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Appendix 1 Proofs of Results

A Islands Homophily

We begin by proving the fact that spectral homophily is equal to the more simply defined
islands homophily in the special case of the islands model.

Proposition 1. If (P,n) is an islands network with parameters (m, ps, pd), then

hislands(m, ps, pd) = hspec(P,n).

Proof of Proposition 1: Note

F(P,n) =
pd

ps + (m− 1)pd
Em +

ps − pd
ps + (m− 1)pd

Im,

where Em denotes the m-by-m matrix of ones and Im denotes the m-by-m identity matrix.
The eigenvalues of this matrix can be computed directly. The only nonzero eigenvalue of the
first matrix is

mpd
ps + (m− 1)pd

with multiplicity 1; and adding
ps − pd

ps + (m− 1)pd
Im

just shifts all the eigenvalues by adding to them the constant multiplying the identity. Thus,
the second-largest eigenvalue of F(P,n) (after the eigenvalue 1) is

ps − pd
ps + (m− 1)pd

.

Theorem 2 gives the convergence in probability of T(A(P,n)) to this expression. Simple
algebra shows that this is the same as hislands(n).
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B The Main Technical Results

For the main results, we begin by fixing some notation and reviewing some important back-
ground results. Given a vector s, define

〈v,w〉s =
∑
i

(viwi)si.

This is just the Euclidean dot product weighted by the entries of the vector s. Note also that
the weighted norm introduced in Section II.D.4 can be written as ‖v‖2s = 〈v,v〉s =

∑
i v

2
i si.

For any stochastic matrix T (a nonnegative matrix in which every row sums to 1), let

1 = λ1(T), . . . , λn(T)

denote the eigenvalues of T ordered from greatest to least by magnitude.1 Recall that s(A)
is defined by si(A) = di(A)/D(A), the degree of agent i divided by the sum of degrees in
the network. In the proof of Lemma 2, we use the fact that T(A) is self-adjoint relative to
〈·, ·〉s(A). That is, for every v and w, we have

〈T(A)v,w〉s(A) = 〈v,T(A)w〉s(A),

which is immediate to check. This implies, by a standard theorem from linear algebra, that
T(A) is diagonalizable, and, moreover, that there is a basis of eigenvectors orthogonal to
each other under 〈·, ·〉s(A).

With these basic observations in hand, we prove Lemma 2.

Lemma 2. Let A be connected, λ2(T(A)) be the second-largest eigenvalue in magnitude of
T(A), and s := mini di(A)/D(A) be the minimum relative degree. If λ2(T(A)) �= 0, then
for any 0 < ε ≤ 1:⌊

log(1/(2ε))− log(1/s1/2)

log(1/|λ2(T(A))|)
⌋
≤ CT(ε;A) ≤

⌈
log(1/ε)

log(1/|λ2(T(A))|)
⌉
.

If λ2(T) = 0, then for every 0 < ε < 1 we have CT(ε;A) = 1.

Proof of Lemma 2: In the proof, we fix A and drop it as an argument; we also drop the
argument T of the eigenvalues, as it is fixed throughout.

We first show that, if λ2 �= 0, then

CT(ε) ≤
⌈

log(1/ε)

log(1/|λ2|)
⌉
.

Take any b ∈ [0, 1]n, which should be thought of as the initial beliefs b(0). Let Ui be
the projection onto the eigenspace of T corresponding to λi. Note that under 〈·, ·〉s, these
eigenspaces are orthogonal, as mentioned above. Define U =

∑n
i=2 Ui. This is the projection

off the eigenspace corresponding to λ1 = 1. Recall also that U1 = T∞ (see Meyer [2000] for

1Recall that 1 is a largest eigenvalue of any stochastic matrix. See Meyer (2000) for details.
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details). Then:

‖(Tt −T∞)b‖2s =
∥∥∥∥∥

n∑
i=2

λt
iUib

∥∥∥∥∥
2

s

spectral theorem applied to T

=
n∑

i=2

|λi|2t‖Uib‖2s orthogonality of the spectral projections

≤ |λ2|2t
n∑

i=2

‖Uib‖2s

= |λ2|2t
∥∥∥∥∥

n∑
i=2

Uib

∥∥∥∥∥
2

s

orthogonality of the spectral projections

= |λ2|2t‖Ub‖2s definition of U

≤ |λ2|2t‖b‖2s projections are contractions

≤ |λ2|2t
n∑

i=1

si b ∈ [0, 1]n and definition of 〈·, ·〉s

= |λ2|2t entries of s sum to 1.

Assume λ2 �= 0. Under this assumption, if

t ≥ log(1/ε)

log(1/|λ2|) ,

then
‖(Tt −T∞)b‖s ≤ ε,

from which the bound follows upon observing that CT(ε) must be an integer. The above
calculations also show that when the second eigenvalue is identically 0, then consensus time
must be 1.

Now we show that, if λ2 �= 0, then⌊
log(s1/2/(2ε))

log(1/|λ2|)
⌋
≤ CT(ε).

Let w be an eigenvector of T corresponding to λ2, scaled so that ‖w‖2s = s/4. Then the
maximum entry of w is at most 1/2 and the minimum entry is at least −1/2. Consequently,
if we let e denote the column vector of ones and define b = w+ e/2, then b ∈ [0, 1]n. Now,
using the fact that e is a right eigenvector corresponding to λ1 = 1 and spectral projections
are orthogonal, it follows that:

‖(Tt −T∞)b‖2s = |λ2|2t‖U2w‖2s
= |λ2|2t‖w‖2s
=

s

4
|λ2|2t.
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Therefore, if

t ≤ log(s1/2/(2ε))

log(1/|λ2|) ,

then
‖(Tt −T∞)b‖s ≥ ε,

from which the remaining bound follows upon observing that CT(ε) must be an integer.
We can tighten this bound under the assumptions of Definition 3.

Proposition A.5. Consider a sufficiently dense sequence of multi-type random networks
satisfying the three regularity conditions in Definition 3. The regularity conditions imply
that there exist constants α and β such that, for high enough n, (i) mink nk/n ≥ α > 0; and
(ii) [mink dk(P,n)]/[maxk dk(P,n)] ≥ β > 0. Then, for any δ > 0, for high enough n, with
probability at least 1− δ⌊

log(1/
√
8ε)− log(1/

√
αβ)

log(1/|λ2(T(A(P,n)))|)

⌋
− 1 ≤ CT(ε;A(P,n)) ≤

⌈
log(1/ε)

log(1/|λ2(T(A(P,n)))|)
⌉
.

Thus, for small ε, the consensus time CT(ε;A(P,n)) is approximately proportional to
log(1/ε)

log(1/|λ2(T(A(P,n)))|) . Essentially the same proof establishes that, under the same assumptions,

⌊
log(1/

√
8ε)− log(1/

√
αβ)

log(1/|hspec(P,n)|)

⌋
− 1 ≤ CT(ε;A(P,n)) ≤

⌈
log(1/ε)

log(1/|hspec(P,n)|)
⌉
.

The proof of the proposition appears below, after the proof of Proposition A.6, which intro-
duces key machinery.

The Representative Agent Theorem

Theorem 2 and Proposition A.5 require related machinery, which we will develop and apply
in this section. First, we introduce some notation.

Throughout the appendix, we often drop the arguments (P,n) on the matrix A and
other random matrices obtained from it, keeping in mind that these are random objects that
depend on the realization of the multi-type random network A(P,n). Let D(A) denote
the diagonal matrix whose (i, i) entry is di(A), the degree of agent i. Let R be the n-by-n
matrix given by Rij = Pk� if i ∈ Nk, j ∈ N�. The expected degree of node i is wi :=

∑
j Rij.

We let wmin = mini wi be the minimum expected degree, wmax = maxi wi be the maximum
expected degree, and w̄ = 1

n

∑
i wi be the average expected degree.

Let V =
∑

i wi be the sum of expected degrees and v =
∑

i di(A) the sum of realized
degrees.

For any matrix T, let ‖T‖ = sup‖v‖=1〈v,Tv〉, where the inner product is the standard
(i.e., unweighted) Euclidean dot product. Similarly, an unadorned norm ‖v‖ will refer to
〈v,v〉 =∑i v

2
i . Define E to be the n× n matrix of ones, and let

(7) J = D(A)−1/2AD(A)−1/2 − v−1D(A)1/2ED(A)1/2
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and

(8) K = D(R)−1/2RD(R)−1/2 − V −1D(R)1/2ED(R)1/2.

Note that D(R) is a diagonal matrix whose (i, i) entry is wi.
Now we observe a basic fact from linear algebra:

Fact 1. D(A)−1/2AD(A)−1/2 and T(A) = D(A)−1A are similar matrices, so that they
have the same eigenvalues, and that v−1D(A)1/2ED(A)1/2 is the summand of the spec-
tral decomposition of D(A)−1/2AD(A)−1/2 corresponding to the eigenvalue 1. The same
reasoning applies when we replace A by R and v by V .

Why is this true? One gets from D(A)−1A to D(A)−1/2AD(A)−1/2 by the following
transformation: multiplying on the left by D(A)1/2 and on the right by D(A)−1/2. The
eigenvalue 1 summand of the spectral decomposition of T(A) is v−1ED(A) and applying
this same transformation to that matrix yields the claim. The argument in the second case
is analogous.

Next, Theorem 2 can be reduced to the following proposition, which will also be useful
for proving Proposition A.5.

Proposition A.6. If wmin/ log
2 n is high enough, then with probability at least 1 − δ we

have ‖J−K‖ < δ.

Before proving the proposition, we show why Theorem 2 is a consequence. Recall the
statement of this theorem:

Theorem 2. Consider a sequence of multi-type random networks described by (P,n) that is
sufficiently dense and satisfies the conditions of no vanishing groups and comparable densities
from Definition 3. Then for large enough n,

|λ2(T(A(P,n)))− λ2(F(P,n))| ≤ δ,

with probability at least 1− δ.

Proof of Theorem 2 using Proposition A.6: It is clear that D(R)−1R has the same
eigenvalues as F, so to prove the claim, it suffices to prove that the former matrix has second
eigenvalue close enough to that of D(A)−1/2AD(A)−1/2.

By Fact 1, we know that ‖J‖ is the second-largest eigenvalue in magnitude of the matrix
D(A)−1/2AD(A)−1/2, and ‖K‖ is the second-largest eigenvalue in magnitude of the matrix
D(R)−1/2RD(R)−1/2. Thus, by the triangle inequality, if we can show that with probability
at least 1−δ we have ‖J−K‖ < δ, then the proof is done. This is the content of Proposition
A.6.

We will turn to the proof of Proposition A.6 right after stating the following lemma that
is essential to it and several other results. It is from the proof of Theorem 3.6 of Chung, Lu,
and Vu (2004), and follows from the Chernoff inequality.

Lemma A.4. Fix any δ > 0. If wmin/ log n is large enough, the following statement holds
with probability at least 1− δ for all i simultaneously: |di − wi| < δwi.
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Proof of Proposition A.6: Write

J−K = B+C+U+M where Bij =
Aij√
didj

(
1−

√
didj√
wiwj

)

Cij =
Aij −Rij√

wiwj

Uij =

√
wiwj

V

(
1−

√
didj√
wiwj

)

Mij = (V −1 − v−1)
√

didj.

By the triangle inequality,

‖J−K‖ ≤ ‖B‖+ ‖C‖+ ‖U‖+ ‖M‖,

so it suffices to bound the pieces individually.
Now we list two lemmas from Chung, Lu, and Vu (2004), which will be used in the

following argument. Their paper deals with a special case of the multi-type random graph
model in which Rij = wiwjρ for a constant ρ, but their arguments that we use rely only on
very simple features of the expected entries of the adjacency matrix which also hold without
change in our setting. Only one step of a proof is at all different, and we discuss that below
in the proof of Lemma A.5.

Lemma A.5. Fix any δ > 0. Then there exists some c > 0, independent of n, so that if
wmin/ log

2 n is high enough, with probability at least 1− δ:

‖C‖ ≤ 2c√
w̄

+
c log n√
wmin

.

Proof of Lemma A.5: The only step of the proof of this last lemma that does not work
exactly as in the proofs of Theorems 3.2 and 3.6 of Chung, Lu, and Vu (2004) is their
equation (3.2). Let Cr

ij denote the (i, j) entry of Cr. This step asserts (in our notation) that
for t ≥ 2, we have

E[Ct
ij] ≤

(1−Rij)Rij + (−Rij)
t(1−Rij)

(wiwj)t/2
≤ Rij

(wiwj)t/2
≤ wiwj/V

(wiwj)t/2
≤ 1/V

(wmin)t−2
.

We will prove a slightly weaker statement that is still sufficient to make the rest of the proof
go through unchanged. The step which is slightly different is the penultimate inequality. We
will show that, for large enough n,

(9) Rij ≤ c · wiwj/V

for some real number c ≥ 0, and conclude that

E[Ct
ij] ≤

c/V

(wmin)t−2
,
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which suffices for the Chung-Lu-Vu proof.
We can rewrite (9) as

(10) Rij

(∑
i′,j′

Ri′j′

)
≤ c

(∑
j′

Rij′

)(∑
i′

Ri′j

)
.

To show that this is true, we proceed as follows. Due to the no vanishing groups condition,
we can find some constant c1 > 0 so that for large enough n we have

∑
j′ Rij′ ≥ c1nRij and∑

i′ Ri′j ≥ c1nRij, since the groups of agents i and j must both grow at a rate of at least n.
Thus,

(11) n2R2
ij ≤ c−21

(∑
j′

Rij′

)(∑
i′

Ri′j

)
.

As a result of the comparable densities condition, we have a constant c2 so that∑
i′,j′

Ri′j′ ≤ c2n
2Rij,

from which we deduce

(12) Rij

(∑
i′,j′

Ri′j′

)
≤ c2n

2R2
ij.

Combining (12) with (11) above, we conclude that (10) holds for large enough n, as desired.

It follows that, if wmin/ log
2 n is high enough, we have ‖C‖ < δ/4 with probability at

least 1− δ/4.

Lemma A.6. Fix any δ > 0. If wmin/ log
2 n is high enough, the following statement holds

with probability at least 1− δ:

‖M‖ ≤ 1√
w̄
.

It follows that, when wmin/ log
2 n is high enough, we have ‖M‖ < δ/4 with probability

at least 1− δ/4.
To bound ‖B‖ and ‖U‖, we will use Lemma A.4 and two simple facts about the matrix

norm, whose proofs are immediate. Let abs(X) denote the matrix whose (i, j) entry is |Xij|.
Lemma A.7. 1. For any matrix X, ‖X‖ ≤ ‖ abs(X)‖.

2. Suppose there are two nonnegative matrices, X and Y and a constant c > 0 such that
for each i, j, we have Yij < cXij. Then ‖Y‖ ≤ c‖X‖.

To show that, with probability at least 1 − δ, we have ‖B‖ < δ/4, define B̂ = abs(B);
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by Lemma A.7(1), it suffices to show ‖B̂‖ < δ/4. Note

B̂ij =
Aij√
didj

∣∣∣∣∣1−
√

didj√
wiwj

∣∣∣∣∣ .
By Lemma A.4, we have with probability at least 1− δ/4 that∣∣∣∣∣1−

√
didj√
wiwj

∣∣∣∣∣ < δ/4

and so, noting that
‖D(A)−1/2AD(A)−1/2‖ = 1

and using Lemma A.7(2), the claim is proved.
Precisely the same argument works to show that, with probability at least 1 − δ/4, we

have ‖U‖ < δ/4, with V −1D(R)1/2ED(R)1/2, which also has norm 1, playing the role of
D(A)−1/2AD(A)−1/2.

Combining all the bounds shows that, with probability at least 1−δ, we have ‖J−K‖ < δ,
as desired.

This completes the proof of the proposition.

The results established so far in this section will now be used to prove Proposition A.5.

Proof of Proposition A.5: We will reuse for new purposes some of the variable names used
solely inside the proof of Proposition A.6, but the variables defined for the whole subsection
will be unchanged.

The upper bound is a direct consequence of Lemma 2. For the lower bound, define ζ = ε2.
We will show that there is an initial vector of beliefs b so that ‖T(A)tb−T(A)∞b‖2s(A) ≥ ζ
for at least z − 1 steps, where

z :=

⌊
log(1/

√
8ε)− log(1/

√
αβ)

log(1/|λ2(T(A))|)

⌋
.

This will suffice for the proof. The reason for the transformation is to make notation less
cumbersome by working with the square of the norm rather than norm itself.

Let R be as above but now let C = D(R)−1R and T = T(A). That is, C is the version of
T in the world where realizations of link random variables are replaced by their expectations.
Also, note that we can write z above equivalently as

z =

⌊
log(1/8ζ)− log(1/αβ)

2 log(1/|λ2(T)|)
⌋
.

There are three steps to the proof. In Step 1, we show that for Ctb to converge within 2ζ
of its limit when distance is measured by ‖ · ‖2s(A) takes at least z − 1 steps for some b. In
Step 2, we use Proposition A.6 to show that for any η > 0, we can find a high enough n so
that ‖T−C‖ < η with probability at least 1− η. In Step 3, we rely on Step 2 to show that,
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if η is chosen small enough, then Ctb and Ttb are at most ζ apart for at least z − 1 steps
under the inner product 〈·, ·〉s(A). This proves the proposition.

Step 1. Let v be a right eigenvector of C corresponding to eigenvalue λ̂2 := λ2(F) (this
is also the second eigenvalue in magnitude of C by Fact 1). By multiplying v by a scalar if
necessary, we may assume that the entry with largest magnitude is 1/2. By the assumption
of interior homophily, λ̂2 is bounded away from 0 for all n. Given this and the fact that C is
constant on a given type, it follows that v is constant on a given type. Thus, by definition
of α above, that there are at least αn entries in v equal to 1/2. And from this it follows, by
the definition of s(R) and the definition of β above, that

〈v,v〉s(R) ≥ nα ·
(
1

2

)2

· wmin

nwmax

≥ αβ

4
.

Setting bi = vi + 1/2, we see as at the end of the proof of Lemma 2 that

‖Ctb−C∞b‖2s(R) ≥
αβ

4
|λ2(C)|2t,

which yields the lower bound on convergence time we want with λ2(C) instead of λ2(T).
But in view of the assumption of interior homophily and Theorem 2, for high enough n we
can replace C by T and lose at most an additive factor of 1 in the bound.

Step 2. Recall that C = D(R)−1R and T = T(A). Also write:

U = D(A)−1/2JD(A)1/2

and
M = D(R)−1/2KD(R)1/2.

Recalling the definitions of J and K from (7) and (8) above, we see that

T−C = v−1ED(A)− V −1ED(R) +U−M.

So by the triangle inequality, it suffices to bound ‖v−1ED(A)−V −1ED(R)‖ and ‖U−M‖.
Fix a γ > 0. By Lemma A.4, if wmin/ log

2 n is high enough, the following event occurs with
probability at least 1−γ for all i simultaneously: |di−wi| < γwi. (Given the assumptions of
this proposition, high enough n ensures the condition of the lemma is met.) Call this event
E1. Thus, on E1,

‖v−1ED(A)− V −1ED(R)‖ < γ,

and so it suffices to take care of the other term.
By Proposition A.6, we know that if wmin/ log

2 n is high enough, then on an event E2 of
probability at least 1− γ we have ‖J−K‖ < γ. As above, for high enough n the condition
is met. Now let

F = D(A)−D(R),

G = (D(R) + F)1/2 −D(R)1/2,
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and
H = (D(R) + F)−1/2 −D(R)−1/2.

Observe that

‖U−M‖ = ‖(D(R) + F)−1/2J(D(R) + F)1/2 −D(R)−1/2KD(R)1/2‖
= ‖(D(R)−1/2 +H)J(D(R)1/2 +G)−D(R)−1/2KD(R)1/2‖
= ‖D(R)−1/2(J−K)D(R)1/2 +D(R)−1/2JG+HJD(R)1/2 +HJG‖
≤ ‖D(R)−1/2(J−K)D(R)1/2‖+ ‖D(R)−1/2JG‖

+ ‖HJD(R)1/2‖+ ‖HJG‖.

Using Lemma A.4 and standard series approximation arguments, for high enough n we can
ensure ‖G‖ ≤ γ‖D(R)1/2‖ and ‖H‖ ≤ γ‖D(R)−1/2‖ on an event E3 of probability at least
1− γ. Using the fact that ‖J‖ ≤ 1, the Cauchy-Schwartz inequality yields that each of the
middle two terms above is bounded by γ. For the last term, note that

‖HJG‖ ≤ γ2‖D(R)1/2‖ · ‖D(R)−1/2‖ ≤ γ2 ·
(
wmax

wmin

)1/2

≤ γ2

β1/2
.

So it suffices to take care of the first term in our expansion of ‖U −M‖ above. This is
accomplished by noticing that, on E2,

‖D(R)−1/2(J−K)D(R)1/2‖ ≤ w
1/2
max

w
1/2
min

· ‖J−K‖

≤ 1

β1/2
· ‖J−K‖ definition of β

≤ γ

β1/2
definition of E2.

Together, these facts show that for high enough n, on E1 ∩ E2 ∩ E3, which occurs with
probability at least 1− 3γ, we have

‖T−C‖ ≤ γ +
(1 + γ)γ

(1− γ)β1/2
+ 2γ +

γ2

β1/2
.

By choosing γ so that the right-hand side is less than η and 3γ < η (to take care of the
probability), the step is complete.

Step 3. Fix t ≤ z − 1. Write T = C+Y, where ‖Y‖ ≤ η. Note that

(T+Y)t = Tt +
t∑

q=1

Xq,

where Xq is a sum of
(
t
q

)
terms, each of which is a product of q copies of Y and t− q copies

of T in some order. By the fact that ‖T‖ = 1 and ‖Y‖ ≤ η, we have ‖Xq‖ ≤
(
t
q

)
ηq for each
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q ≥ 1. Then, by the triangle inequality,∥∥∥∥∥
t∑

q=1

Xq

∥∥∥∥∥ ≤
t∑

q=1

(
t

q

)
ηq ≤ 2z−1η

1− η
.

Thus,

Yt := ‖Ct −Tt‖ ≤ 2z−1η
1− η

.

Take b and v to be the vectors constructed in Step 1. Then, for high enough n,

‖Ttb−T∞b‖2s(A) = 〈Ttv,Ttv〉s(A)

= 〈(Ct +Yt)v, (C
t +Yt)v〉s(A)

≥ 〈Ctv,Ctv〉s(A) + 2〈Ytv,C
tv〉s(A)

≥ (1− η)〈Ctv,Ctv〉s(R)

+ 2〈Ytv,C
tv〉s(A) Lemma A.4

≥ 2(1− η)ζ + 2〈Ytv,C
tv〉s(A) definition of z

≥ 2(1− η)ζ − 2‖Ytv‖s(A) · ‖Ctv‖s(A) Cauchy-Schwartz

≥ 2(1− η)ζ − 2‖Ytv‖s(A) see below

≥ 2(1− η)ζ − 2‖Ytv‖ def’n of ‖ · ‖s(A)

≥ 2(1− η)ζ − 2zη

1− η
.

The step whose explanation is missing is straightforward; no entries in v have magnitude
exceeding 1/2 and multiplication by the stochastic matrix C preserves this property. Since
s(R) is a probability distribution (i.e. has nonnegative entries summing to 1), the inequality
‖Ctv‖s(R) ≤ 1 holds by definition of the inner product. Choosing η so that 2(1−η)ζ− 2zη

1−η > ζ,
the proof is complete.

C Consequences

The main consequence of the machinery above is, of course, Theorem 1.

Theorem 1. Consider a sufficiently dense sequence of multi-type random networks satisfy-
ing the three regularity conditions in Definition 3. Then, for any γ > 0:

CT
(γ
n
;A(P,n)

)
≈ log(n)

log(1/|hspec(P,n)|) .

Proof of Theorem 1: We will index objects by n to make explicit the sequence of networks
and use the notation A(n) = A(P(n),n(n)) and T(n) = T(A(n)).

First, note that with a probability going to 1, A is connected: apply Proposition 4 noting
that h(n) is bounded away from 1 so that its condition (iv) applies, and (i)-(iii) apply given
the islands model and wmin ≥ log2(n). Thus, we can apply Lemma 2.
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By the assumed regularity conditions, the minimum expected degree divided by the
maximum expected degree remains bounded. Lemma A.4 above guarantees that this is true
of the realized degrees, too, with a probability tending to 1 as n grows. Thus, the expression
− log(1/s1/2) of Lemma 2 can be bounded below by −1

2
log(cn) for some positive constant

c. In view of this, we can conclude from Lemma 2 that with a probability going to 1⌊
log(n/(2γ))− 1

2
log (cn)

− log(|λ2(T(n))|)
⌋
≤ CT(γ/n;A(n)) ≤

⌈
log(n/γ)

− log(|λ2(T(n))|)
⌉
.

This implies that with a probability going to 1:⌊ 1
2
log(n)− log(2γ)− 1

2
log (c)

− log(|λ2(T(n))|)
⌋
≤ CT(γ/n;A(n)) ≤

⌈
log(n)− log(γ)

− log(|λ2(T(n))|)
⌉
.(13)

Next, applying Theorem 2,

(14) |λ2(T(n))− hspec(P(n),n(n))| p−→ 0.

Since hspec(P(n),n(n)) is bounded away from 1, by (14), we deduce that for any 1 > δ > 0,
with a probability going to 1

1− δ

− log(|hspec(P(n),n(n))|) ≤
1

− log(|λ2(T(n)|) ≤
1 + δ

− log(|hspec(P(n),n(n))|) .

The result then follows from (13) the fact that (log n)/(log c)→∞.

Proposition 2. Consider a sequence of multi-type random networks (P,n) and another
(P′,n) where P′ = cP for some c > 0. Under the conditions of Theorem 1, the ratio of
consensus times

CT
(
γ
n
;A(P,n)

)
CT
(
γ
n
;A(P′,n)

)
converges in probability to 1.

Proof of Proposition 2: Observe that F(P,n) is invariant to the density adjustment in
the statement of the proposition; thus, applying Proposition A.5, we conclude the claim in
the corollary.

Corollary 2. Consider a sufficiently dense sequence of two-group random networks (as
described above) satisfying the three regularity conditions in Definition 3. Then for any
γ > 0:

CT
(γ
n
;A(P,n)

)
≈ log(n)

log(1/|htwo(ps, pd,n)|) .

Proof of Corollary 2: To apply Theorem 2, we need to compute the second eigenvalue of

F(P) =

[ n1ps
n1ps+n2pd

n2pd
n1ps+n2pd

n1pd
n1pd+n2ps

n2ps
n1pd+n2ps

]
,

12



or

F(P) =

[ n1ps
np1

n2pd
np1

n1pd
np2

n2ps
np2

]
.

This has a second eigenvalue of
n1ps
np1

− n1pd
np2

,

which is also equal to

−n2pd
np1

+
n2ps
np2

.

Thus, the second eigenvalue is also equal to

1

2

(
n1ps − n2pd

np1
+

n2ps − n1pd
np2

)
.

This can be rewritten as

1

2

(
2n1ps − np1

np1
+

2n2ps − np2
np2

)
,

or
1

2

(
2n1

n

ps − p1
p1

+
2n2

n

ps − p2
p2

+
2n1 + 2n2 − 2n

n

)
.

This simplifies to
n1

n

ps − p1
p1

+
n2

n

ps − p2
p2

=
n2

n
h1 +

n1

n
h2.

The result then follows from Theorem 2.

D Reducing to the Dynamics of Representative Agents

Proof of Proposition 3: The proof proceeds in three steps. First, we show that the
consensus limit of b(t) is, for large enough n, within δ/2 of the consensus limit of b(t) with
probability at least 1− δ/2. Second, we note that, with probability at least 1− δ/2, there is
some fixed time T such that for all large enough n, b(t) for t ≥ T is permanently within δ/2
of its consensus limit. Thus, the claim of the proposition holds for times t ≥ T . Third, we
show that the claim of the proposition holds for times t < T by recalling C from the proof
of Proposition A.5 and writing

b(t) = Ctb(0)

b(t) = Ttb(0),

then using the fact that we can ensure that the spectral norm of Ctb−Ttb is small for any
given finite number of steps, which follows from the argument of Step 2 of Proposition A.5.

Step 1. By several applications of the Chernoff inequality to the Bernoulli random vari-
ables Aij, it follows that, with probability at least 1 − δ/4, the following inequalities hold

13



simultaneously for all pairs (i, k), where k is the type of i:∣∣∣∣di(A(P,n))

D(A(P,n))
− dk(Q(P,n))

D(Q(P,n))

∣∣∣∣ < δ/4.

By the weak law of large numbers, with probability at least 1 − δ/(4m), the average belief
of agents in group k is within δ/(4m) of the expected belief μk of an agent in group k (recall
that m is thet total number of groups). Combining these observations, it follows that, with
probability at least 1− δ/2, the consensus belief of the society,

∑
i

di(A(P,n))

D(A(P,n))
bi(0)

is within 1− δ/2 of the consensus belief of the representative agents, namely

∑
k

dk(Q(P,n))

D(Q(P,n))
μk.

Step 2. This step follows directly from Proposition A.5 after noting that the �2 norm ‖·‖e/n
used in the statement of the present proposition is within a constant factor of the weighted
�2 norm ‖ · ‖s(A) used in the definition of CT, since the ratio of any two degrees is bounded
by a constant (indepenent of n) with high probability.

Step 3. The only subtlety to note that is not given in the sketch above is that, once again,
it does not matter whether we refer to the weighted �2 norm or an unweighted one in defining
the spectral norm, for the same reason given above in Step 2.

E What Spectral Homophily Measures

The proof of Lemma 3 uses the Courant-Fischer variational characterization of the second-
largest eigenvalue of F(P,n). We saw above that F(A) is similar to

D(P,n)−1/2F(P,n)D(P,n)−1/2,

where D(P,n)−1/2 is a diagonal matrix with the degree of group k in position (k, k). Since
this matrix is symmetric, we know that the eigenvalues of F(P,n) are all real. Letting
β1(F(P,n)) ≥ β2(F(P,n)) ≥ · · · ≥ βn(F(P,n)) be the eigenvalues of F(P,n) ordered as
real numbers, the Courant-Fischer result is as follows.

Proposition A.7.

(15) βn(F(P,n)) = inf
0 �=v∈Rm

{〈v,F(P,n)v〉s
〈v,v〉s

}
.

(16) β2(F(P,n)) = sup
0 �=v∈Rm s.t.
〈v,e〉=0

{〈v,F(P,n)v〉s
〈v,v〉s

}
,

14



where the inner product everywhere is defined by 〈v,w〉s =
∑

k∈M vkwksk, and where sk =
dk(Q(P,n))∑
� d�(Q(P,n))

.

Lemma 3. If Q(P,n) is connected (viewed as weighted network), then

|hspec(P,n)| ≥ |DWH(P,n)|.

Proof of Lemma 3:
The arguments P,n will be dropped throughout, and we will use d to refer to the

vector with dk = dk(Q(P,n)) =
∑

� Qk�. We will construct a v satisfying 〈v, e〉d = 0
so that the absolute value of the quantity 〈v,Tv〉d/〈v,v〉d is equal to |DWH(B)|. Since
|λ2| = max{|β2|, |βn|}, this shows that |λ2| ≥ |DWH(B)| using Proposition A.7.2 Since B is
arbitrary, that proves the lemma (recalling the definition of hspec(P,n)).

Set r = |B| and define

vk =

{
1

rdk
if k ∈ B

− 1
(m−r)dk if k /∈ B.

Let D =
∑

i di and note

〈v,v〉d =
∑
k∈M

v2k · dk

=
∑
k∈B

dk
(rdk)2

+
∑
i∈Bc

dk
((m− r)dk)2

=
1

r2

∑
k∈B

1

dk
+

1

(m− r)2

∑
k∈Bc

1

dk
.(17)

Also,

〈v,Tv〉d =
∑
k∈M

vk

(∑
�

Fk�v�

)
dk

=
∑
k∈M

∑
�∈M

vkFk�v�dk

=
1

r2

∑
k,�∈B

Fk�F�k +
1

(n− r)2

∑
k,�∈Bc

Fk�T�k − 2

r(n− r)

∑
k∈B,�∈Bc

Fk�F�k.

Dividing 〈v,Tv〉d by 〈v,v〉d and using the definition of W yields the result.

2Note that s(A) and d(A) differ only by a normalization and so this does not affect the results.
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Appendix 2 Linear Updating with Persistent Opinions

In our baseline linear updating model of communication set out in Section II.D, agents
update beliefs based exclusively on the current beliefs of their neighbors, and possibly their
own. Let us consider the alternative updating rule under which each agent always places
positive weight on his or her own initial position – the one that he or she held at time t = 0.
Let us fix a network A and write T for T(A). This rule is given by:

(18) b(t+ 1) = (1− α)b(0) + αTb(t).

From this one can deduce directly that

(19) b(t) =

[
(1− α)

t−1∑
r=0

(αT)r + (αT)t

]
b(0).

This model differs from the baseline model (in which α = 0) in the sense that beliefs need
not converge to consensus, regardless of the structure of the updating matrixT. Nevertheless,
it will still be useful to consider as a benchmark the consensus beliefs that the agents would
converge to if they updated without any persistent weight on their own initial positions.
These hypothetical consensus beliefs are given by

c = T∞b(0).

In the baseline model, our proxy for differences of opinion was the consensus time. In
this case, a more direct measure is available. Define the disagreement distance as

DD(A) = lim sup
t

max
b(0)∈[0,1]

‖b(t)− c‖s(A).

The quantity ‖b(t) − c‖s(A) gives the average magnitude by which a message sent along a
random link in the network at time t differs from the hypothetical consensus. The quantity
DD(A) measures how large this difference can be (persistently) in the worst case (compare
with the discussion of consensus time in Section II.D.4).

We have the following result.

Proposition A.8.

(20)
1− α

1− αλ2(T(A(P,n)))
· s
4
≤ DD(A(P,n)) ≤ 1− α

1− αλ2(T(A(P,n)))
,

where λ2(T) is the second-largest eigenvalue in magnitude of T, and s is the smallest entry

of the vector s(A) defined by s(A) =
(

d1(A)
D(A)

, . . . , dn(A)
D(A)

)
.

The proof appears below. This result (and the proof) may be compared with Lemma
2, which makes a similar statement about the consensus time. The lower bound in this
proposition has the deficiency that it is proportional to s, which decays as n grows. To
remedy this, suppose now that A(P,n) is a multi-type random graph and n is large. Then
under the regularity conditions of Definition 3, it is possible to obtain an analogue of Propo-
sition A.5 in Appendix 1, which makes the bounds well-behaved even as n grows. That is,
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using an argument analogous to the proof of Proposition A.5, one can drop the s, replace
λ2(T(A(P,n))) by hspec(P,n), and get upper and lower bounds that match except for a
constant; we will not repeat the derivations. The conclusion is that DD(A) behaves like

1− α

1− αhspec(P,n)
.

The key comparative statics are as follows: the maximum sustainable disagreement dis-
tance is increasing and convex in homophily, attaining a maximum of 1 as homophily reaches
the maximum value of 1. As α increases (which corresponds to agents putting less weight
on initial beliefs), the disagreement distance decreases.

Proof of Proposition A.8: Let us drop the arguments A(P,n) and keep in mind that all
matrices are random variable.s Defining S = T∞, we can write c as

c =

[
(1− α)

t−1∑
r=0

(αS)r + (αS)t

]
b(0).

Define V = T− S, and note that, since S is the summand of the spectral decomposition of
T corresponding to eigenvalue 1, we have Tr = S+Vr (recall the proof of Lemma 2). Thus,

‖b(t)− c‖s(A) =

∥∥∥∥∥
[
(1− α)

t−1∑
r=0

αrVr + αtVt

]
b(0)

∥∥∥∥∥
s(A)

.

Now, the spectral radius of V is |λ2|. From this it follows that if b(0) ∈ [0, 1]n, then

‖b(t)− c‖s(A) ≤ (1− α)
t−1∑
r=0

αr|λ2|r + αt|λ2|t.

Taking t→∞ furnishes the upper bound.
For the other inequality, let w be an eigenvector of T corresponding to λ2, scaled so that

‖w‖2s = s/4. Then the maximum entry of w is at most 1/2 and the minimum entry is at least
−1/2. Consequently, if we let e denote the column vector of ones and define b(0) = w+e/2,
then b(0) ∈ [0, 1]n. Then we have

‖b(t)− c‖s(A) =

∥∥∥∥∥
[
(1− α)

t−1∑
r=0

αrVr + αtVt

]
b(0)

∥∥∥∥∥
s(A)

=

[
(1− α)

t−1∑
r=0

αrλr
2 + αtλt

2

]
s

4
.

Once again, taking t→∞ furnishes the lower bound.
While Proposition A.8 shows that the persistence of disagreement in this model is closely

related to the extent of homophily, it may be desirable to have a closer analog of Theorem
1, in which the convergence speed is related to the spectral homophily. The following result
shows that this is possible. Let b(∞) denote limt→∞ b(t).
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Proposition A.9. For any t ≥ 0,

1− α

1− α|λ2| · (α|λ2|)t · s
4
≤ sup

b(0)∈[0,1]n
‖b(t)− b(∞)‖s(A) ≤ 1− α

1− α|λ2| · (α|λ2|)t,

where λ2(T) is the second-largest eigenvalue in magnitude of T, and s is the smallest entry

of the vector s(A) defined by s(A) =
(

d1(A)
D(A)

, . . . , dn(A)
D(A)

)
.3

Although we can no longer discuss the speed of convergence to a consensus, as one is no
longer reached, we can still measure the speed at which beliefs converge to their limit, or
more precisely, how big the differences between the current beliefs and the limit beliefs are
over time. The worst-case difference between the step t beliefs and the limiting ones (which
is what the quantity

sup
b(0)∈[0,1]n

‖b(t)− b(∞)‖s(A)

measures) is decaying in α|λ2|t. Once again, under the regularity conditions of Definition
3, we can drop the s, replace λ2(T) by hspec(P,n), and get upper and lower bounds that
match except for a constant. The techniques to do this are the same as those of Proposition
A.5. Thus, the rate of convergence is again determined by spectral homophily, with faster
convergence when it is lower. However, the quantity that determines the rate is also pro-
portional to α, meaning that the less weight agents place on their initial beliefs, the faster
convergence is.

Proof of Proposition A.9: Earlier we noted that

b(t) =

[
(1− α)

t−1∑
r=0

(αT)r + (αT)t

]
b(0).

Define V = T − S, where S is, as in Proposition A.8, the first (eigenvalue 1) term in the
spectral decomposition of T, which is also equal to T∞. Then we have

b(∞)− b(t) =

[
(1− α)

∞∑
r=t

(αV)r

]
b(0).

Using the same spectral arguments as in the proof of Lemma 2, and using the fact that the
spectral norm of V − I is at most 2, we find that for any b(0) ∈ [0, 1]n

‖b(t)− b(∞)‖s(A) ≤ (1− α)
∞∑
r=t

(α|λ2|)r = 1− α

1− α|λ2| · (α|λ2|)t,

where we are dropping the argument T(A) on the eigenvalue λ2.
For the other inequality, let w be an eigenvector of T corresponding to λ2, scaled so that

‖w‖2s = s/4. Then the maximum entry of w is at most 1/2 and the minimum entry is at least
−1/2. Consequently, if we let e denote the column vector of ones and define b(0) = w+e/2,

3Recall the ‖ · ‖ notation from Section II.D.4.
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then b(0) ∈ [0, 1]n. Then, using the same techniques as in Lemma 2, we have

‖b(t)− b(∞)‖s(A) =

∥∥∥∥∥
[
(1− α)

∞∑
r=t

(αV)r

]
b(0)

∥∥∥∥∥
s(A)

= (1− α)
∞∑
r=t

(α|λ2|)r · s
4

=
1− α

1− α|λ2| · (α|λ2|)t · s
4
.

This completes the proof.
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