, β) when s ∈ [0, 1]. Define

p(s, β) := −(βα)2s3 + 3βαk∗s2 − 4(k∗)2s+ 2(k∗)2

to be the numerator of V (s, β). The partial derivative of p(s, β) with respect to s is

∂p(s, β)

∂s
= −3(βα)2s2 + 6βαk∗s− 4(k∗)2 < −3(βαs+ k∗)2.

Since the right-hand expression is strictly negative, the function p(s, β) is strictly

decreasing in s ∈ [0, 1]. Thus p(·, β) has only one real root for each β.

We claim that this root lies in
(
1
2
, 1
)
. At s = 1

2
, we have

p

(
1

2
, β

)
=

(
−(βα)2 · 1

8
+ 3αβk∗ · 1

4

)
> 0,

for any βα < k∗. At s = 1, we have

p(1, β) = (k∗ − βα)(βα− 2k∗) < 0,

for any βα < k∗. This proves the claim.

For s ∈ [0, 1], the denominator of V (s, β) is strictly positive for any βα < k∗. So for

each β, the sum of shares s at the optimal allocation is characterized by p(s, β) = 0.

We calculate

∂p(s, β)

∂β
= 3αk∗s2 − 2βα2s3 = αs2 (3k∗ − 2βαs) > 0,

where the inequality holds for all s ∈ (0, 1). Since p(s, β) is strictly decreasing in s

for each β, the sum of shares s at the optimal allocation is increasing in β.
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Appendix B. Sufficient conditions for positive payments

The balance result in Theorem 1 only applies to agents receiving a positive payment

at some outcome. As discussed in Section 5, not all agents necessarily receive positive

payments at the optimal contract. In this section, we provide sufficient conditions

on the environment which guarantee all agents receive positive payments in all states

that would be more likely if team performance increased (that is, all states where

P ′
s(Y

∗) > 0).

Assumption 2. The environment is such that:

(a) There exists a contract τ satisfying

τi(s) > 0 for some agent i and some outcome s,

such that the principal obtains a strictly higher payoff than under the contract

where no agent gets paid.

(b) For every agent i, limτ→0 u
′
i(τ) = ∞.

(c) At any optimal contract τ ∗, the total effect on team performance satisfies either

κ̄i > 0 for every agent i or κ̄i < 0 for every agent i.

Part (a) ensures that the principal finds it optimal to pay at least one agent in the

team. Part (b) is a standard Inada condition for the agent’s utility. Part (c) is a

homogeneity condition across agents saying that the direction of the effect of every

agent on overall team performance is the same.

Under these assumptions, all agents are paid in all states that would become more

likely if team performance increased slightly.

Proposition 8. Suppose τ ∗ is an optimal contract with induced team performance

Y ∗. For any agent i and any state s,

τ ∗i (s) > 0 if and only if P ′
s(Y

∗) > 0.

Proof. The proof involves analyzing the derivative of the principal’s objective with

respect to payments made to the agents. Consider any agent i. As shown in the proof

of Theorem 1, the derivative of the principal’s objective with respect to τi(s) is given
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by the expression

lDκiκ̄iu
′
i(τ

∗
i (s))P

′
s(Y

∗)− Ps(Y
∗).

Forward direction: Consider agent i and let S∗
i be the set of outcomes at which it

receives a positive payment. Then,

P ′
s(Y

∗) > 0, for all s ∈ S∗
i .

The statement of the forward direction is exactly Lemma 3. Note that arguments

to prove the lemma did not require an Inada condition.

Backward direction: Any agent i receives a strictly positive payment at all outcomes

where P ′
s(Y

∗) > 0, that is,

if P ′
s(Y

∗) > 0 then τ ∗i (s) > 0.

To prove the backward direction, first suppose that κ̄i > 0 for all agents. By Part

(a) of Assumption 2, at the optimal contract τ ∗, there exists some agent i receiving

a positive payment at some outcome s. Note that from the forward direction, we

must have P ′
s(Y

∗) > 0. The principal’s first-order condition (see proof of Theorem 1),

applied to agent i is

lDκiκ̄iu
′
i(τ

∗
i (s))P

′
s(Y

∗)− Ps(Y
∗) = 0,

which implies lD > 0. For any other agent j, the derivative of the principal’s objective

in τj(s), is given by the expression

lDκjκ̄ju
′
j(τ

∗
j (s))P

′
s(Y

∗)− Ps(Y
∗).

The formula above was derived in the proof of Theorem 1 by utilizing Lemma 1

which derived the overall effect of a perturbation to payments on team performance.

Lemma 1 was stated for any agent receiving a positive payment at some outcome.

The result also holds for agents receiving a zero payment at all outcomes, when the

perturbation is made at an outcome s at which P ′
s(Y

∗) > 0. 11 By the Inada condition

11Recall that Lemma 1 was defined for any agent receiving a positive payment at some outcome.
We show that the result also holds for agents receiving zero payments at all outcomes, when the
perturbation in payments is made in an outcome where P ′

s(Y
∗) > 0. For any agent i taking action
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on the marginal utility function, the observation that lDκ̄j > 0 (since κ̄i > 0), and

the fact that P ′
s(Y

∗) > 0

lim
τ∗j (s)→0

lDκjκ̄ju
′
j(τ

∗
i (s))P

′
s(Y

∗)− Ps(Y
∗) > 0.

Thus, it cannot be the case that τ ∗j (s) = 0 is optimal. The argument when all κ̄i are

negative is essentially the same, with lD < 0 instead. □

Appendix C. Existence of equilibria

The main analysis took a pure-strategy equilibrium satisfying certain technical

assumptions for granted, and analyzed its comparative statics to derive necessary

conditions for contract optimality.

We now provide an environment in which an equilibrium exists for every con-

tract within a large class. The contracts the principal considers satisfy a natural

value-paying property. Under the following assumption, every contract satisfying this

property will have at least one equilibrium.

Assumption 3. The environment is such that:

(a) There exists an outcome s0 ∈ S with

vs0 = 0,

that is, the principal gets no revenue from outcome s0.

a∗i > 0, the first-order conditions at equilibrium imply that a∗i solves

c′i(ai) =

(∑
s′∈S

P ′
s′(Y )ui(τi(s

′))

)
∂Y

∂ai
.

We show the equation must also hold if a∗i = 0. To see this, recall that a∗i = 0 if and only if τi(s) = 0
at all outcomes s. Consider the first order-condition when a∗i = 0 and τi(s) = 0 for all s:

c′i(0) =

(∑
s′∈S

P ′
s′(Y )ui(0)

)
∂Y

∂ai
.

The left-hand side is zero because c′(0) = 0. The right-hand side is zero since
∑

s′∈S P ′
s′(Y ) = 0.

So the first-order condition holds in this case as well. Due to the regularity assumption on the
environment, it follows that the first-order condition binds when payments are perturbed for such
an agent at an outcome where P ′

s(Y
∗) > 0.
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(b) Consider any outcome s not equal to the no-revenue outcome s0. The proba-

bility Ps(·) of outcome s is strictly increasing and strictly concave.

(c) The team performance function Y (·) is strictly increasing in agents’ actions

and has diminishing marginal returns, that is,

∂Y

∂ai
> 0 and

∂2Y

∂a2i
≤ 0.

The assumption posits that the probability of any outcome with a positive rev-

enue is a strictly increasing and strictly concave function of team performance. An

implication of this assumption is that Ps0(·) is strictly decreasing and strictly convex.

The principal optimizes over value-paying contracts. These contracts pay agents

only when an outcome with strictly positive revenue is observed. A formal definition

is provided below.

Definition. A contract τ is value-paying if

τi (s0) = 0 for all i,

that is, all agents receive payment 0 under the no-revenue outcome.

The definition does not restrict the payments under outcomes which provide non-

zero revenue. For example, the total payments to agents can exceed the revenue to

the principal. We show that an equilibrium exists for all value-paying contracts.

Proposition 9. There exists an equilibrium for every value-paying contract.

Proof. Consider a value-paying contract τ and the induced game. The action space

of agent i is the range [0,∞). The utility to agent i is given by the expression

Ui(ai, a−i) =
∑

s∈S\s0

ui(τi(s))Ps (Y (ai, a−i))− ci(ai).

We will show that there exists an upper bound āi such that agent i only considers

actions in the range [0, āi]. The utility to agent i for any profile of actions a can be

bounded above by

(24) max
s

ui (τi(s))− ci(ai).
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Since the cost of action ci(·) is continuous, strictly increasing and strictly convex,

there exists āi < ∞ such that

ci (ai) ≥ max
s

ui(τi(s)) for all ai ≥ āi.

Thus the utility from choosing ai > āi is always negative, so any best response for

agent i must be contained in [0, āi]. So it is without loss to reduce the strategy space

of each player to this interval, which is compact.

We can rewrite i’s utility under action profile a as

(25) Ui(a) = ui(τi(s0)) +
∑

s∈S\s0

[ui(τi(s))− ui(τi(s0))]Ps (Y (ai, a−i))− ci(ai).

This utility is continuous in vector of actions a because the team performance Y (a) is

continuous in actions and the probabilities Ps(Y ) are continuous in team performance.

The utility to player i is strictly concave in their own action ai. To see this, recall

that Y is concave in ai and Ps(Y ) is strictly concave in Y , so Ps (Y (ai, a−i)) is strictly

concave in ai. Since ci(ai) is strictly convex, (25) is a linear combination of strictly

concave functions with non-negative weights. Applying the equilibrium existence

result in Glicksberg (1952), we obtain a (pure strategy) equilibrium. □

This gives explicit conditions under which the existence assumption in our main

result holds.

Appendix D. Comparative statics as the network changes

This section provides two additional comparative statics results in the parametric

setting of Section 5. We strengthen a link and ask (1) how the optimal contract

changes and (2) how the induced team performance changes.

We first describe how the optimal equity shares vary as the network changes. We

write ∂
∂Gjk

for the derivative in the weight Gjk = Gkj of the link between j and k.

Recall that given an allocation, we write G̃ for the adjacency matrix restricted to

active agents.

Proposition 10. Suppose that under G there is a unique optimal contract τ ∗, with

agents i, j, and k all active. The derivative of agent i’s optimal share as we vary the
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weight of the link between j and k is

∂τ ∗i
∂Gjk

= −(G̃−1)ikτ
∗
j − (G̃−1)ijτ

∗
k +

∂c

∂Gjk

τ ∗i
c
,

where c is the constant from Proposition 4.

The value c is the total equity in each neighborhood, which Proposition 4 shows is

constant across agents. The proof is based on the matrix calculus expression

(26)
∂G(t)−1

∂t
= −G(t)−1∂G(t)

∂t
G(t)−1

for the derivative of the inverse of a matrix. The result provides a fairly explicit

expression for the impact of changing a link on equity allocations.

Proof of Proposition 10. Proposition 4 tells us that, for all agents such that τ ∗i > 0,

we have

τ ∗ = cG̃−11.

We will use the matrix calculus expression

∂G(t)−1

∂t
= −G(t)−1∂G(t)

∂t
G(t)−1.

Taking the derivative with respect to Gjk, we have that

∂τ ∗

∂Gjk

= −cG̃−1 ∂G̃

∂Gjk

G̃−11+
∂c

∂Gjk

G̃−11.

Analyzing the ith element in this vector gives

∂τ ∗i
∂Gjk

= −c(G̃−11)j(G̃
−1)ik − c(G̃−11)k(G̃

−1)ij +
∂c

∂Gjk

· (G̃−11)i.

The result follows from τ ∗i = c(G̃−11)i and the analogous expressions with indices j

and k. □

We next look at how team performance under an optimal contract varies as the

network changes. Recall that Y ∗ denotes the equilibrium team performance under an

optimal allocation. Then ∂Y ∗

∂Gij
is the change in this team performance as the weight

on the link between agent i and j increases.
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Proposition 11. Suppose τ ∗ is an optimal contract. Then the change in equilibrium

team performance as Gij varies can be expressed as

∂Y ∗

∂Gij

= τ ∗i τ
∗
j h,

where h does not depend on the identities of i or j.

The proposition says that the increase in team performance from strengthening a

link is precisely proportional to the product of the payments given to the two agents

connected by that link. The proof gives an explicit formula for the quantity h, which

depends on the model parameters and the allocation.

The proposition has implications for a designer who can make small changes in

the network of complementarities. If the principal could marginally strengthen some

links, she would want to focus on links between pairs of agents with large payments.

Proof of Proposition 11. We want to calculate the derivative of the team performance

Y ∗ under the optimal allocation as Gij increases. By the envelope theorem, we can

calculate this derivative by holding fixed the allocation τ ∗. To do so, we calculate

the derivative of the equilibrium team performance Y ∗ for a given allocation τ as Gij

increases. We will then substitute τ = τ ∗.

Letting a∗ be the equilibrium action profile under the allocation τ , we calculate

∂Y

∂Gij

=
∂1Ta∗ + β

2
(a∗)TGa∗

∂Gij

,

= 1T ∂a∗

∂Gij

+ β(a∗)TG
∂a∗

∂Gij

+
β

2
(a∗)T

∂G

∂Gij

a∗,

=
[
1T + β(a∗)TG

] ∂a∗

∂Gij

+ βa∗i a
∗
j .
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The equilibrium action satisfies a∗ = βP ′(Y )TGa∗ + P ′(Y )T1. Thus, we can write

∂a∗

∂Gij

= βP ′(Y )T
∂G

∂Gij

a∗ + βP ′(Y )TG
∂a∗

∂Gij

+ (βTGa∗ +T1)
∂P ′(Y )

∂Gij

,

= β



0

τia
∗
j

0

τja
∗
i

0


P ′(Y ) + βP ′(Y )TG

∂a∗

∂Gij

+ (βTGa∗ +T1)P ′′(Y )
∂Y

∂Gij

.

where T ∂G
∂Gij

a∗ is a vector with the ith element equal to τia
∗
j , the j

th element equal to

τja
∗
i and the rest of the elements equal to zero. Solving for ∂a∗

∂Gij
gives

∂a∗

∂Gij

= [I− βP ′(Y )TG]
−1


βP ′(Y )



0

τia
∗
j

0

τja
∗
i

0


+T [1+ βGa∗]P ′′(Y )

∂Y

∂Gij


.

Substituting into the expression for ∂Y
∂Gij

gives

∂Y

∂Gij

[
1− (1+ βGa∗)T [I− βP ′(Y )TG]

−1
T (1+ βGa∗)P ′′(Y )

]

= βP ′(Y )
[
1T + β(a∗)TG

]
[I − βP ′(Y )TG]

−1



0

τia
∗
j

0

τja
∗
i

0


+ βa∗i a

∗
j .

We now use the optimality of τ , which implies the equality a∗ = τ ∗ P ′(Y )
1−βcP ′(Y )

by

Proposition 4. Applying this, we obtain

∂Y ∗

∂Gij

= βτ ∗i τ
∗
j P

′(Y ∗)2

(
2

(1−βcP ′(Y ∗))3
+ 1

(1−βcP ′(Y ∗))2

)
1− P ′′(Y ∗)

∑
i τ

∗
i

(1−βcP ′(Y ∗))3

.
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The right-hand side has the desired form. □
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