How Homophily Affects Learning and Diffusion in Networks

Benjamin Golub Graduate School of Business Matthew O. Jackson Department of Economics

Stanford University

April 4, 2009

• *Homophily* is the tendency of individuals with similar characteristics to associate with one another:

Homophily is pervasive and well-studied, but what are its effects?

Homophily

- *Homophily* is the tendency of individuals with similar characteristics to associate with one another:
 - characteristics include age, race, gender, religion, profession;

Homophily is pervasive and well-studied, but what are its effects?

Homophily

- *Homophily* is the tendency of individuals with similar characteristics to associate with one another:
 - characteristics include age, race, gender, religion, profession;
 - studied in sociology under that name since Lazarsfeld and Merton (1954).

Homophily is pervasive and well-studied, but what are its effects?

Homophily

- *Homophily* is the tendency of individuals with similar characteristics to associate with one another:
 - characteristics include age, race, gender, religion, profession;
 - studied in sociology under that name since Lazarsfeld and Merton (1954).
- "For it often happens that some of us elders of about the same age come together and verify the old saw of like to like."
 Cephalus in Plato's *Republic*, c. 380 BC

Data

Homophily is pervasive and well-studied, but what are its effects?

Homophily is Strong and Pervasive

 Huge literature in sociology; documented across a variety of dimensions.

Homophily is pervasive and well-studied, but what are its effects?

Homophily is Strong and Pervasive

- Huge literature in sociology; documented across a variety of dimensions.
 - Only 8% of Americans have anyone of another race with whom they "discuss important matters" (Marsden 1987).

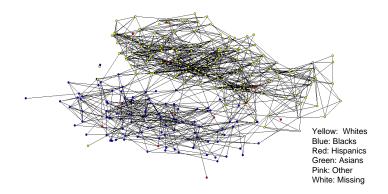
Homophily is pervasive and well-studied, but what are its effects?

Homophily is Strong and Pervasive

- Huge literature in sociology; documented across a variety of dimensions.
 - Only 8% of Americans have anyone of another race with whom they "discuss important matters" (Marsden 1987).
 - About 20% name someone of the opposite sex as their closest friend (Verbrugge 1977).

Homophily is pervasive and well-studied, but what are its effects?

Homophily is Strong and Pervasive


- Huge literature in sociology; documented across a variety of dimensions.
 - Only 8% of Americans have anyone of another race with whom they "discuss important matters" (Marsden 1987).
 - About 20% name someone of the opposite sex as their closest friend (Verbrugge 1977).
 - In middle school, less than 10% of "expected" cross-race friendships exist (Shrum et. al. 1988).

Motivation

Model Results Data

Homophily is pervasive and well-studied, but what are its effects?

Friendships in a High School

Currarini, Jackson, and Pin (2009)

Data

Homophily is pervasive and well-studied, but what are its effects?

But What are its Effects?

 What are the actual consequences of homophily for important processes?

Homophily is pervasive and well-studied, but what are its effects?

- What are the actual consequences of homophily for important processes?
- In this project, we focus on communication and build models of:

Homophily is pervasive and well-studied, but what are its effects?

- What are the actual consequences of homophily for important processes?
- In this project, we focus on communication and build models of:
 - networks with homophily;

Homophily is pervasive and well-studied, but what are its effects?

- What are the actual consequences of homophily for important processes?
- In this project, we focus on communication and build models of:
 - networks with homophily;
 - diffusion or learning processes happening in them.

Homophily is pervasive and well-studied, but what are its effects?

- What are the actual consequences of homophily for important processes?
- In this project, we focus on communication and build models of:
 - networks with homophily;
 - diffusion or learning processes happening in them.
- Study how homophily affects the speed of the processes.

Data

Homophily is pervasive and well-studied, but what are its effects?

Main Results

 Homophily does not affect the spread of "news" or "rumors".

Data

Homophily is pervasive and well-studied, but what are its effects?

Main Results

- Homophily does not affect the spread of "news" or "rumors".
- But slows

Data

Homophily is pervasive and well-studied, but what are its effects?

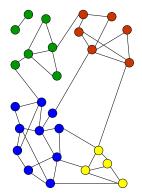
Main Results

- Homophily does not affect the spread of "news" or "rumors".
- But slows
 - convergence to consensus opinions;

Data

Homophily is pervasive and well-studied, but what are its effects?

Main Results

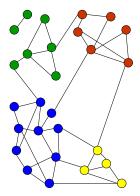

- Homophily does not affect the spread of "news" or "rumors".
- But slows
 - convergence to consensus opinions;
 - convergence to equilibrium under myopic updating.

Networks

Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Multi-Type Random Network

 There are *n* agents, indexed by a set *N* = {1, 2, ..., *n*}.

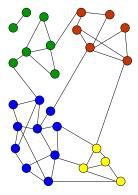


Networks

Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Multi-Type Random Network

- There are *n* agents, indexed by a set *N* = {1, 2, ..., *n*}.
- Partitioned into *m* types: N₁, N₂,..., N_m.

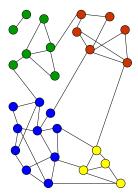


Networks

Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Multi-Type Random Network

- There are *n* agents, indexed by a set *N* = {1, 2, ..., *n*}.
- Partitioned into m types: N₁, N₂,..., N_m.
- The probability that an agent of type k has an (undirected) link to an agent of type l is P_{kl}.

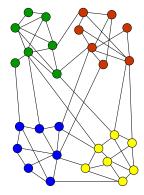


Networks

Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Multi-Type Random Network

- There are *n* agents, indexed by a set *N* = {1, 2, ..., *n*}.
- Partitioned into m types: N₁, N₂,..., N_m.
- The probability that an agent of type k has an (undirected) link to an agent of type l is P_{kl}.
- Links are formed independently.

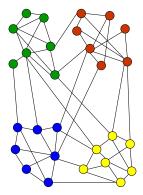


Networks

Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Islands Model

Special case for this talk:


Networks

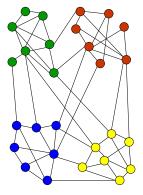
Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Islands Model

Special case for this talk:

• All types have the same size.

Networks


Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Islands Model

Special case for this talk:

- All types have the same size.
- Only two probabilities:

$$P_{k\ell} = egin{cases} p_s & ext{if } k = \ell \ p_d & ext{otherwise} \end{cases}$$

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning

Measuring Homophily (in the Islands Model)

• Let *p* be the overall link density.

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Measuring Homophily (in the Islands Model)

- Let *p* be the overall link density.
- Unnormalized homophily:

$$H=\frac{p_s}{p}\in [0,m].$$

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning

Measuring Homophily (in the Islands Model)

- Let *p* be the overall link density.
- Unnormalized homophily:

$$H=rac{p_s}{p}\in [0,m].$$

Normalized homophily:

$$h=\frac{1}{m}\frac{p_s}{p}\in[0,1].$$

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Shortest Path Based Communication

• Any process where the time for *i* and *j* to communicate is proportional to the distance between them.

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

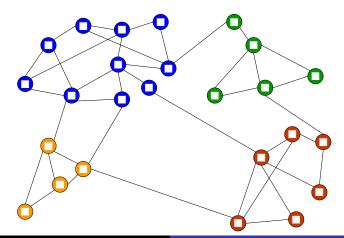
Shortest Path Based Communication

- Any process where the time for *i* and *j* to communicate is proportional to the distance between them.
- Examples:

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Shortest Path Based Communication

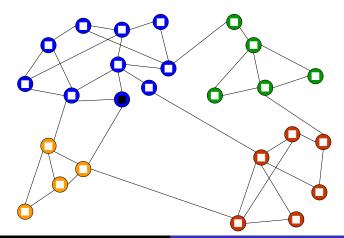
- Any process where the time for *i* and *j* to communicate is proportional to the distance between them.
- Examples:
 - Sending targeted orders through an organizational chart.


Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Shortest Path Based Communication

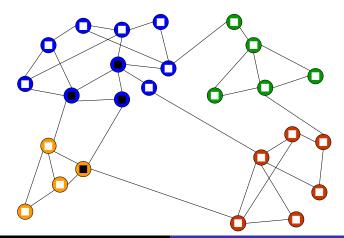
- Any process where the time for *i* and *j* to communicate is proportional to the distance between them.
- Examples:
 - Sending targeted orders through an organizational chart.
 - Broadcasting.

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)


Broadcasting

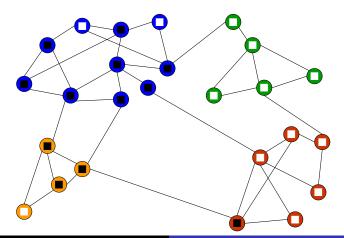
Benjamin Golub and Matthew O. Jackson How Homophily Affects Learning in Networks

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

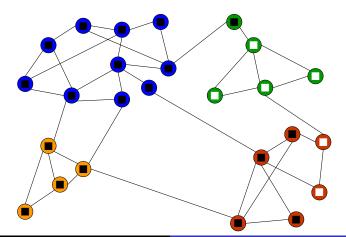

Broadcasting

Benjamin Golub and Matthew O. Jackson How Homophily Affects Learning in Networks

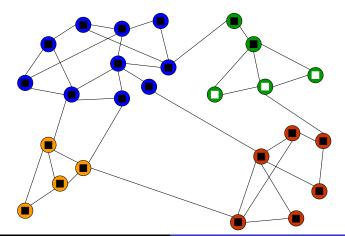
Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)


Broadcasting

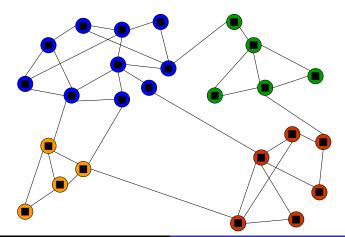
Benjamin Golub and Matthew O. Jackson How Homophily Affects Learning in Networks


Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Broadcasting


Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Broadcasting


Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Broadcasting

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Broadcasting

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Measuring Speed with Shortest Path Communication

A sufficient statistic for time to communicate (in a *given, fixed* network) in this case is just the expected distance between two randomly chosen nodes.

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Linear Updating (French 1956, DeGroot 1974)

The belief of agent *i* at time t + 1 is an average of the beliefs of his neighbors at time *t*.

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Linear Updating (French 1956, DeGroot 1974)

The belief of agent *i* at time t + 1 is an average of the beliefs of his neighbors at time *t*.

$$b_i(t+1) = \sum_j \frac{A_{ij}}{d_i} b_j(t),$$

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Linear Updating (French 1956, DeGroot 1974)

The belief of agent *i* at time t + 1 is an average of the beliefs of his neighbors at time *t*.

$$b_i(t+1) = \sum_j \frac{A_{ij}}{d_i} b_j(t),$$

where

$$\mathsf{A}_{ij} = egin{cases} 1 & ext{if } i ext{ and } j ext{ are linked} \ 0 & ext{otherwise}. \end{cases}$$

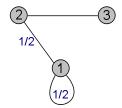
Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Linear Updating (French 1956, DeGroot 1974)

The belief of agent *i* at time t + 1 is an average of the beliefs of his neighbors at time *t*.

$$b_i(t+1) = \sum_j \frac{A_{ij}}{d_i} b_j(t),$$

where


$$A_{ij} = egin{cases} 1 & ext{if } i ext{ and } j ext{ are linked} \ 0 & ext{otherwise}. \end{cases}$$

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Linear Updating (French 1956, DeGroot 1974)

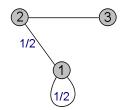
The belief of agent *i* at time t + 1 is an average of the beliefs of his neighbors at time *t*.

$$b_i(t+1) = \sum_j \frac{A_{ij}}{d_i} b_j(t),$$

where

$$A_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ are linked} \\ 0 & \text{otherwise.} \end{cases}$$

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)


Linear Updating (French 1956, DeGroot 1974)

The belief of agent *i* at time t + 1 is an average of the beliefs of his neighbors at time *t*.

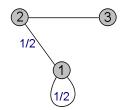
$$b_i(t+1) = \sum_j \frac{A_{ij}}{d_i} b_j(t),$$

where

$$A_{ij} = egin{cases} 1 & ext{if } i ext{ and } j ext{ are linked} \ 0 & ext{otherwise}. \end{cases}$$

$$b_1(t+1) = +$$

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)


Linear Updating (French 1956, DeGroot 1974)

The belief of agent *i* at time t + 1 is an average of the beliefs of his neighbors at time *t*.

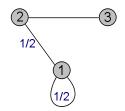
$$b_i(t+1) = \sum_j \frac{A_{ij}}{d_i} b_j(t),$$

where

$$m{A}_{ij} = egin{cases} 1 & ext{if } i ext{ and } j ext{ are linked} \ 0 & ext{otherwise.} \end{cases}$$

$$b_1(t+1) = \frac{1}{2}b_1(t) +$$

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)


Linear Updating (French 1956, DeGroot 1974)

The belief of agent *i* at time t + 1 is an average of the beliefs of his neighbors at time *t*.

$$b_i(t+1) = \sum_j \frac{A_{ij}}{d_i} b_j(t),$$

where

$$A_{ij} = egin{cases} 1 & ext{if } i ext{ and } j ext{ are linked} \ 0 & ext{otherwise}. \end{cases}$$

$$b_1(t+1) = \frac{1}{2}b_1(t) + \frac{1}{2}b_2(t)$$

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Linear Updating as Myopic Best-Response

• Think of $b_i(t)$ as a *behavior*, not a *belief*.

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Linear Updating as Myopic Best-Response

- Think of $b_i(t)$ as a *behavior*, not a *belief*.
- Otilities:

$$u_i(t) = -\sum_j \frac{A_{ij}}{d_i} \left(b_i(t) - b_j(t) \right)^2$$

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Linear Updating as Myopic Best-Response

- Think of $b_i(t)$ as a *behavior*, not a *belief*.
- Otilities:

$$u_i(t) = -\sum_j \frac{A_{ij}}{d_i} \left(b_i(t) - b_j(t) \right)^2$$

Note that everyone choosing the same behavior is an equilibrium.

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Linear Updating as Myopic Best-Response

- Think of $b_i(t)$ as a *behavior*, not a *belief*.
- Otilities:

$$u_i(t) = -\sum_j \frac{A_{ij}}{d_i} \left(b_i(t) - b_j(t) \right)^2$$

• Note that everyone choosing the same behavior is an equilibrium. But which behavior?

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Linear Updating as Myopic Best-Response

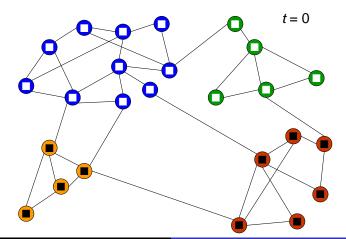
- Think of $b_i(t)$ as a *behavior*, not a *belief*.
- Otilities:

$$u_i(t) = -\sum_j \frac{A_{ij}}{d_i} \left(b_i(t) - b_j(t) \right)^2$$

- Note that everyone choosing the same behavior is an equilibrium. But which behavior?
- Agents best-respond to last period's choices.

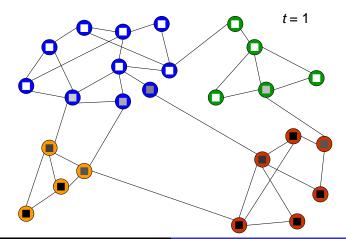
Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Linear Updating as Myopic Best-Response

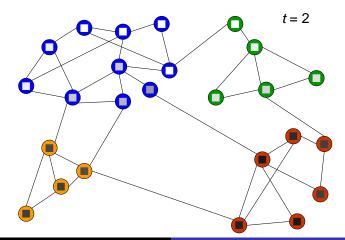

- Think of $b_i(t)$ as a *behavior*, not a *belief*.
- Otilities:

$$u_i(t) = -\sum_j \frac{A_{ij}}{d_i} \left(b_i(t) - b_j(t) \right)^2$$

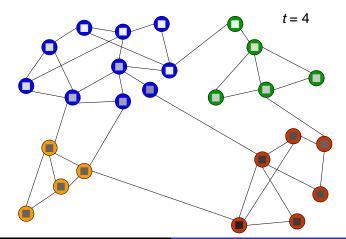
- Note that everyone choosing the same behavior is an equilibrium. But which behavior?
- Agents best-respond to last period's choices.
- This gives the linear updating process.


Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

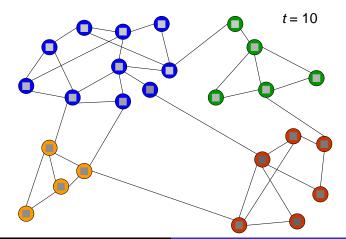
Linear Updating


Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Linear Updating


Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Linear Updating


Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Linear Updating

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Linear Updating

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Measuring Speed with Linear Updating

• Idea of the measure: how long does it take to get close to consensus (in a *given, fixed* network)?

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Measuring Speed with Linear Updating

- Idea of the measure: how long does it take to get close to consensus (in a *given, fixed* network)?
- Requires measuring how close we are to consensus at time *t*.

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Measuring Speed with Linear Updating

- Idea of the measure: how long does it take to get close to consensus (in a *given, fixed* network)?
- Requires measuring how close we are to consensus at time *t*.
- A measure of "how close" at time t:
 - Consider a random opinion transmitted at time *t*.

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Measuring Speed with Linear Updating

- Idea of the measure: how long does it take to get close to consensus (in a *given, fixed* network)?
- Requires measuring how close we are to consensus at time *t*.
- A measure of "how close" at time t:
 - Consider a random opinion transmitted at time *t*.
 - What is its squared deviation from the eventual consensus?

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Measuring Speed with Linear Updating

- Idea of the measure: how long does it take to get close to consensus (in a *given, fixed* network)?
- Requires measuring how close we are to consensus at time *t*.
- A measure of "how close" at time t:
 - Consider a random opinion transmitted at time *t*.
 - What is its squared deviation from the eventual consensus?
 - ۲

 $\sqrt{}$ the expectation of that random variable

is the distance from consensus.

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Measuring Speed with Linear Updating

- Idea of the measure: how long does it take to get close to consensus (in a *given, fixed* network)?
- Requires measuring how close we are to consensus at time *t*.
- A measure of "how close" at time t:
 - Consider a random opinion transmitted at time *t*.
 - What is its squared deviation from the eventual consensus?
 - ۲

 $\sqrt{}$ the expectation of that random variable

is the distance from consensus.

(Essentially root-mean-squared distance from consensus.)

Networks Communication Process 1: Shortest Path (Diffusion) Communication Process 2: Linear Updating (Learning)

Measuring Speed with Linear Updating

Definition

The consensus time $CT(\epsilon; \mathbf{A})$ is the time it takes in network \mathbf{A} until the distance from consensus remains below ϵ , in the worst case, assuming beliefs start in [0, 1].

Shortest Path Communication Linear Updating

The Big Picture: How Communication Speed Depends on Density and Homophily

Independent VariableImage: Image in the image in

Arrows indicate how communication speed is affected when the independent variable is increased.

Shortest Path Communication Linear Updating

An Approximation Notion

Definition

 $f(n) \approx g(n)$

means that for any $\delta > 0$,

$$\mathbb{P}\left[rac{f(n)}{g(n)}\in (1/2-\delta,2+\delta)
ight] \xrightarrow{n o\infty} 1.$$

Shortest Path Communication Linear Updating

How Homophily Affects Shortest Path Based Communication: Assumptions

• $d(n) := np(n) \ge (1 + \varepsilon) \log n$ for some $\varepsilon > 0$

(the network is dense enough that it is a. s. connected)

Shortest Path Communication Linear Updating

How Homophily Affects Shortest Path Based Communication: Assumptions

• $d(n) := np(n) \ge (1 + \varepsilon) \log n$ for some $\varepsilon > 0$

(the network is dense enough that it is a. s. connected)

•
$$\frac{\log d(n)}{\log n} \to 0$$

(network is not too close to complete)

Shortest Path Communication Linear Updating

How Homophily Affects Shortest Path Based Communication: Assumptions

• $d(n) := np(n) \ge (1 + \varepsilon) \log n$ for some $\varepsilon > 0$

(the network is dense enough that it is a. s. connected)

•
$$\frac{\log d(n)}{\log n} \to 0$$

(network is not too close to complete)

h(*n*) ≤ *h* for some *h* < 1
 (islands are not completely introspective)

Shortest Path Communication Linear Updating

Density, not Homophily, Matters for Shortest Path Communication

Theorem (Jackson 2008)

Under the assumptions just stated,

average distance
$$\approx \frac{\log n}{\log d(n)}$$

and, asymptotically, does not depend at all on homophily.

Shortest Path Communication Linear Updating

Density, not Homophily, Matters for Shortest Path Communication

Theorem (Jackson 2008)

Under the assumptions just stated,

average distance
$$\approx \frac{\log n}{\log d(n)}$$

and, asymptotically, does not depend at all on homophily.

• Homophily doesn't matter.

Shortest Path Communication Linear Updating

Density, not Homophily, Matters for Shortest Path Communication

Theorem (Jackson 2008)

Under the assumptions just stated,

average distance
$$\approx \frac{\log n}{\log d(n)}$$

and, asymptotically, does not depend at all on homophily.

- Homophily doesn't matter.
- Only density matters (more = faster).

Shortest Path Communication Linear Updating

Density, not Homophily, Matters for Shortest Path Communication

• Density and homophily assumptions guarantee that the network is not too far from a tree.

Shortest Path Communication Linear Updating

- Density and homophily assumptions guarantee that the network is not too far from a tree.
- So extended neighborhoods still expand exponentially.

Shortest Path Communication Linear Updating

- Density and homophily assumptions guarantee that the network is not too far from a tree.
- So extended neighborhoods still expand exponentially.
- Thus, the average agent can still reach the same number people after *t* steps, with or without homophily.

Shortest Path Communication Linear Updating

- Density and homophily assumptions guarantee that the network is not too far from a tree.
- So extended neighborhoods still expand exponentially.
- Thus, the average agent can still reach the same number people after *t* steps, with or without homophily.
 - Homophily does change who is close and who is far; the first hearers of the news are predominantly of the originator's type.

Shortest Path Communication Linear Updating

- Density and homophily assumptions guarantee that the network is not too far from a tree.
- So extended neighborhoods still expand exponentially.
- Thus, the average agent can still reach the same number people after *t* steps, with or without homophily.
 - Homophily does change who is close and who is far; the first hearers of the news are predominantly of the originator's type.
 - But order does not matter only the overall speed at which the news spreads.

Linear Updating

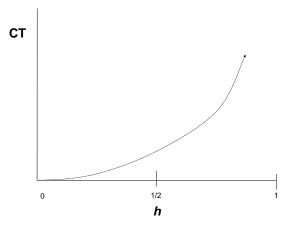
Data

Homophily, not Density, Matters for Linear Updating

Theorem

If
$$d(n)/\log^2 n \to \infty$$
 and $m \to \infty$

$$\operatorname{CT}(\gamma/n; \mathbf{A}(n)) \approx \frac{\log n}{\log(h^{-1})}$$


where the network $\mathbf{A}(n)$ is the islands network with

- n nodes
- m islands
- homophily h.

Shortest Path Communication Linear Updating

Data

Homophily, not Density, Matters for Linear Updating

Shortest Path Communication Linear Updating

Data

Homophily, not Density, Matters for Linear Updating

• Homophily matters (more = slower).

Shortest Path Communication Linear Updating

Data

Homophily, not Density, Matters for Linear Updating

- Homophily matters (more = slower).
- Beyond a low threshold, density doesn't matter.

Shortest Path Communication Linear Updating

Homophily, not Density, Matters for Linear Updating

Basic intuition: each island reaches its own internal consensus, and if islands put low weight outside themselves, then it will take a long time for the differences to erode.

Shortest Path Communication Linear Updating

Data

Homophily, not Density, Matters for Linear Updating

Steps of proof:

Shortest Path Communication Linear Updating

Data

Homophily, not Density, Matters for Linear Updating

Steps of proof:

۲

$$b_i(t+1) = \sum_j rac{A_{ij}}{d_i} b_j(t)$$

can be written as

 $\mathbf{b}(t)=\mathbf{T}^t\mathbf{b}(0).$

Shortest Path Communication Linear Updating

Data

Homophily, not Density, Matters for Linear Updating

Steps of proof:

۲

$$b_i(t+1) = \sum_j rac{A_{ij}}{d_i} b_j(t)$$

can be written as

 $\mathbf{b}(t) = \mathbf{T}^t \mathbf{b}(0).$

• Convergence of this process to steady state is controlled by second largest eigenvalue in magnitude of **T**.

Linear Updating

Data

Homophily, not Density, Matters for Linear Updating

Shortest Path Communication Linear Updating

Homophily, not Density, Matters for Linear Updating

Steps of proof (continued):

• For a multi-type random network, we can look at a *representative agent matrix* with

Shortest Path Communication Linear Updating

Data

Homophily, not Density, Matters for Linear Updating

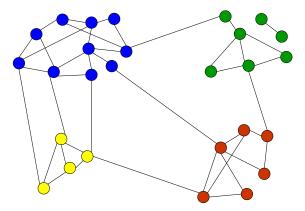
- For a multi-type random network, we can look at a *representative agent matrix* with
 - one agent for each type;

Linear Updating

Data

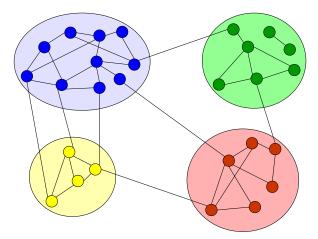
Homophily, not Density, Matters for Linear Updating

- For a multi-type random network, we can look at a representative agent matrix with
 - one agent for each type;
 - realized links replaced by expected link densities.

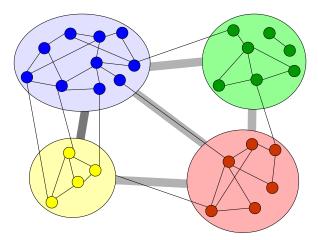

Shortest Path Communication Linear Updating

Homophily, not Density, Matters for Linear Updating

- For a multi-type random network, we can look at a *representative agent matrix* with
 - one agent for each type;
 - realized links replaced by expected link densities.
- Theorem: the second eigenvalue of the big random matrix is well-approximated by the second eigenvalue of the small deterministic matrix.

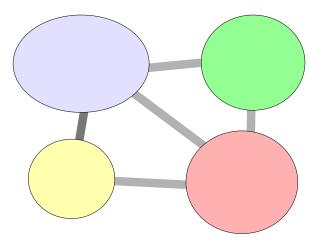

Shortest Path Communication Linear Updating

Representative Agent Matrix


Shortest Path Communication Linear Updating

Representative Agent Matrix

Shortest Path Communication Linear Updating


Representative Agent Matrix

Benjamin Golub and Matthew O. Jackson How Homophily Affects Learning in Networks

Shortest Path Communication Linear Updating

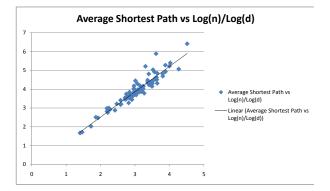
Representative Agent Matrix

Shortest Path Communication Linear Updating

The Data

- Adolescent Health data set.
- 84 schools (2 outliers removed).
- For each student:
 - grade in school (6–12);
 - gender;
 - race.
- Friendships.

Shortest Path Communication Linear Updating

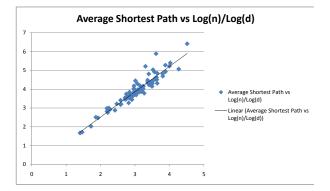

Testing the Shortest Path Theorem

Recall that the theorem predicts

average distance
$$\approx \frac{\log n}{\log d(n)}$$
.

Shortest Path Communication Linear Updating

Testing the Shortest Path Theorem



without homophily: $R^2 = 0.93$

Shortest Path Communication Linear Updating

Data

Testing the Shortest Path Theorem

without homophily: $R^2 = 0.93$

with homophily: $R^2 = 0.94$

Benjamin Golub and Matthew O. Jackson How Homophily Affects Learning in Networks

Shortest Path Communication Linear Updating

Testing the Consensus Time Theorem

• Recall that the theorem predicts

$$\operatorname{CT}(\gamma/n; \mathbf{A}(n)) \approx rac{\log n}{\log(h^{-1})}.$$

Shortest Path Communication Linear Updating

Testing the Consensus Time Theorem

• Recall that the theorem predicts

$$\mathsf{CT}\left(\gamma/n;\mathbf{A}(n)
ight)pprox rac{\log n}{\log(h^{-1})}.$$

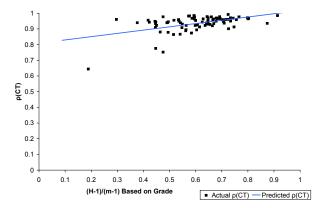
• Slightly fancier: replace *h* by $\frac{H-1}{m-1}$, where $H = \frac{p_s}{p_d}$ and *m* is number of islands.

Shortest Path Communication Linear Updating

Testing the Consensus Time Theorem

• Recall that the theorem predicts

$$\mathsf{CT}\left(\gamma/n;\mathbf{A}(n)
ight)pprox rac{\log n}{\log(h^{-1})}.$$


- Slightly fancier: replace *h* by $\frac{H-1}{m-1}$, where $H = \frac{p_s}{p_d}$ and *m* is number of islands.
- Can manipulate this around and find a function ρ so that

$$ho(\mathrm{CT}) - \mathbf{c} \propto \frac{H-1}{m-1}.$$

Shortest Path Communication Linear Updating

Data

Testing the Consensus Time Theorem

$$R^2 = 0.231$$