A Network Approach to Public Goods

Matthew Elliott
Cambridge

Benjamin Golub
Harvard

March 28, 2016

Introduction

- A public goods economy: each agent can exert costly effort to provide different, non-rival benefits to some of the others.

Introduction

■ A public goods economy: each agent can exert costly effort to provide different, non-rival benefits to some of the others.

- E.g.: countries' effort toward abating water pollution.

Introduction

- A public goods economy: each agent can exert costly effort to provide different, non-rival benefits to some of the others.
- E.g.: countries' effort toward abating water pollution.
- Literature on one-shot Nash provision and relationship to network position.

Bergstrom, Blume, and Varian (JPubE 86); Ballester, Calvó-Armengol, and Zenou (Ema 06); Galeotti and Goyal (AER 11)

Introduction

■ A public goods economy: each agent can exert costly effort to provide different, non-rival benefits to some of the others.

■ E.g.: countries' effort toward abating water pollution.

- Literature on one-shot Nash provision and relationship to network position.

Bergstrom, Blume, and Varian (JPubE 86); Ballester, Calvó-Armengol, and Zenou (Ema 06); Galeotti and Goyal (AER 11)

- How about efficient provision through negotiated favor-trading?

How does that depend on network structure?

Introduction

■ A public goods economy: each agent can exert costly effort to provide different, non-rival benefits to some of the others.

- E.g.: countries' effort toward abating water pollution.
- Literature on one-shot Nash provision and relationship to network position.

Bergstrom, Blume, and Varian (JPubE 86); Ballester, Calvó-Armengol, and Zenou (Ema 06); Galeotti and Goyal (AER 11)

- How about efficient provision through negotiated favor-trading?

How does that depend on network structure?
■ Characterize efficient frontier as well as Lindahl outcomes (with strategic foundations)

Introduction

■ A public goods economy: each agent can exert costly effort to provide different, non-rival benefits to some of the others.

- E.g.: countries' effort toward abating water pollution.
- Literature on one-shot Nash provision and relationship to network position.

Bergstrom, Blume, and Varian (JPubE 86); Ballester, Calvó-Armengol, and Zenou (Ema 06); Galeotti and Goyal (AER 11)

- How about efficient provision through negotiated favor-trading?

How does that depend on network structure?
■ Characterize efficient frontier as well as Lindahl outcomes (with strategic foundations)

- in terms of eigenvalues and eigenvectors of a matrix of marginal payoff relationships.

Introduction

■ A public goods economy: each agent can exert costly effort to provide different, non-rival benefits to some of the others.

- E.g.: countries' effort toward abating water pollution.
- Literature on one-shot Nash provision and relationship to network position.

Bergstrom, Blume, and Varian (JPubE 86); Ballester, Calvó-Armengol, and Zenou (Ema 06); Galeotti and Goyal (AER 11)

- How about efficient provision through negotiated favor-trading?

How does that depend on network structure?
■ Characterize efficient frontier as well as Lindahl outcomes (with strategic foundations)

- in terms of eigenvalues and eigenvectors of a matrix of marginal payoff relationships.
- Conceptually: market outcomes \leftrightarrow network centrality measures.

Outline

1 Setup

2 Efficiency

3 Lindahl Outcomes and Network Centrality

4 Conclusions

The Model

■ Players: $N=\{1,2, \ldots, n\}$;

The Model

■ Players: $N=\{1,2, \ldots, n\}$;

- Player i 's effort level: $\quad a_{i} \geq 0$;

The Model

■ Players: $N=\{1,2, \ldots, n\}$;

- Player i 's effort level: $\quad a_{i} \geq 0$;

■ $u_{i}: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$, continuously differentiable, concave;

The Model

■ Players: $N=\{1,2, \ldots, n\}$;
■ Player i 's effort level: $\quad a_{i} \geq 0$;
■ $u_{i}: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$, continuously differentiable, concave; Think of $\mathbf{0}$ as status quo outcome.

The Model

■ Players: $N=\{1,2, \ldots, n\}$;
■ Player i 's effort level: $\quad a_{i} \geq 0$;
■ $u_{i}: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$, continuously differentiable, concave; Think of $\mathbf{0}$ as status quo outcome.

- costly actions: $\frac{\partial u_{i}}{\partial a_{i}}<0$;

The Model

■ Players: $N=\{1,2, \ldots, n\}$;
■ Player i 's effort level: $\quad a_{i} \geq 0$;
■ $u_{i}: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$, continuously differentiable, concave; Think of $\mathbf{0}$ as status quo outcome.

- costly actions: $\frac{\partial u_{i}}{\partial a_{i}}<0$;
- positive externalities: $\frac{\partial u_{i}}{\partial a_{j}} \geq 0$ if $i \neq j$.

The Environment: An Example

prevailing wind

Town
 Y

B : The (Marginal) Benefits Matrix

Definition

$$
B_{i j}= \begin{cases}\frac{\partial u_{i} / \partial a_{j}}{-\partial u_{i} / \partial a_{i}} & \text { if } i \neq j \\ 0 & \text { otherwise }\end{cases}
$$

B : The (Marginal) Benefits Matrix

Definition

$$
B_{i j}=\left\{\begin{array}{cl}
\frac{\partial u_{i} / \partial a_{j}}{-\partial u_{i} / \partial a_{i}} & \text { if } i \neq j \\
0 & \text { otherwise }
\end{array}\right.
$$

How much i values j 's help, measured in units of own effort.

B: The (Marginal) Benefits Matrix

Definition

$$
B_{i j}(\boldsymbol{a})= \begin{cases}{\left[\frac{\partial u_{i} / \partial a_{j}}{-\partial u_{i} / \partial a_{i}}\right](\boldsymbol{a})} & \text { if } i \neq j \\ 0 & \text { otherwise }\end{cases}
$$

How much i values j 's help, measured in units of own effort.

B: The (Marginal) Benefits Matrix

Definition

$$
B_{i j}(\boldsymbol{a})= \begin{cases}{\left[\frac{\partial u_{i} / \partial a_{j}}{-\partial u_{i} / \partial a_{i}}\right](\boldsymbol{a})} & \text { if } i \neq j \\ 0 & \text { otherwise }\end{cases}
$$

How much i values j 's help, measured in units of own effort.
We assume $\boldsymbol{B}(\boldsymbol{a})$ is irreducible for all \boldsymbol{a}.

The Benefits Matrix

We can think of $\boldsymbol{B}(\boldsymbol{a})$ as a network.

Outline

1 Setup

2 Efficiency
3 Lindahl Outcomes and Network Centrality

4 Conclusions

Example: Is a Pareto Improvement Possible?

$$
\boldsymbol{B}(\mathbf{0})=\left[\begin{array}{cc}
0 & 8 \\
0.2 & 0
\end{array}\right]
$$

Example: Is a Pareto Improvement Possible?

$$
\boldsymbol{B}(\mathbf{0})=\left[\begin{array}{cc}
0 & 8 \\
0.2 & 0
\end{array}\right]
$$

Example: Is a Pareto Improvement Possible?

$$
\boldsymbol{B}(\mathbf{0})=\left[\begin{array}{cc}
0 & 8 \\
0.2 & 0
\end{array}\right]
$$

Example: Is a Pareto Improvement Possible?

$$
\boldsymbol{B}(\mathbf{0})=\left[\begin{array}{cc}
0 & 8 \\
0.2 & 0
\end{array}\right]
$$

Example: Is a Pareto Improvement Possible?

$$
\boldsymbol{B}(\mathbf{0})=\left[\begin{array}{cc}
0 & 8 \\
0.2 & 0
\end{array}\right]
$$

Example: Is a Pareto Improvement Possible?

$$
\boldsymbol{B}(\mathbf{0})=\left[\begin{array}{cc}
0 & 8 \\
0.2 & 0
\end{array}\right]
$$

Example: Is a Pareto Improvement Possible?

$$
\boldsymbol{B}(\mathbf{0})=\left[\begin{array}{cc}
0 & B_{12} \\
B_{21} & 0
\end{array}\right]
$$

Result

A Pareto improvement on the status quo $\boldsymbol{a}=\mathbf{0}$ exists if and only if $B_{12} \cdot B_{21}>1$.

A More Complicated Example

Pareto Frontier Characterization

Definition

The spectral radius $r(\boldsymbol{M})$ is the maximum magnitude of any eigenvalue of M.

Pareto Frontier Characterization

Definition

The spectral radius $r(\boldsymbol{M})$ is the maximum magnitude of any eigenvalue of M.

Proposition

A Pareto improvement on the status quo $\boldsymbol{a}=\mathbf{0}$ exists if and only if $r(\boldsymbol{B}(\mathbf{0}))>1$.

Pareto Frontier Characterization

Definition

The spectral radius $r(\boldsymbol{M})$ is the maximum magnitude of any eigenvalue of \boldsymbol{M}.

Proposition

A Pareto improvement on the status quo $\boldsymbol{a}=\mathbf{0}$ exists if and only if $r(\boldsymbol{B}(\mathbf{0}))>1$.

Proposition

An interior action profile \boldsymbol{a} is Pareto efficient if and only if $r(\boldsymbol{B}(\boldsymbol{a}))=1$.

Proof Sketch: \boldsymbol{a}^{*} Pareto-efficient $\Rightarrow r\left(\boldsymbol{B}\left(\boldsymbol{a}^{*}\right)\right)=1$

Take PE \boldsymbol{a}^{*}, assume $\frac{\partial u_{i}}{\partial a_{i}}\left(\boldsymbol{a}^{*}\right)=-1$.

Proof Sketch: \boldsymbol{a}^{*} Pareto-efficient $\Rightarrow r\left(\boldsymbol{B}\left(\boldsymbol{a}^{*}\right)\right)=1$

Take PE \boldsymbol{a}^{*}, assume $\frac{\partial u_{i}}{\partial a_{i}}\left(\boldsymbol{a}^{*}\right)=-1$.
\boldsymbol{a}^{*} solves Pareto problem: max. $\sum_{i} \theta_{i} u_{i}(\boldsymbol{a})$.

Proof Sketch: \boldsymbol{a}^{*} Pareto-efficient $\Rightarrow r\left(\boldsymbol{B}\left(\boldsymbol{a}^{*}\right)\right)=1$

Take PE \boldsymbol{a}^{*}, assume $\frac{\partial u_{i}}{\partial a_{i}}\left(\boldsymbol{a}^{*}\right)=-1$.
\boldsymbol{a}^{*} solves Pareto problem: max. $\sum_{i} \theta_{i} u_{i}(\boldsymbol{a})$.

$$
\text { FOC: } \quad \forall j \quad \begin{aligned}
\sum_{i \neq j} \theta_{i} \frac{\partial u_{i}}{\partial a_{j}}-\theta_{j} & =0 \\
\boldsymbol{\theta} \boldsymbol{B}\left(\boldsymbol{a}^{*}\right) & =\boldsymbol{\theta}
\end{aligned}
$$

Proof Sketch: \boldsymbol{a}^{*} Pareto-efficient $\Rightarrow r\left(\boldsymbol{B}\left(\boldsymbol{a}^{*}\right)\right)=1$

Take PE \boldsymbol{a}^{*}, assume $\frac{\partial u_{i}}{\partial a_{i}}\left(\boldsymbol{a}^{*}\right)=-1$.
\boldsymbol{a}^{*} solves Pareto problem: max. $\sum_{i} \theta_{i} u_{i}(\boldsymbol{a})$.

$$
\text { FOC: } \quad \begin{aligned}
\forall j \quad \sum_{i \neq j} \theta_{i} \frac{\partial u_{i}}{\partial a_{j}}-\theta_{j} & =0 \\
\boldsymbol{\theta} \boldsymbol{B}\left(\boldsymbol{a}^{*}\right) & =\boldsymbol{\theta}
\end{aligned}
$$

- $\boldsymbol{B}\left(\boldsymbol{a}^{*}\right)$ is non-negative, irreducible and square.
- $\boldsymbol{\theta}$ is non-negative.

Proof Sketch: \boldsymbol{a}^{*} Pareto-efficient $\Rightarrow r\left(\boldsymbol{B}\left(\boldsymbol{a}^{*}\right)\right)=1$

Take PE \boldsymbol{a}^{*}, assume $\frac{\partial u_{i}}{\partial a_{i}}\left(\boldsymbol{a}^{*}\right)=-1$. \boldsymbol{a}^{*} solves Pareto problem: max. $\sum_{i} \theta_{i} u_{i}(\boldsymbol{a})$.

FOC: $\quad \forall j \quad \sum_{i \neq j} \theta_{i} \frac{\partial u_{i}}{\partial a_{j}}-\theta_{j}=0$

$$
\boldsymbol{\theta} \boldsymbol{B}\left(\boldsymbol{a}^{*}\right)=\boldsymbol{\theta}
$$

■ $\boldsymbol{B}\left(\boldsymbol{a}^{*}\right)$ is non-negative, irreducible and square.

- $\boldsymbol{\theta}$ is non-negative.

Perron-Frobenius: an eigenvalue λ of \boldsymbol{B} has a nonnegative left (right) eigenvector if and only if $\lambda=r(\boldsymbol{B})$.

Proof Sketch: \boldsymbol{a}^{*} Pareto-efficient $\Rightarrow r\left(\boldsymbol{B}\left(\boldsymbol{a}^{*}\right)\right)=1$

Take PE \boldsymbol{a}^{*}, assume $\frac{\partial u_{i}}{\partial a_{i}}\left(\boldsymbol{a}^{*}\right)=-1$. \boldsymbol{a}^{*} solves Pareto problem: max. $\sum_{i} \theta_{i} u_{i}(\boldsymbol{a})$.

FOC: $\quad \forall j \quad \sum_{i \neq j} \theta_{i} \frac{\partial u_{i}}{\partial a_{j}}-\theta_{j}=0$

$$
\boldsymbol{\theta} \boldsymbol{B}\left(\boldsymbol{a}^{*}\right)=\boldsymbol{\theta}
$$

■ $\boldsymbol{B}\left(\boldsymbol{a}^{*}\right)$ is non-negative, irreducible and square.

- $\boldsymbol{\theta}$ is non-negative.

Perron-Frobenius: an eigenvalue λ of \boldsymbol{B} has a nonnegative left (right) eigenvector if and only if $\lambda=r(\boldsymbol{B})$. Moreover, \boldsymbol{B} has an eigenvalue $\lambda \in \mathbb{R}$ equal to $r(\boldsymbol{B})$.

Interpretation of Spectral Radius

Vague Statement

The spectral radius measures the number/intensity of cycles in the benefits matrix.

Spectral Radius in Terms of Cycles

$$
\boldsymbol{B}(\mathbf{0})=\left[\begin{array}{cccc}
0 & 0 & 7 & 0.5 \\
5 & 0 & 6 & 0.5 \\
0 & 0 & 0 & 0.5 \\
0.5 & 0.5 & 0.5 & 0
\end{array}\right]
$$

Spectral Radius in Terms of Cycles

$$
\boldsymbol{B}(\mathbf{0})=\left[\begin{array}{cccc}
0 & 0 & 7 & 0.5 \\
5 & 0 & 6 & 0.5 \\
0 & 0 & 0 & 0.5 \\
0.5 & 0.5 & 0.5 & 0
\end{array}\right]
$$

Value of cycle $c=(1,2,4)$:

$$
\begin{aligned}
v(c ; \boldsymbol{B}) & =B_{21} B_{42} B_{14} \\
& =5 \cdot \frac{1}{2} \cdot \frac{1}{2}
\end{aligned}
$$

Spectral Radius in Terms of Cycles

$$
\boldsymbol{B}(\mathbf{0})=\left[\begin{array}{cccc}
0 & 0 & 7 & 0.5 \\
5 & 0 & 6 & 0.5 \\
0 & 0 & 0 & 0.5 \\
0.5 & 0.5 & 0.5 & 0
\end{array}\right]
$$

Value of cycle $c=(1,2,4)$:

$$
\begin{aligned}
v(c ; \boldsymbol{B}) & =B_{21} B_{42} B_{14} \\
& =5 \cdot \frac{1}{2} \cdot \frac{1}{2}
\end{aligned}
$$

$$
r(\boldsymbol{B})>1 \quad \Longleftrightarrow \quad \lim _{\ell \rightarrow \infty} \sum_{\substack{c \text { a cycle } \\ \text { of length } \leq \ell}} v(c ; \boldsymbol{B})>1
$$

Spectral Radius in Terms of Cycles

$$
\boldsymbol{B}(\mathbf{0})=\left[\begin{array}{cccc}
0 & 0 & 7 & 0.5 \\
5 & 0 & 6 & 0.5 \\
0 & 0 & 0 & 0.5 \\
0.5 & 0.5 & 0.5 & 0
\end{array}\right]
$$

Value of cycle $c=(1,2,4)$:

$$
\begin{aligned}
v(c ; \boldsymbol{B}) & =B_{21} B_{42} B_{14} \\
& =5 \cdot \frac{1}{2} \cdot \frac{1}{2}
\end{aligned}
$$

$r(\boldsymbol{B})>1 \quad \lim _{\ell \rightarrow \infty} \sum_{\begin{array}{c}c \text { a cycle } \\ \text { of length } \leq \ell\end{array}} v(c ; \boldsymbol{B})>1$
Player 4 is essential.

Efficient Separation

■ If large multilateral negotiation is costly, when can most of the benefits be achieved in smaller groups?

Efficient Separation

■ If large multilateral negotiation is costly, when can most of the benefits be achieved in smaller groups?

- Formalization: a

■ Arbitrary "target" Pareto-efficient \boldsymbol{a}^{*}; two groups, M, M^{c}.

Efficient Separation

- If large multilateral negotiation is costly, when can most of the benefits be achieved in smaller groups?
- Formalization: a
- Arbitrary "target" Pareto-efficient \boldsymbol{a}^{*}; two groups, M, M^{c}.
- Each group can contemplate deviations from \boldsymbol{a}^{*} that are Pareto-improving for that group.

Efficient Separation

■ If large multilateral negotiation is costly, when can most of the benefits be achieved in smaller groups?

- Formalization: a

■ Arbitrary "target" Pareto-efficient \boldsymbol{a}^{*}; two groups, M, M^{c}.

- Each group can contemplate deviations from \boldsymbol{a}^{*} that are Pareto-improving for that group.
- Planner can offer subsidies:

$$
\widetilde{u}_{i}(\boldsymbol{a})=u_{i}(\boldsymbol{a})+m_{i}(\boldsymbol{a}), \quad m_{i}(\cdot) \geq 0
$$

Efficient Separation

- If large multilateral negotiation is costly, when can most of the benefits be achieved in smaller groups?
- Formalization: a

■ Arbitrary "target" Pareto-efficient \boldsymbol{a}^{*}; two groups, M, M^{c}.

- Each group can contemplate deviations from \boldsymbol{a}^{*} that are Pareto-improving for that group.
- Planner can offer subsidies:

$$
\widetilde{u}_{i}(\boldsymbol{a})=u_{i}(\boldsymbol{a})+m_{i}(\boldsymbol{a}), \quad m_{i}(\cdot) \geq 0
$$

- $\left(m_{i}\right)_{i \in N}$ deters deviations from \boldsymbol{a}^{*} if the restriction of \boldsymbol{a}^{*} to M is Pareto efficient given new payoffs (resp. M^{c}).

Efficient Separation

- If large multilateral negotiation is costly, when can most of the benefits be achieved in smaller groups?
- Formalization: a
- Arbitrary "target" Pareto-efficient \boldsymbol{a}^{*}; two groups, M, M^{c}.
- Each group can contemplate deviations from \boldsymbol{a}^{*} that are Pareto-improving for that group.
- Planner can offer subsidies:

$$
\widetilde{u}_{i}(\boldsymbol{a})=u_{i}(\boldsymbol{a})+m_{i}(\boldsymbol{a}), \quad m_{i}(\cdot) \geq 0
$$

- $\left(m_{i}\right)_{i \in N}$ deters deviations from \boldsymbol{a}^{*} if the restriction of \boldsymbol{a}^{*} to M is Pareto efficient given new payoffs (resp. M^{c}).
- cost of separation $c_{M}\left(\boldsymbol{a}^{*}\right)$ defined as the infimum of $\sum_{i \in N} m_{i}\left(\boldsymbol{a}^{*}\right)$, taken over deviation-deterring transfers.

Efficient Separation

Proposition

$$
c_{M}\left(\mathbf{a}^{*}\right) \leq \sum \frac{\theta_{i}}{\theta_{j}} B_{i j}\left(\mathbf{a}^{*}\right) a_{j}^{*}
$$

where the summation is taken over all ordered pairs (i, j) such that one element is in M and the other is in M^{c}.

Efficient Separation

Proposition

$$
c_{M}\left(\mathbf{a}^{*}\right) \leq \sum \frac{\theta_{i}}{\theta_{j}} B_{i j}\left(\mathbf{a}^{*}\right) a_{j}^{*},
$$

where the summation is taken
 over all ordered pairs (i, j) such that one element is in M and the other is in M^{c}.
A minimum cut in a graph with suitable weights \mathbf{W}.

Efficient Separation

Proposition

$$
c_{M}\left(\mathbf{a}^{*}\right) \leq \sum \frac{\theta_{i}}{\theta_{j}} B_{i j}\left(\mathbf{a}^{*}\right) a_{j}^{*},
$$

where the summation is taken over all ordered pairs (i, j) such that one element is in M and the other is in M^{c}.
A minimum cut in a graph with suitable weights \mathbf{W}.

■ RHS can be small even when groups provide large benefits to each other.

Efficient Separation

Proposition

$$
c_{M}\left(\mathbf{a}^{*}\right) \leq \sum \frac{\theta_{i}}{\theta_{j}} B_{i j}\left(\mathbf{a}^{*}\right) a_{j}^{*},
$$

where the summation is taken over all ordered pairs (i, j) such that one element is in M and the other is in M^{c}.
A minimum cut in a graph with suitable weights \mathbf{W}.

■ RHS can be small even when groups provide large benefits to each other.

- Small when spectral gap of \mathbf{W} is small.

Takeaways

- Largest eigenvalue of benefits matrix diagnoses inefficiency:
- At $\mathbf{0}$: is it greater than 1 ?
- Interior: is it different from 1?

Takeaways

- Largest eigenvalue of benefits matrix diagnoses inefficiency:
- At $\mathbf{0}$: is it greater than 1 ?
- Interior: is it different from 1?
- Spectral radius quantifies the strength of all cycles.

Takeaways

- Largest eigenvalue of benefits matrix diagnoses inefficiency:
- At $\mathbf{0}$: is it greater than 1 ?
- Interior: is it different from 1 ?

■ Spectral radius quantifies the strength of all cycles.
■ A player is essential to achieving any Pareto improvement on $\mathbf{0}$ iff his removal changes $r(\boldsymbol{B}(\mathbf{0}))$ from >1 to <1.

- Intuition: removal disrupts key cycles.

Takeaways

- Largest eigenvalue of benefits matrix diagnoses inefficiency:
- At $\mathbf{0}$: is it greater than 1 ?
- Interior: is it different from 1?
- Spectral radius quantifies the strength of all cycles.
- A player is essential to achieving any Pareto improvement on $\mathbf{0}$ iff his removal changes $r(\boldsymbol{B}(\mathbf{0}))$ from >1 to <1.
- Intuition: removal disrupts key cycles.
- Additional results: spectral radius as a measure of inefficiency.
- $r(\boldsymbol{B}(\boldsymbol{a}))-1$ is the rate at which effort would have to be taxed to make the outcome \boldsymbol{a} Pareto efficient.

Takeaways

- Largest eigenvalue of benefits matrix diagnoses inefficiency:
- At $\mathbf{0}$: is it greater than 1 ?
- Interior: is it different from 1?
- Spectral radius quantifies the strength of all cycles.
- A player is essential to achieving any Pareto improvement on $\mathbf{0}$ iff his removal changes $r(\boldsymbol{B}(\mathbf{0}))$ from >1 to <1.
- Intuition: removal disrupts key cycles.
- Additional results: spectral radius as a measure of inefficiency.
- $r(\boldsymbol{B}(\boldsymbol{a}))-1$ is the rate at which effort would have to be taxed to make the outcome \boldsymbol{a} Pareto efficient. Details
- Measures the returns on the best egalitarian improvement.

Outline

1 Setup

2 Efficiency

3 Lindahl Outcomes and Network Centrality

4 Conclusions

Multiple Pareto Efficient, Individually Rational Outcomes

$$
\begin{aligned}
& u_{1}=a_{2}-\frac{1}{2} a_{1}^{2} \\
& u_{2}=a_{1}-a_{2}^{2}
\end{aligned}
$$

Multiple Pareto Efficient, Individually Rational Outcomes

$$
\begin{aligned}
& u_{1}=a_{2}-\frac{1}{2} a_{1}^{2} \\
& u_{2}=a_{1}-a_{2}^{2} \\
& \boldsymbol{B}(\boldsymbol{a})=\left[\begin{array}{cc}
0 & \frac{1}{a_{1}} \\
\frac{1}{2 a_{2}} & 0
\end{array}\right]
\end{aligned}
$$

Multiple Pareto Efficient, Individually Rational Outcomes

$$
\begin{aligned}
& u_{1}=a_{2}-\frac{1}{2} a_{1}^{2} \\
& u_{2}=a_{1}-a_{2}^{2} \\
& \boldsymbol{B}(\boldsymbol{a})=\left[\begin{array}{cc}
0 & \frac{1}{a_{1}} \\
\frac{1}{2 a_{2}} & 0
\end{array}\right] \\
& r(\boldsymbol{B}(\boldsymbol{a}))=\left(2 a_{1} a_{2}\right)^{-1 / 2}
\end{aligned}
$$

Multiple Pareto Efficient, Individually Rational Outcomes

$$
\begin{array}{ll}
\text { Pareto frontier } & \begin{array}{l}
u_{1}=a_{2}-\frac{1}{2} a_{1}^{2} \\
u_{2}=a_{1}-a_{2}^{2}
\end{array} \\
\frac{\boldsymbol{B}(\boldsymbol{a})=\left[\begin{array}{cc}
0 & \frac{1}{a_{1}} \\
\frac{1}{2 a_{2}} & 0
\end{array}\right]}{} \\
0.5 & r(\boldsymbol{B}(\boldsymbol{a}))=\left(2 a_{1} a_{2}\right)^{-1 / 2} \\
\hline 1 &
\end{array}
$$

Multiple Pareto Efficient, Individually Rational Outcomes

$$
\begin{aligned}
& u_{1}=a_{2}-\frac{1}{2} a_{1}^{2} \\
& u_{2}=a_{1}-a_{2}^{2} \\
& \boldsymbol{B}(\boldsymbol{a})=\left[\begin{array}{cc}
0 & \frac{1}{a_{1}} \\
\frac{1}{2 a_{2}} & 0
\end{array}\right] \\
& r(\boldsymbol{B}(\boldsymbol{a}))=\left(2 a_{1} a_{2}\right)^{-1 / 2}
\end{aligned}
$$

Multiple Pareto Efficient, Individually Rational Outcomes

From now on, assume set of IR points is bounded.

Lindahl Outcome

Conceptually: complete the missing markets for externalities to achieve efficient provision.

Lindahl Outcome

Conceptually: complete the missing markets for externalities to achieve efficient provision.

Definition

A Lindahl outcome is an \boldsymbol{a}^{*} such that there is a schedule of prices $\left\{P_{i j}: i \neq j\right\}$ satisfying, for each i,

$$
\boldsymbol{a}^{*} \in \underset{\substack{\text { weak budget } \\ \text { balance }}}{\operatorname{argmax}} u_{i}(\boldsymbol{a})
$$

Lindahl Outcome

Conceptually: complete the missing markets for externalities to achieve efficient provision.

Definition

A Lindahl outcome is an \boldsymbol{a}^{*} such that there is a schedule of prices $\left\{P_{i j}: i \neq j\right\}$ satisfying, for each i,

$$
\boldsymbol{a}^{*} \in \underset{\substack{\text { weak budget } \\ \text { balance }}}{\operatorname{argmax}} u_{i}(\boldsymbol{a})
$$

\boldsymbol{a} satisfies weak budget balance for prices \boldsymbol{P} if
$\sum_{j: j \neq i} P_{i j} a_{j} \leq a_{i} \sum_{j: j \neq i} P_{j i}$.

Lindahl Outcome

Conceptually: complete the missing markets for externalities to achieve efficient provision.

Definition

A Lindahl outcome is an \boldsymbol{a}^{*} such that there is a schedule of prices $\left\{P_{i j}: i \neq j\right\}$ satisfying, for each i,

$$
\boldsymbol{a}^{*} \in \underset{\substack{\text { weak budget } \\ \text { balance }}}{\operatorname{argmax}} u_{i}(\boldsymbol{a})
$$

\boldsymbol{a} satisfies weak budget balance for prices \boldsymbol{P} if
$\sum_{j: j \neq i} P_{i j} a_{j} \leq a_{i} \sum_{j: j \neq i} P_{j i}$.
Main theorem: characterization in terms of network centrality.

Lindahl Outcome Graphically

Lindahl Outcome Graphically

Lindahl Outcome Graphically

Centrality Property

Definition

$\boldsymbol{a} \in \mathbb{R}_{+}^{n}$ has the centrality property (or is a centrality action profile) if $\boldsymbol{a} \neq \mathbf{0}$ and

$$
\boldsymbol{a}=\boldsymbol{B}(\boldsymbol{a} ; \boldsymbol{u}) \boldsymbol{a}
$$

Centrality Property

Definition

$\boldsymbol{a} \in \mathbb{R}_{+}^{n}$ has the centrality property (or is a centrality action profile) if $\boldsymbol{a} \neq \mathbf{0}$ and

$$
\boldsymbol{a}=\boldsymbol{B}(\boldsymbol{a} ; \boldsymbol{u}) \boldsymbol{a}
$$

$$
a_{i}=\sum_{j \neq i} B_{i j}(\boldsymbol{a}) \cdot a_{j}
$$

Centrality Property

Definition

$\boldsymbol{a} \in \mathbb{R}_{+}^{n}$ has the centrality property (or is a centrality action profile) if $\boldsymbol{a} \neq \mathbf{0}$ and

$$
\begin{gathered}
\boldsymbol{a}=\boldsymbol{B}(\boldsymbol{a} ; \boldsymbol{u}) \boldsymbol{a} \\
a_{i}=\sum_{j \neq i} B_{i j}(\boldsymbol{a}) \cdot a_{j}
\end{gathered}
$$

- Fixed-point definition of actions.

Agents taking high actions are those who benefit a lot (at the margin) from others who are taking high actions.

The Main Theorem

Definition

$\boldsymbol{a} \in \mathbb{R}_{+}^{n}$ has the centrality property if $\boldsymbol{a} \neq \mathbf{0}$ and

$$
\boldsymbol{a}=\boldsymbol{B}(\boldsymbol{a} ; \boldsymbol{u}) \boldsymbol{a}
$$

The Main Theorem

Definition

$\boldsymbol{a} \in \mathbb{R}_{+}^{n}$ has the centrality property if $\boldsymbol{a} \neq \mathbf{0}$ and

$$
\boldsymbol{a}=\boldsymbol{B}(\boldsymbol{a} ; \boldsymbol{u}) \boldsymbol{a}
$$

Theorem

A nonzero \boldsymbol{a} is a Lindahl outcome if and only if it has the centrality profile.

Rest of the Talk

■ Four questions:
1 How is it proved?

Rest of the Talk

■ Four questions:
1 How is it proved?
2 What is eigenvector centrality?

Rest of the Talk

■ Four questions:
1 How is it proved?
2 What is eigenvector centrality?
3 Why care about Lindahl outcomes?

Rest of the Talk

■ Four questions:
1 How is it proved?
2 What is eigenvector centrality?
3 Why care about Lindahl outcomes?
4 Why is the connection useful?

Rest of the Talk

■ Four questions:
1 How is it proved?
2 What is eigenvector centrality?
3 Why care about Lindahl outcomes?
4 Why is the connection useful?

- Rest of talk:

2 Background on eigenvector centrality.

Rest of the Talk

■ Four questions:
1 How is it proved?
2 What is eigenvector centrality?
3 Why care about Lindahl outcomes?
4 Why is the connection useful?

- Rest of talk:

2 Background on eigenvector centrality.
1 Proof of main result.

Rest of the Talk

■ Four questions:
1 How is it proved?
2 What is eigenvector centrality?
3 Why care about Lindahl outcomes?
4 Why is the connection useful?

- Rest of talk:

2 Background on eigenvector centrality.
1 Proof of main result.
3 Strategic foundations for Lindahl outcomes (bargaining, implementation theory).

Rest of the Talk

■ Four questions:
1 How is it proved?
2 What is eigenvector centrality?
3 Why care about Lindahl outcomes?
4 Why is the connection useful?

- Rest of talk:

2 Background on eigenvector centrality.
1 Proof of main result.
3 Strategic foundations for Lindahl outcomes (bargaining, implementation theory).

4 Application: interpretation of Lindahl outcomes in terms of walks in a graph.

Outline

1 Setup
2 Efficiency
3 Lindahl Outcomes and Network Centrality

- Eigenvector Centrality
- Proof of Main Theorem
- Strategic Foundations for Lindahl

■ Walk Interpretation

4 Conclusions

Eigenvector Centrality

■ Eigenvector centrality: a particular imputation of "importance" to nodes in a network based on connections (introduced in the 1950s).

Eigenvector Centrality

■ Eigenvector centrality: a particular imputation of "importance" to nodes in a network based on connections (introduced in the 1950s).

- Heuristically motivated definition (cool kids are friends of other cool kids); widely used to rank (web pages, publications, researchers, firms)

Eigenvector Centrality

■ Eigenvector centrality: a particular imputation of "importance" to nodes in a network based on connections (introduced in the 1950s).

- Heuristically motivated definition (cool kids are friends of other cool kids); widely used to rank (web pages, publications, researchers, firms)

$$
c_{i} \propto \sum_{j \neq i} G_{i j} \cdot c_{j}
$$

Eigenvector Centrality

- Eigenvector centrality: a particular imputation of "importance" to nodes in a network based on connections (introduced in the 1950s).
- Heuristically motivated definition (cool kids are friends of other cool kids); widely used to rank (web pages, publications, researchers, firms)

$$
c_{i} \propto \sum_{j \neq i} G_{i j} \cdot c_{j}
$$

- Literature on foundations:

■ Mechanical (random surfer in PageRank).

Eigenvector Centrality

- Eigenvector centrality: a particular imputation of "importance" to nodes in a network based on connections (introduced in the 1950s).
- Heuristically motivated definition (cool kids are friends of other cool kids); widely used to rank (web pages, publications, researchers, firms)

$$
c_{i} \propto \sum_{j \neq i} G_{i j} \cdot c_{j}
$$

- Literature on foundations:
- Mechanical (random surfer in PageRank).
- Axiomatic (Palacios-Huerta and Volij Ema 2004; Altman and Tennenholtz EC 2005; Dequiedt and Zenou 2014).

Eigenvector Centrality

- Eigenvector centrality: a particular imputation of "importance" to nodes in a network based on connections (introduced in the 1950s).
- Heuristically motivated definition (cool kids are friends of other cool kids); widely used to rank (web pages, publications, researchers, firms)

$$
c_{i} \propto \sum_{j \neq i} G_{i j} \cdot c_{j}
$$

- Literature on foundations:
- Mechanical (random surfer in PageRank).
- Axiomatic (Palacios-Huerta and Volij Ema 2004; Altman and Tennenholtz EC 2005; Dequiedt and Zenou 2014).
■ Cobb-Douglas market models (Acemoglu et al. 2012; Du, Lehrer, and Pauzner 2012).

Outline

1 Setup
2 Efficiency
3 Lindahl Outcomes and Network Centrality

- Eigenvector Centrality
- Proof of Main Theorem
- Strategic Foundations for Lindahl

■ Walk Interpretation

4 Conclusions

Centrality Property \Leftrightarrow Lindahl Outcome

will show \Rightarrow. Take $\boldsymbol{a} \in \mathbb{R}_{+}^{n} \backslash\{\mathbf{0}\}$ s.t. $\boldsymbol{a}=\boldsymbol{B}(\boldsymbol{a}) \boldsymbol{a}$.

- WLOG, assume $\frac{\partial u_{i}}{\partial a_{i}}=-1$.

Centrality Property \Leftrightarrow Lindahl Outcome

will show \Rightarrow. Take $\boldsymbol{a} \in \mathbb{R}_{+}^{n} \backslash\{0\}$ s.t. $\boldsymbol{a}=\boldsymbol{B}(\boldsymbol{a}) \boldsymbol{a}$.

- WLOG, assume $\frac{\partial u_{i}}{\partial a_{i}}=-1$.
- By Perron-Frobenius Theorem, can find nonzero $\boldsymbol{\theta} \in \mathbb{R}_{+}^{n}$ such that $\boldsymbol{\theta}=\boldsymbol{\theta} \boldsymbol{B}(\boldsymbol{a})$.

Perron-Frobenius: an eigenvalue λ of \boldsymbol{B} has a nonnegative left (right) eigenvector if and only if $\lambda=r(\boldsymbol{B})$.

Centrality Property \Leftrightarrow Lindahl Outcome

will show \Rightarrow. Take $\boldsymbol{a} \in \mathbb{R}_{+}^{n} \backslash\{0\}$ s.t. $\boldsymbol{a}=\boldsymbol{B}(\boldsymbol{a}) \boldsymbol{a}$.

- WLOG, assume $\frac{\partial u_{i}}{\partial a_{i}}=-1$.
- By Perron-Frobenius Theorem, can find nonzero $\boldsymbol{\theta} \in \mathbb{R}_{+}^{n}$ such that $\boldsymbol{\theta}=\boldsymbol{\theta} \boldsymbol{B}(\boldsymbol{a})$.
■ Set $P_{i j}=\theta_{i} B_{i j}(\boldsymbol{a})$.

Centrality Property \Leftrightarrow Lindahl Outcome

will show \Rightarrow. Take $\boldsymbol{a} \in \mathbb{R}_{+}^{n} \backslash\{0\}$ s.t. $\boldsymbol{a}=\boldsymbol{B}(\boldsymbol{a}) \boldsymbol{a}$.

- WLOG, assume $\frac{\partial u_{i}}{\partial a_{i}}=-1$.
- By Perron-Frobenius Theorem, can find nonzero $\boldsymbol{\theta} \in \mathbb{R}_{+}^{n}$ such that $\boldsymbol{\theta}=\boldsymbol{\theta} \boldsymbol{B}(\boldsymbol{a})$.
- Set $P_{i j}=\theta_{i} B_{i j}(\boldsymbol{a})$. These prices work.

Centrality Property \Leftrightarrow Lindahl Outcome

will show \Rightarrow. Take $\boldsymbol{a} \in \mathbb{R}_{+}^{n} \backslash\{0\}$ s.t. $\boldsymbol{a}=\boldsymbol{B}(\boldsymbol{a}) \boldsymbol{a}$.

- WLOG, assume $\frac{\partial u_{i}}{\partial a_{i}}=-1$.
- By Perron-Frobenius Theorem, can find nonzero $\boldsymbol{\theta} \in \mathbb{R}_{+}^{n}$ such that $\boldsymbol{\theta}=\boldsymbol{\theta} \boldsymbol{B}(\boldsymbol{a})$.
■ Set $P_{i j}=\theta_{i} B_{i j}(\boldsymbol{a})$. These prices work. Budget balance:

$$
\sum_{j: j \neq i} P_{i j} a_{j} \leq a_{i} \sum_{j: j \neq i} P_{j i}
$$

Centrality Property \Leftrightarrow Lindahl Outcome

will show \Rightarrow. Take $\boldsymbol{a} \in \mathbb{R}_{+}^{n} \backslash\{\mathbf{0}\}$ s.t. $\boldsymbol{a}=\boldsymbol{B}(\boldsymbol{a}) \boldsymbol{a}$.

- WLOG, assume $\frac{\partial u_{i}}{\partial a_{i}}=-1$.
- By Perron-Frobenius Theorem, can find nonzero $\boldsymbol{\theta} \in \mathbb{R}_{+}^{n}$ such that $\boldsymbol{\theta}=\boldsymbol{\theta} \boldsymbol{B}(\boldsymbol{a})$.
■ Set $P_{i j}=\theta_{i} B_{i j}(\boldsymbol{a})$. These prices work. Budget balance:

$$
\begin{gathered}
\sum_{j: j \neq i} P_{i j} a_{j} \leq a_{i} \sum_{j: j \neq i} P_{j i} \\
\sum_{j: j \neq i} \theta_{i} B_{i j} a_{j} \leq a_{i} \underbrace{\sum_{j: j \neq i} \theta_{j} B_{j i}}
\end{gathered}
$$

Centrality Property \Leftrightarrow Lindahl Outcome

will show \Rightarrow. Take $\boldsymbol{a} \in \mathbb{R}_{+}^{n} \backslash\{\mathbf{0}\}$ s.t. $\boldsymbol{a}=\boldsymbol{B}(\boldsymbol{a}) \boldsymbol{a}$.

- WLOG, assume $\frac{\partial u_{i}}{\partial a_{i}}=-1$.
- By Perron-Frobenius Theorem, can find nonzero $\boldsymbol{\theta} \in \mathbb{R}_{+}^{n}$ such that $\boldsymbol{\theta}=\boldsymbol{\theta} \boldsymbol{B}(\boldsymbol{a})$.
■ Set $P_{i j}=\theta_{i} B_{i j}(\boldsymbol{a})$. These prices work. Budget balance:

$$
\begin{aligned}
\sum_{j: j \neq i} P_{i j} a_{j} & \leq a_{i} \sum_{j: j \neq i} P_{j i} \\
\sum_{j: j \neq i} \theta_{i} B_{i j} a_{j} & \leq a_{i} \underbrace{\sum_{j: j \neq i} \theta_{j} B_{j i}} \\
\sum_{j: j \neq i} \theta_{i} B_{i j} a_{j} & \leq a_{i} \theta_{i}
\end{aligned}
$$

Centrality Property \Leftrightarrow Lindahl Outcome

will show \Rightarrow. Take $\boldsymbol{a} \in \mathbb{R}_{+}^{n} \backslash\{\mathbf{0}\}$ s.t. $\boldsymbol{a}=\boldsymbol{B}(\boldsymbol{a}) \boldsymbol{a}$.

- WLOG, assume $\frac{\partial u_{i}}{\partial a_{i}}=-1$.
- By Perron-Frobenius Theorem, can find nonzero $\boldsymbol{\theta} \in \mathbb{R}_{+}^{n}$ such that $\boldsymbol{\theta}=\boldsymbol{\theta} \boldsymbol{B}(\boldsymbol{a})$.
■ Set $P_{i j}=\theta_{i} B_{i j}(\boldsymbol{a})$. These prices work. Budget balance:

$$
\begin{aligned}
\sum_{j: j \neq i} P_{i j} a_{j} & \leq a_{i} \sum_{j: j \neq i} P_{j i} \\
\sum_{j: j \neq i} \theta_{i} B_{i j} a_{j} & \leq a_{i} \underbrace{\sum_{j} B_{j i}}_{j: j \neq i} \\
\sum_{j: j \neq i} \theta_{i} B_{i j} a_{j} & \leq a_{i} \theta_{i}
\end{aligned}
$$

$$
\boldsymbol{B}(\boldsymbol{a}) \boldsymbol{a} \leq \boldsymbol{a}
$$

Centrality Property \Leftrightarrow Lindahl Outcome

will show \Rightarrow. Take $\boldsymbol{a} \in \mathbb{R}_{+}^{n} \backslash\{0\}$ s.t. $\boldsymbol{a}=\boldsymbol{B}(\boldsymbol{a}) \boldsymbol{a}$.

- WLOG, assume $\frac{\partial u_{i}}{\partial a_{i}}=-1$.
- By Perron-Frobenius Theorem, can find nonzero $\boldsymbol{\theta} \in \mathbb{R}_{+}^{n}$ such that $\boldsymbol{\theta}=\boldsymbol{\theta} \boldsymbol{B}(\boldsymbol{a})$.
- Set $P_{i j}=\theta_{i} B_{i j}(\boldsymbol{a})$. These prices work. Optimization:
- Take $j, k \neq i$. Then

$$
\frac{P_{i j}}{P_{i k}}=\quad \frac{\partial u_{i} / \partial a_{j}}{\partial u_{i} / \partial a_{k}} .
$$

Centrality Property \Leftrightarrow Lindahl Outcome

will show \Rightarrow. Take $\boldsymbol{a} \in \mathbb{R}_{+}^{n} \backslash\{\mathbf{0}\}$ s.t. $\boldsymbol{a}=\boldsymbol{B}(\boldsymbol{a}) \boldsymbol{a}$.

- WLOG, assume $\frac{\partial u_{i}}{\partial a_{i}}=-1$.
- By Perron-Frobenius Theorem, can find nonzero $\boldsymbol{\theta} \in \mathbb{R}_{+}^{n}$ such that $\boldsymbol{\theta}=\boldsymbol{\theta} \boldsymbol{B}(\boldsymbol{a})$.
■ Set $P_{i j}=\theta_{i} B_{i j}(\boldsymbol{a})$. These prices work. Optimization:
- Take $j, k \neq i$. Then

$$
\frac{P_{i j}}{P_{i k}}=\frac{\theta_{i} B_{i j}}{\theta_{i} B_{i k}}=\frac{\partial u_{i} / \partial a_{j}}{\partial u_{i} / \partial a_{k}} .
$$

Centrality Property \Leftrightarrow Lindahl Outcome

will show \Rightarrow. Take $\boldsymbol{a} \in \mathbb{R}_{+}^{n} \backslash\{0\}$ s.t. $\boldsymbol{a}=\boldsymbol{B}(\boldsymbol{a}) \boldsymbol{a}$.

- WLOG, assume $\frac{\partial u_{i}}{\partial a_{i}}=-1$.
- By Perron-Frobenius Theorem, can find nonzero $\boldsymbol{\theta} \in \mathbb{R}_{+}^{n}$ such that $\boldsymbol{\theta}=\boldsymbol{\theta} \boldsymbol{B}(\boldsymbol{a})$.
■ Set $P_{i j}=\theta_{i} B_{i j}(\boldsymbol{a})$. These prices work. Optimization:
- Take $j, k \neq i$. Then

$$
\frac{P_{i j}}{P_{i k}}=\frac{\theta_{i} B_{i j}}{\theta_{i} B_{i k}}=\frac{\partial u_{i} / \partial a_{j}}{\partial u_{i} / \partial a_{k}}
$$

$$
\frac{P_{i j}}{w_{i}}=\quad \frac{\partial u_{i} / \partial a_{j}}{-\partial u_{i} / \partial a_{i}}
$$

Centrality Property \Leftrightarrow Lindahl Outcome

will show \Rightarrow. Take $\boldsymbol{a} \in \mathbb{R}_{+}^{n} \backslash\{0\}$ s.t. $\boldsymbol{a}=\boldsymbol{B}(\boldsymbol{a}) \boldsymbol{a}$.

- WLOG, assume $\frac{\partial u_{i}}{\partial a_{i}}=-1$.
- By Perron-Frobenius Theorem, can find nonzero $\boldsymbol{\theta} \in \mathbb{R}_{+}^{n}$ such that $\boldsymbol{\theta}=\boldsymbol{\theta} \boldsymbol{B}(\boldsymbol{a})$.
■ Set $P_{i j}=\theta_{i} B_{i j}(\boldsymbol{a})$. These prices work. Optimization:
- Take $j, k \neq i$. Then

$$
\frac{P_{i j}}{P_{i k}}=\frac{\theta_{i} B_{i j}}{\theta_{i} B_{i k}}=\frac{\partial u_{i} / \partial a_{j}}{\partial u_{i} / \partial a_{k}} .
$$

- Note $w_{i}=\sum_{j: j \neq i} P_{j i}=\sum_{j} \theta_{j} B_{j i}=\theta_{i}$.

$$
\frac{P_{i j}}{w_{i}}=\quad \frac{\partial u_{i} / \partial a_{j}}{-\partial u_{i} / \partial a_{i}}
$$

Centrality Property \Leftrightarrow Lindahl Outcome

will show \Rightarrow. Take $\boldsymbol{a} \in \mathbb{R}_{+}^{n} \backslash\{0\}$ s.t. $\boldsymbol{a}=\boldsymbol{B}(\boldsymbol{a}) \boldsymbol{a}$.

- WLOG, assume $\frac{\partial u_{i}}{\partial a_{i}}=-1$.
- By Perron-Frobenius Theorem, can find nonzero $\boldsymbol{\theta} \in \mathbb{R}_{+}^{n}$ such that $\boldsymbol{\theta}=\boldsymbol{\theta} \boldsymbol{B}(\boldsymbol{a})$.
■ Set $P_{i j}=\theta_{i} B_{i j}(\boldsymbol{a})$. These prices work. Optimization:
- Take $j, k \neq i$. Then

$$
\frac{P_{i j}}{P_{i k}}=\frac{\theta_{i} B_{i j}}{\theta_{i} B_{i k}}=\frac{\partial u_{i} / \partial a_{j}}{\partial u_{i} / \partial a_{k}} .
$$

- Note $w_{i}=\sum_{j: j \neq i} P_{j i}=\sum_{j} \theta_{j} B_{j i}=\theta_{i}$.

$$
\frac{P_{i j}}{w_{i}}=\frac{\theta_{i} B_{i j}}{\theta_{i}}=\frac{\partial u_{i} / \partial a_{j}}{-\partial u_{i} / \partial a_{i}} .
$$

Centrality Property \Leftrightarrow Lindahl Outcome

will show \Rightarrow. Take $\boldsymbol{a} \in \mathbb{R}_{+}^{n} \backslash\{0\}$ s.t. $\boldsymbol{a}=\boldsymbol{B}(\boldsymbol{a}) \boldsymbol{a}$.

- WLOG, assume $\frac{\partial u_{i}}{\partial a_{i}}=-1$.
- By Perron-Frobenius Theorem, can find nonzero $\boldsymbol{\theta} \in \mathbb{R}_{+}^{n}$ such that $\boldsymbol{\theta}=\boldsymbol{\theta} \boldsymbol{B}(\boldsymbol{a})$.
■ Set $P_{i j}=\theta_{i} B_{i j}(\boldsymbol{a})$. These prices work. Optimization:
- Take $j, k \neq i$. Then

$$
\frac{P_{i j}}{P_{i k}}=\frac{\theta_{i} B_{i j}}{\theta_{i} B_{i k}}=\frac{\partial u_{i} / \partial a_{j}}{\partial u_{i} / \partial a_{k}} .
$$

- Note $w_{i}=\sum_{j: j \neq i} P_{j i}=\sum_{j} \theta_{j} B_{j i}=\theta_{i}$.

$$
\frac{P_{i j}}{w_{i}}=\frac{\theta_{i} B_{i j}}{\theta_{i}}=\frac{\partial u_{i} / \partial a_{j}}{-\partial u_{i} / \partial a_{i}} .
$$

Outline

1 Setup

2 Efficiency

3 Lindahl Outcomes and Network Centrality

- Eigenvector Centrality - Proof of Main Theorem
- Strategic Foundations for Lindahl
- Walk Interpretation

4 Conclusions

Selecting an Outcome: A Bargaining Game

Dávila, Eeckhout, and Martinelli (JPET 09), Penta (JME 11); see also Yildiz (Games 03).

■ Negotiators around a table; discrete time; discount rates δ_{i}.

Selecting an Outcome: A Bargaining Game

Dávila, Eeckhout, and Martinelli (JPET 09), Penta (JME 11); see also Yildiz (Games 03).

■ Negotiators around a table; discrete time; discount rates δ_{i}.

- The one talking (i) proposes exchange rate - a ray \boldsymbol{r} and a maximum quantity q_{i}.

Selecting an Outcome: A Bargaining Game

Dávila, Eeckhout, and Martinelli (JPET 09), Penta (JME 11); see also Yildiz (Games 03).

- Negotiators around a table; discrete time; discount rates δ_{i}.
- The one talking (i) proposes exchange rate - a ray \boldsymbol{r} and a maximum quantity q_{i}.
- Vote on this ray sequentially: can either say "no" (then next player proposes) or name a quantity $q_{i}>0$.

Selecting an Outcome: A Bargaining Game

Dávila, Eeckhout, and Martinelli (JPET 09), Penta (JME 11); see also Yildiz (Games 03).

- Negotiators around a table; discrete time; discount rates δ_{i}.
- The one talking (i) proposes exchange rate - a ray r and a maximum quantity q_{i}.

■ Vote on this ray sequentially: can either say "no" (then next player proposes) or name a quantity $q_{i}>0$.

■ If everyone agrees, implement $\boldsymbol{a}=q_{\text {min }} \boldsymbol{r}$.

Selecting an Outcome: A Bargaining Game

Dávila, Eeckhout, and Martinelli (JPET 09), Penta (JME 11); see also Yildiz (Games 03).

- Negotiators around a table; discrete time; discount rates δ_{i}.
- The one talking (i) proposes exchange rate - a ray r and a maximum quantity q_{i}.
- Vote on this ray sequentially: can either say "no" (then next player proposes) or name a quantity $q_{i}>0$.
- If everyone agrees, implement $\boldsymbol{a}=q_{\text {min }} \boldsymbol{r}$.

Theorem

If $\mathbf{0}$ is inefficient and utilities are strictly concave, then: in any efficient perfect equilibrium, a Lindahl outcome is played.

Implementation Theory Rationale

Hurwicz selection of Lindahl outcome.
■ Consider all mechanisms for negotiating an outcome (with binding power to implement agreed outcome).

Implementation Theory Rationale

Hurwicz selection of Lindahl outcome.
■ Consider all mechanisms for negotiating an outcome (with binding power to implement agreed outcome).

- Ask that mechanism behave well across all types and equilibria:

Implementation Theory Rationale

Hurwicz selection of Lindahl outcome.
■ Consider all mechanisms for negotiating an outcome (with binding power to implement agreed outcome).

- Ask that mechanism behave well across all types and equilibria:
- types: concave u_{i} with assumed signs of derivatives;

Implementation Theory Rationale

Hurwicz selection of Lindahl outcome.
■ Consider all mechanisms for negotiating an outcome (with binding power to implement agreed outcome).

- Ask that mechanism behave well across all types and equilibria:
- types: concave u_{i} with assumed signs of derivatives;

■ behave well: efficient, individually rational, continuous.

Implementation Theory Rationale

Hurwicz selection of Lindahl outcome.
■ Consider all mechanisms for negotiating an outcome (with binding power to implement agreed outcome).

- Ask that mechanism behave well across all types and equilibria:
- types: concave u_{i} with assumed signs of derivatives;
- behave well: efficient, individually rational, continuous.
- Then Lindahl outcomes are always equilibrium outcomes.

Implementation Theory Rationale

Hurwicz selection of Lindahl outcome.
■ Consider all mechanisms for negotiating an outcome (with binding power to implement agreed outcome).

- Ask that mechanism behave well across all types and equilibria:
- types: concave u_{i} with assumed signs of derivatives;
- behave well: efficient, individually rational, continuous.
- Then Lindahl outcomes are always equilibrium outcomes.

To avoid equilibrium selection fight, Lindahl mechanism is the best bet.

Outline

1 Setup

2 Efficiency

3 Lindahl Outcomes and Network Centrality

- Eigenvector Centrality
- Proof of Main Theorem
- Strategic Foundations for Lindahl
- Walk Interpretation

4 Conclusions

Walk Interpretation of Eigenvector Centrality

Vague Statement

A node's centrality measures the number/intensity of walks in the benefits matrix that end at that node.

Walks and their Values

$$
\boldsymbol{B}(\mathbf{0})=\left[\begin{array}{cccc}
0 & 0 & 7 & 0.5 \\
5 & 0 & 6 & 0.5 \\
0 & 0 & 0 & 0.5 \\
0.5 & 0.5 & 0.5 & 0
\end{array}\right]
$$

Value of walk $w=(3,1,2)$:

$$
\begin{aligned}
v(w ; \boldsymbol{B}) & =B_{13} B_{21} \\
& =7 \cdot 5
\end{aligned}
$$

Walks and their Values

$$
\boldsymbol{B}(\mathbf{0})=\left[\begin{array}{cccc}
0 & 0 & 7 & 0.5 \\
5 & 0 & 6 & 0.5 \\
0 & 0 & 0 & 0.5 \\
0.5 & 0.5 & 0.5 & 0
\end{array}\right]
$$

Value of walk $w=(3,1,2)$:

$$
\begin{aligned}
v(w ; \boldsymbol{B}) & =B_{13} B_{21} \\
& =7 \cdot 5
\end{aligned}
$$

Walks can repeat nodes: e.g., $(3,1,2,4,3,2)$.

Centrality in Terms of Walks

Define

$$
V_{i}^{\downarrow}(\ell ; \boldsymbol{B})=\quad \sum \quad v(w ; \boldsymbol{B}) .
$$

w a walk ending at i
of length ℓ

Centrality in Terms of Walks

Define

$$
V_{i}^{\downarrow}(\ell ; \boldsymbol{B})=\sum_{\substack{w \text { a walk ending at } i \\ \text { of length } \ell}} v(w ; \boldsymbol{B}) .
$$

Fact

Assume $\boldsymbol{B}(\boldsymbol{a})$ is aperiodic. \boldsymbol{a} has the centrality property if and only if

$$
\frac{a_{i}}{a_{j}}=\lim _{\ell \rightarrow \infty} \frac{V_{i}^{\downarrow}(\ell ; \boldsymbol{B})}{V_{j}^{\downarrow}(\ell ; \boldsymbol{B})}
$$

Each agent's effort proportional to the total value of long walks he terminates ("total incoming benefits").

Contributions

$\mathbf{P E} \Leftrightarrow \boldsymbol{\theta}=\boldsymbol{\theta} \boldsymbol{B}(\boldsymbol{a}) \Leftrightarrow r(\boldsymbol{B}(\boldsymbol{a}))=1$

Contributions

$$
\begin{gathered}
\text { PE } \Leftrightarrow \boldsymbol{\theta}=\boldsymbol{\theta} \boldsymbol{B}(\boldsymbol{a}) \Leftrightarrow r(\boldsymbol{B}(\boldsymbol{a}))=1 \\
\text { Lindahl } \Leftrightarrow P_{i j}=\theta_{i} B_{i j} \Leftrightarrow \boldsymbol{a}=\boldsymbol{B}(\boldsymbol{a}) \boldsymbol{a}
\end{gathered}
$$

Summary

■ Looking at the benefits network sheds light on public goods problem.

Summary

- Looking at the benefits network sheds light on public goods problem.

■ Efficiency issues:

- $r(\boldsymbol{B}(\boldsymbol{a}))$ measures amplification of favor-giving.

Summary

■ Looking at the benefits network sheds light on public goods problem.

■ Efficiency issues:

- $r(\boldsymbol{B}(\boldsymbol{a}))$ measures amplification of favor-giving.
- Who is essential to achieving any Pareto improvement? (Cycle-makers.)

Summary

■ Looking at the benefits network sheds light on public goods problem.

■ Efficiency issues:

- $r(\boldsymbol{B}(\boldsymbol{a}))$ measures amplification of favor-giving.
- Who is essential to achieving any Pareto improvement? (Cycle-makers.)

■ Characterization of market outcome in terms of centrality:

- Price equilibrium \Leftrightarrow more central agents (ones at ends of high-value walks) contribute more.

Summary

■ Looking at the benefits network sheds light on public goods problem.

- Efficiency issues:
- $r(\boldsymbol{B}(\boldsymbol{a}))$ measures amplification of favor-giving.
- Who is essential to achieving any Pareto improvement? (Cycle-makers.)

■ Characterization of market outcome in terms of centrality:

- Price equilibrium \Leftrightarrow more central agents (ones at ends of high-value walks) contribute more.
- Conceptual punchline: can think of market outcomes using network centrality!

Summary

■ Looking at the benefits network sheds light on public goods problem.

■ Efficiency issues:

- $r(\boldsymbol{B}(\boldsymbol{a}))$ measures amplification of favor-giving.
- Who is essential to achieving any Pareto improvement? (Cycle-makers.)

■ Characterization of market outcome in terms of centrality:

- Price equilibrium \Leftrightarrow more central agents (ones at ends of high-value walks) contribute more.
- Conceptual punchline: can think of market outcomes using network centrality!
- Encouraging metaphor, but need to address "markets you can take literally".

Outline

1 Setup

2 Efficiency

3 Lindahl Outcomes and Network Centrality

4 Conclusions

Further Results

- Analogous characterization with transferable numeraire.

```
- Details
```

- Explicit formulas for centrality action profiles in parameterized economies. (New microfoundations for network centrality measures).

```
Details
```

■ Next step: analogous exercise for Walrasian outcomes in other settings to examine key nodes, robustness of market to removing nodes, etc.

Foundations for Lindahl: The Design Problem

We imagine the designer of a mechanism.

- Knows only that preference profile \boldsymbol{u} will lie in the domain \mathcal{U} of all profiles satisfying our maintained assumptions.

Foundations for Lindahl: The Design Problem

We imagine the designer of a mechanism.

- Knows only that preference profile \boldsymbol{u} will lie in the domain \mathcal{U} of all profiles satisfying our maintained assumptions.
- Selects a mechanism:

Foundations for Lindahl: The Design Problem

We imagine the designer of a mechanism.

- Knows only that preference profile \boldsymbol{u} will lie in the domain \mathcal{U} of all profiles satisfying our maintained assumptions.
- Selects a mechanism:
- a strategy set Σ_{i} for each agent (let $\Sigma=\prod_{i} \Sigma_{i}$);

Foundations for Lindahl: The Design Problem

We imagine the designer of a mechanism.

- Knows only that preference profile \boldsymbol{u} will lie in the domain \mathcal{U} of all profiles satisfying our maintained assumptions.
- Selects a mechanism:
- a strategy set Σ_{i} for each agent (let $\Sigma=\prod_{i} \Sigma_{i}$);
- and an outcome function $g: \Sigma \rightarrow \mathbb{R}_{+}^{n}$ to prescribe actions.

Foundations for Lindahl: The Design Problem

We imagine the designer of a mechanism.

- Knows only that preference profile \boldsymbol{u} will lie in the domain \mathcal{U} of all profiles satisfying our maintained assumptions.
- Selects a mechanism:
- a strategy set Σ_{i} for each agent (let $\Sigma=\prod_{i} \Sigma_{i}$);
- and an outcome function $g: \Sigma \rightarrow \mathbb{R}_{+}^{n}$ to prescribe actions.

■ Given a mechanism $H=(\Sigma, g)$, let $\Sigma_{H}^{*}: \mathcal{U} \rightrightarrows \mathbb{R}_{+}^{n}$ be the equilibrium correspondence.

Foundations for Lindahl: The Design Problem

We imagine the designer of a mechanism.

- Knows only that preference profile \boldsymbol{u} will lie in the domain \mathcal{U} of all profiles satisfying our maintained assumptions.
- Selects a mechanism:
- a strategy set Σ_{i} for each agent (let $\Sigma=\prod_{i} \Sigma_{i}$);
- and an outcome function $g: \Sigma \rightarrow \mathbb{R}_{+}^{n}$ to prescribe actions.

■ Given a mechanism $H=(\Sigma, g)$, let $\Sigma_{H}^{*}: \mathcal{U} \rightrightarrows \mathbb{R}_{+}^{n}$ be the equilibrium correspondence.

- Designer wants
- PE: all equilibria to be Pareto efficient;

Foundations for Lindahl: The Design Problem

We imagine the designer of a mechanism.

- Knows only that preference profile \boldsymbol{u} will lie in the domain \mathcal{U} of all profiles satisfying our maintained assumptions.
- Selects a mechanism:
- a strategy set Σ_{i} for each agent (let $\Sigma=\prod_{i} \Sigma_{i}$);
- and an outcome function $g: \Sigma \rightarrow \mathbb{R}_{+}^{n}$ to prescribe actions.

■ Given a mechanism $H=(\Sigma, g)$, let $\Sigma_{H}^{*}: \mathcal{U} \rightrightarrows \mathbb{R}_{+}^{n}$ be the equilibrium correspondence.

- Designer wants
- PE: all equilibria to be Pareto efficient;

■ IR: all equilibria to Pareto dominate $\mathbf{0}$ (IR);

Foundations for Lindahl: The Design Problem

We imagine the designer of a mechanism.

- Knows only that preference profile \boldsymbol{u} will lie in the domain \mathcal{U} of all profiles satisfying our maintained assumptions.
- Selects a mechanism:
- a strategy set Σ_{i} for each agent (let $\Sigma=\prod_{i} \Sigma_{i}$);
- and an outcome function $g: \Sigma \rightarrow \mathbb{R}_{+}^{n}$ to prescribe actions.

■ Given a mechanism $H=(\Sigma, g)$, let $\Sigma_{H}^{*}: \mathcal{U} \rightrightarrows \mathbb{R}_{+}^{n}$ be the equilibrium correspondence.

- Designer wants
- PE: all equilibria to be Pareto efficient;
- IR: all equilibria to Pareto dominate $\mathbf{0}$ (IR);
- continuity: small changes in preferences not to cause large changes in equilibrium actions (Σ_{H}^{*} is uhc).

Foundations for Lindahl: The Design Problem

We imagine the designer of a mechanism.

- Knows only that preference profile \boldsymbol{u} will lie in the domain \mathcal{U} of all profiles satisfying our maintained assumptions.
- Selects a mechanism:
- a strategy set Σ_{i} for each agent (let $\Sigma=\prod_{i} \Sigma_{i}$);
- and an outcome function $g: \Sigma \rightarrow \mathbb{R}_{+}^{n}$ to prescribe actions.

■ Given a mechanism $H=(\Sigma, g)$, let $\Sigma_{H}^{*}: \mathcal{U} \rightrightarrows \mathbb{R}_{+}^{n}$ be the equilibrium correspondence.

- Designer wants the mechanism to be reliable:
- PE: all equilibria to be Pareto efficient;
- IR: all equilibria to Pareto dominate $\mathbf{0}$ (IR);
- continuity: small changes in preferences not to cause large changes in equilibrium actions (Σ_{H}^{*} is uhc).

An Example of a Mechanism

- Mechanism definition:
- strategy set Σ_{i} for each agent (let $\Sigma=\prod_{i} \Sigma_{i}$);
- an outcome function $g: \Sigma \rightarrow \mathbb{R}_{+}^{n}$ to prescribe actions.
- Example:

An Example of a Mechanism

- Mechanism definition:
- strategy set Σ_{i} for each agent (let $\Sigma=\prod_{i} \Sigma_{i}$);
■ an outcome function $g: \Sigma \rightarrow \mathbb{R}_{+}^{n}$ to prescribe actions.
- Example:
- $\Sigma_{1}=\Sigma_{2}=\mathbb{R}_{+}^{2} ;$

An Example of a Mechanism

- Mechanism definition:
- strategy set Σ_{i} for each agent (let $\Sigma=\prod_{i} \Sigma_{i}$);
- an outcome function $g: \Sigma \rightarrow \mathbb{R}_{+}^{n}$ to prescribe actions.
- Example:
- $\Sigma_{1}=\Sigma_{2}=\mathbb{R}_{+}^{2}$;
- $g\left(\boldsymbol{a}^{(1)}, \boldsymbol{a}^{(2)}\right)=\min \left\{\boldsymbol{a}^{(1)}, \boldsymbol{a}^{(2)}\right\}$.

An Example of a Mechanism

- Mechanism definition:
- strategy set Σ_{i} for each agent (let $\Sigma=\prod_{i} \Sigma_{i}$);
- an outcome function $g: \Sigma \rightarrow \mathbb{R}_{+}^{n}$ to prescribe actions.
- Example:
- $\Sigma_{1}=\Sigma_{2}=\mathbb{R}_{+}^{2}$;
- $g\left(\boldsymbol{a}^{(1)}, \boldsymbol{a}^{(2)}\right)=\min \left\{\boldsymbol{a}^{(1)}, \boldsymbol{a}^{(2)}\right\}$.

■ Satisfies desiderata?

An Example of a Mechanism

- Mechanism definition:
- strategy set Σ_{i} for each agent (let $\Sigma=\prod_{i} \Sigma_{i}$);
- an outcome function $g: \Sigma \rightarrow \mathbb{R}_{+}^{n}$ to prescribe actions.
- Example:
- $\Sigma_{1}=\Sigma_{2}=\mathbb{R}_{+}^{2}$;
- $g\left(\boldsymbol{a}^{(1)}, \boldsymbol{a}^{(2)}\right)=\min \left\{\boldsymbol{a}^{(1)}, \boldsymbol{a}^{(2)}\right\}$.

■ Satisfies desiderata?
No. Has many inefficient equilibria.

Hurwicz Foundations for Lindahl

Theorem (Hurwicz 1979, Hurwicz-Maskin-Postlewaite 1994)
Recall reliable $=\mathrm{PE}+\mathrm{IR}+$ uhc. Assume $n \geq 3$.

Hurwicz Foundations for Lindahl

Theorem (Hurwicz 1979, Hurwicz-Maskin-Postlewaite 1994)
Recall reliable $=\mathrm{PE}+\mathrm{IR}+$ uhc. Assume $n \geq 3$.
1 If H is reliable, then L is a sub-correspondence of Σ_{H}^{*}. That is, every Lindahl outcome is an equilibrium outcome of H.

Hurwicz Foundations for Lindahl

Theorem (Hurwicz 1979, Hurwicz-Maskin-Postlewaite 1994)
Recall reliable $=\mathrm{PE}+\mathrm{IR}+$ uhc. Assume $n \geq 3$.
1 If H is reliable, then L is a sub-correspondence of Σ_{H}^{*}. That is, every Lindahl outcome is an equilibrium outcome of H.

2 There is a reliable mechanism H such that $\Sigma_{H}^{*}=L$.

Hurwicz Foundations for Lindahl

Theorem (Hurwicz 1979, Hurwicz-Maskin-Postlewaite 1994)
Recall reliable $=\mathrm{PE}+\mathrm{IR}+$ uhc. Assume $n \geq 3$.
1 If H is reliable, then L is a sub-correspondence of Σ_{H}^{*}. That is, every Lindahl outcome is an equilibrium outcome of H.

2 There is a reliable mechanism H such that $\Sigma_{H}^{*}=L$.

Mechanism H satisfies payoff-uniqueness under \boldsymbol{u} if all elements of $\Sigma_{H}^{*}(\boldsymbol{u})$ are payoff-equivalent (no selection conflict).

Hurwicz Foundations for Lindahl

Theorem (Hurwicz 1979, Hurwicz-Maskin-Postlewaite 1994)

Recall reliable $=\mathrm{PE}+\mathrm{IR}+$ uhc. Assume $n \geq 3$.
1 If H is reliable, then L is a sub-correspondence of Σ_{H}^{*}. That is, every Lindahl outcome is an equilibrium outcome of H.

2 There is a reliable mechanism H such that $\Sigma_{H}^{*}=L$.

Mechanism H satisfies payoff-uniqueness under \boldsymbol{u} if all elements of $\Sigma_{H}^{*}(\boldsymbol{u})$ are payoff-equivalent (no selection conflict).

Payoff-uniqueness is achievable exactly for those \boldsymbol{u} such that all Lindahl outcomes under \boldsymbol{u} are payoff-equivalent. Proof of theorem

Literature

- Public goods.
- Classical theory: Wicksell (1896); Lindahl (1919); Samuelson (1954); Coase (1960); Foley (1970); Roberts (1973, 1974).

Literature

- Public goods.
- Classical theory: Wicksell (1896); Lindahl (1919); Samuelson (1954); Coase (1960); Foley (1970); Roberts (1973, 1974).
- Foundations based on mechanisms (implementation theory): Groves-Ledyard (1977); Hurwicz (1979a,b); Hurwicz, Maskin, Postlewaite (1994); Maskin (1999).

Literature

- Public goods.

■ Classical theory: Wicksell (1896); Lindahl (1919); Samuelson (1954); Coase (1960); Foley (1970); Roberts (1973, 1974).

- Foundations based on mechanisms (implementation theory): Groves-Ledyard (1977); Hurwicz (1979a,b); Hurwicz, Maskin, Postlewaite (1994); Maskin (1999).
- Bargaining theory: Yildiz (2003), Dávila, Eeckhout, and Martinelli (2009), Penta (2011).

Literature

- Public goods.

■ Classical theory: Wicksell (1896); Lindahl (1919); Samuelson (1954); Coase (1960); Foley (1970); Roberts (1973, 1974).

- Foundations based on mechanisms (implementation theory): Groves-Ledyard (1977); Hurwicz (1979a,b); Hurwicz, Maskin, Postlewaite (1994); Maskin (1999).
- Bargaining theory: Yildiz (2003), Dávila, Eeckhout, and Martinelli (2009), Penta (2011).

■ Technical: network (eigenvector) centrality.

- Concepts: Markov (1906); Leontief (1928); Katz (1953); Bonacich (1987).

Literature

- Public goods.

■ Classical theory: Wicksell (1896); Lindahl (1919); Samuelson (1954); Coase (1960); Foley (1970); Roberts (1973, 1974).

- Foundations based on mechanisms (implementation theory): Groves-Ledyard (1977); Hurwicz (1979a,b); Hurwicz, Maskin, Postlewaite (1994); Maskin (1999).
- Bargaining theory: Yildiz (2003), Dávila, Eeckhout, and Martinelli (2009), Penta (2011).

■ Technical: network (eigenvector) centrality.

- Concepts: Markov (1906); Leontief (1928); Katz (1953); Bonacich (1987).
- Recent applications: Brin and Page (1998); Ballester, Calvó-Armengol, and Zenou (2006); Acemoglu et al. (2012).

Intuition for Choice of Prices

$$
P_{i j}=\theta_{i} B_{i j}(\boldsymbol{a})
$$

Intuition for Choice of Prices

$$
P_{i j}=\theta_{i} B_{i j}(\boldsymbol{a})
$$

■ Suppose agent is maximizing $u_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ subject to $\sum_{j} p_{j} x_{j} \leq m$.

Intuition for Choice of Prices

$$
P_{i j}=\theta_{i} B_{i j}(\boldsymbol{a})
$$

■ Suppose agent is maximizing $u_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ subject to $\sum_{j} p_{j} x_{j} \leq m$.
■ Lagrangian:

$$
\mathcal{L}=u_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)-\mu_{i}\left(\sum_{j} p_{j} x_{j}-m\right)
$$

Intuition for Choice of Prices

$$
P_{i j}=\theta_{i} B_{i j}(\boldsymbol{a})
$$

■ Suppose agent is maximizing $u_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ subject to $\sum_{j} p_{j} x_{j} \leq m$.
■ Lagrangian:

$$
\mathcal{L}=u_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)-\mu_{i}\left(\sum_{j} p_{j} x_{j}-m\right)
$$

- $\mu_{i} \cdot p_{j}=\frac{\partial u_{i}}{\partial a_{j}}$.

Intuition for Choice of Prices

$$
P_{i j}=\theta_{i} B_{i j}(\boldsymbol{a})
$$

■ Suppose agent is maximizing $u_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ subject to $\sum_{j} p_{j} x_{j} \leq m$.

- Lagrangian:

$$
\mathcal{L}=u_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)-\mu_{i}\left(\sum_{j} p_{j} x_{j}-m\right)
$$

- $\mu_{i} \cdot p_{j}=\frac{\partial u_{i}}{\partial a_{j}}$.
- $p_{j}=\theta_{i} \cdot \frac{\partial u_{i}}{\partial x_{j}}$ where $\theta_{i}=\mu_{i}^{-1}$.

Proof of Cycles Formula for Spectral Radius

Proposition

$$
r(\boldsymbol{B})=\lim _{\ell \rightarrow \infty}\left[\sum_{\substack{c \text { a cycle } \\ \text { of length } \leq \ell}} v(c ; \boldsymbol{B})\right]^{1 / \ell}
$$

Proof of Cycles Formula for Spectral Radius

Proposition

$$
r(\boldsymbol{B})=\lim _{\ell \rightarrow \infty}\left[\sum_{\substack{c \text { a cycle } \\ \text { of length } \leq \ell}} v(c ; \boldsymbol{B})\right]^{1 / \ell}
$$

- Note

$$
\operatorname{trace}\left(\boldsymbol{B}^{\ell}\right)=\sum_{i}\left(\boldsymbol{B}^{\ell}\right)_{i i}=\sum_{\substack{c \\ \text { of cycle } \\ \text { of lenth } \ell}} v(c ; \boldsymbol{B}) .
$$

Proof of Cycles Formula for Spectral Radius

Proposition

$$
r(\boldsymbol{B})=\lim _{\ell \rightarrow \infty}\left[\sum_{\substack{c \text { a cycle } \\ \text { of length } \leq \ell}} v(c ; \boldsymbol{B})\right]^{1 / \ell}
$$

- Note

$$
\operatorname{trace}\left(\boldsymbol{B}^{\ell}\right)=\sum_{i}\left(\boldsymbol{B}^{\ell}\right)_{i i}=\sum_{\substack{c \\ \text { of cycle } \\ \text { of lenth } \ell}} v(c ; \boldsymbol{B}) .
$$

- Let d be such that $\lambda^{d} \in \mathbb{R}_{+}^{n}$ for every eigenvalue λ of \mathbf{B} with $|\lambda|=r(\boldsymbol{B})$. (Exists by Wielandt, 1950.)

Proof of Cycles Formula for Spectral Radius

Proposition

$$
r(\boldsymbol{B})=\lim _{\ell \rightarrow \infty}\left[\sum_{\substack{c \text { a cycle } \\ \text { of length } \leq \ell}} v(c ; \boldsymbol{B})\right]^{1 / \ell}
$$

- Note

$$
\operatorname{trace}\left(\boldsymbol{B}^{\ell}\right)=\sum_{i}\left(\boldsymbol{B}^{\ell}\right)_{i i}=\sum_{\substack{c \\ \text { of cycle } \\ \text { of lenth } \ell}} v(c ; \boldsymbol{B}) .
$$

- Let d be such that $\lambda^{d} \in \mathbb{R}_{+}^{n}$ for every eigenvalue λ of \mathbf{B} with $|\lambda|=r(\boldsymbol{B})$. (Exists by Wielandt, 1950.)
- Write $\rho=r(\boldsymbol{B})$. We have trace $\left(\boldsymbol{B}^{\ell}\right) \leq n \rho^{\ell}$ always.

Proof of Cycles Formula for Spectral Radius

Proposition

$$
r(\boldsymbol{B})=\lim _{\ell \rightarrow \infty}\left[\sum_{\substack{c \text { a cycle } \\ \text { of length } \leq \ell}} v(c ; \boldsymbol{B})\right]^{1 / \ell}
$$

- Note

$$
\operatorname{trace}\left(\boldsymbol{B}^{\ell}\right)=\sum_{i}\left(\boldsymbol{B}^{\ell}\right)_{i i}=\sum_{\substack{c \\ \text { of cycle } \\ \text { of lenth } \ell}} v(c ; \boldsymbol{B}) .
$$

- Let d be such that $\lambda^{d} \in \mathbb{R}_{+}^{n}$ for every eigenvalue λ of \mathbf{B} with $|\lambda|=r(\boldsymbol{B})$. (Exists by Wielandt, 1950.)
- Write $\rho=r(\boldsymbol{B})$. We have trace $\left(\boldsymbol{B}^{\ell}\right) \leq n \rho^{\ell}$ always. For ℓ divisible by d, we also have $\rho^{\ell}+O\left(s^{\ell}\right) \leq \operatorname{trace}\left(\boldsymbol{B}^{\ell}\right)$ with $s<\rho$.

The Spectral Radius as a Measure of Inefficiency: Frictions

- Original economy (separable case):

$$
u_{i}(\boldsymbol{a})=b_{i}\left(\boldsymbol{a}_{-i}\right)-c_{i}\left(a_{i}\right)
$$

The Spectral Radius as a Measure of Inefficiency: Frictions

- Original economy (separable case):

$$
u_{i}(\boldsymbol{a})=b_{i}\left(\boldsymbol{a}_{-i}\right)-c_{i}\left(a_{i}\right)
$$

- Modified economy:

$$
u_{i}^{(\tau)}(\boldsymbol{a})=b_{i}\left(\boldsymbol{a}_{-i}\right)-\tau c_{i}\left(a_{i}\right)
$$

The Spectral Radius as a Measure of Inefficiency: Frictions

■ Original economy (separable case):

$$
u_{i}(\boldsymbol{a})=b_{i}\left(\boldsymbol{a}_{-i}\right)-c_{i}\left(a_{i}\right)
$$

- Modified economy:

$$
u_{i}^{(\tau)}(\boldsymbol{a})=b_{i}\left(\boldsymbol{a}_{-i}\right)-\tau c_{i}\left(a_{i}\right)
$$

Proposition

The interior action profile \boldsymbol{a} is a Pareto efficient outcome under $\boldsymbol{u}^{(\tau)}$ if and only if $\tau=r(\boldsymbol{B}(\boldsymbol{a}))$.

The Spectral Radius as a Measure of Inefficiency: Frictions

■ Original economy (separable case):

$$
u_{i}(\boldsymbol{a})=b_{i}\left(\boldsymbol{a}_{-i}\right)-c_{i}\left(a_{i}\right)
$$

■ Modified economy:

$$
u_{i}^{(\tau)}(\boldsymbol{a})=b_{i}\left(\boldsymbol{a}_{-i}\right)-\tau c_{i}\left(a_{i}\right)
$$

Proposition

The interior action profile \boldsymbol{a} is a Pareto efficient outcome under $\boldsymbol{u}^{(\tau)}$ if and only if $\tau=r(\boldsymbol{B}(\boldsymbol{a}))$.

Write $\tau=1+t$ (where t is a tax). A tax of $t=r(\boldsymbol{B}(\boldsymbol{a}))-1$ on contributions would be necessary to dissuade a social planner from increasing contributions.

The Spectral Radius as a Measure of Inefficiency

Definition

The bang for the buck vector $\boldsymbol{b}(\boldsymbol{a}, \boldsymbol{d})$ at an action profile \boldsymbol{a} from moving in a direction $d \in \Delta$ is defined by

The Spectral Radius as a Measure of Inefficiency

Definition

The bang for the buck vector $\boldsymbol{b}(\boldsymbol{a}, \boldsymbol{d})$ at an action profile \boldsymbol{a} from moving in a direction $d \in \Delta$ is defined by

$$
b_{i}(\boldsymbol{a}, \boldsymbol{d})=\frac{i \text { 's marginal benefit }}{i \text { 's marginal cost }}
$$

The Spectral Radius as a Measure of Inefficiency

Definition

The bang for the buck vector $\boldsymbol{b}(\boldsymbol{a}, \boldsymbol{d})$ at an action profile \boldsymbol{a} from moving in a direction $d \in \Delta$ is defined by

$$
b_{i}(\boldsymbol{a}, \boldsymbol{d})=\frac{i \text { 's marginal benefit }}{i \text { 's marginal cost }}=\frac{\sum_{j} \frac{\partial u_{i}}{\partial a_{j}} d_{j}}{-\frac{\partial u_{i}}{\partial a_{i}} d_{i}}
$$

The Spectral Radius as a Measure of Inefficiency

Definition

The bang for the buck vector $\boldsymbol{b}(\boldsymbol{a}, \boldsymbol{d})$ at an action profile \boldsymbol{a} from moving in a direction $d \in \Delta$ is defined by

$$
b_{i}(\boldsymbol{a}, \boldsymbol{d})=\frac{i \text { 's marginal benefit }}{i \text { 's marginal cost }}=\frac{\sum_{j} \frac{\partial u_{i}}{\partial a_{j}} d_{j}}{-\frac{\partial u_{i}}{\partial a_{i}} d_{i}}
$$

A direction $\boldsymbol{d} \in \Delta$ is egalitarian at \boldsymbol{a} if every entry of $\boldsymbol{b}(\boldsymbol{a}, \boldsymbol{d})$ is the same.

The Spectral Radius as a Measure of Inefficiency

Definition

The bang for the buck vector $\boldsymbol{b}(\boldsymbol{a}, \boldsymbol{d})$ at an action profile \boldsymbol{a} from moving in a direction $d \in \Delta$ is defined by

$$
b_{i}(\boldsymbol{a}, \boldsymbol{d})=\frac{i \text { 's marginal benefit }}{i \text { 's marginal cost }}=\frac{\sum_{j} \frac{\partial u_{i}}{\partial a_{j}} d_{j}}{-\frac{\partial u_{i}}{\partial a_{i}} d_{i}}
$$

A direction $\boldsymbol{d} \in \Delta$ is egalitarian at \boldsymbol{a} if every entry of $\boldsymbol{b}(\boldsymbol{a}, \boldsymbol{d})$ is the same.

Proposition

At any \boldsymbol{a}, there is a unique egalitarian direction $\boldsymbol{d}^{\mathrm{eg}}(\boldsymbol{a})$. Every entry of $\boldsymbol{b}\left(\boldsymbol{a}, \boldsymbol{d}^{\mathrm{eg}}(\boldsymbol{a})\right)$ is equal to the spectral radius of $\boldsymbol{B}(\boldsymbol{a})$.

Proof Outline

- At any \boldsymbol{a}, the matrix $\boldsymbol{B}(\boldsymbol{a})$ is nonnegative and irreducible.

Proof Outline

- At any \boldsymbol{a}, the matrix $\boldsymbol{B}(\boldsymbol{a})$ is nonnegative and irreducible.
- There is a real largest eigenvalue ρ and a Perron vector $\boldsymbol{d} \in \Delta$ s.t.

$$
\boldsymbol{B}(\boldsymbol{a}) \boldsymbol{d}=\rho \cdot \boldsymbol{d}
$$

Proof Outline

- At any \boldsymbol{a}, the matrix $\boldsymbol{B}(\boldsymbol{a})$ is nonnegative and irreducible.
- There is a real largest eigenvalue ρ and a Perron vector $\boldsymbol{d} \in \Delta$ s.t.

$$
\boldsymbol{B}(\boldsymbol{a}) \boldsymbol{d}=\rho \cdot \boldsymbol{d}
$$

- In other words, for each i,

$$
\rho=\frac{\sum_{i} B_{i j} d_{j}}{d_{i}}=\frac{\sum_{j} \frac{\partial u_{i}}{\partial a_{j}} d_{j}}{-\frac{\partial u_{i}}{\partial a_{i}} d_{i}}
$$

Proof Outline

- At any \boldsymbol{a}, the matrix $\boldsymbol{B}(\boldsymbol{a})$ is nonnegative and irreducible.
- There is a real largest eigenvalue ρ and a Perron vector $\boldsymbol{d} \in \Delta$ s.t.

$$
\boldsymbol{B}(\boldsymbol{a}) \boldsymbol{d}=\rho \cdot \boldsymbol{d}
$$

■ In other words, for each i,

$$
\rho=\frac{\sum_{i} B_{i j} d_{j}}{d_{i}}=\frac{\sum_{j} \frac{\partial u_{i}}{\partial a_{j}} d_{j}}{-\frac{\partial u_{i}}{\partial a_{i}} d_{i}}
$$

■ By uniqueness of the Perron vector, there is no other egalitarian direction.

Cycles Interpretation

$$
\boldsymbol{B}(\mathbf{0})=\left[\begin{array}{lll}
0 & 0 & 7 \\
5 & 0 & 0 \\
0 & 6 & 0
\end{array}\right] .
$$

Cycles Interpretation

$$
\begin{gathered}
\boldsymbol{B}(\mathbf{0})=\left[\begin{array}{lll}
0 & 0 & 7 \\
5 & 0 & 0 \\
0 & 6 & 0
\end{array}\right] \\
r(\boldsymbol{B}(\mathbf{0}))=(5 \cdot 6 \cdot 7)^{1 / 3} \approx 5.94
\end{gathered}
$$

Cycles Interpretation

$$
\begin{gathered}
\boldsymbol{B}(\mathbf{0})=\left[\begin{array}{ccc}
0 & 0 & 7 \\
5 & 0 & 0 \\
0 & 6 & 0
\end{array}\right] \\
r(\boldsymbol{B}(\mathbf{0}))=(5 \cdot 6 \cdot 7)^{1 / 3} \approx 5.94
\end{gathered}
$$

- Geometric mean of weights along a cycle is always a lower bound on $r(\boldsymbol{B}(\mathbf{0}))$.

Cycles Interpretation

$$
\begin{gathered}
\boldsymbol{B}(\mathbf{0})=\left[\begin{array}{ccc}
0 & 0 & 7 \\
5 & 0 & 0 \\
0 & 6 & 0
\end{array}\right] \\
r(\boldsymbol{B}(\mathbf{0}))=(5 \cdot 6 \cdot 7)^{1 / 3} \approx 5.94
\end{gathered}
$$

- Geometric mean of weights along a cycle is always a lower bound on $r(\boldsymbol{B}(\mathbf{0}))$.
- Cycles also provide an upper bound. If no cycles, then $r(\boldsymbol{B}(\mathbf{0}))=0$.

Who is Essential?

Who is Essential?

$$
\boldsymbol{B}(\mathbf{0})=\left[\begin{array}{lll}
0 & 0 & 7 \\
5 & 0 & 6 \\
0 & 0 & 0
\end{array}\right]
$$

Who is Essential?

$$
\boldsymbol{B}(\mathbf{0})=\left[\begin{array}{lll}
0 & 0 & 7 \\
5 & 0 & 6 \\
0 & 0 & 0
\end{array}\right]
$$

$r(\boldsymbol{B}(\mathbf{0}))=0$
(no cycles)

Who is Essential?

$$
\boldsymbol{B}(\mathbf{0})=\left[\begin{array}{cccc}
0 & 0 & 7 & 0.5 \\
5 & 0 & 6 & 0.5 \\
0 & 0 & 0 & 0.5 \\
0.5 & 0.5 & 0.5 & 0
\end{array}\right]
$$

Who is Essential?

$\boldsymbol{B}(\mathbf{0})=\left[\begin{array}{cccc}0 & 0 & 7 & 0.5 \\ 5 & 0 & 6 & 0.5 \\ 0 & 0 & 0 & 0.5 \\ 0.5 & 0.5 & 0.5 & 0\end{array}\right]$
$r(\boldsymbol{B}(\mathbf{0}))>1$
(lots of cycles)

Who is Essential?

$$
\boldsymbol{B}(\mathbf{0})=\left[\begin{array}{cccc}
0 & 0 & 7 & 0.5 \\
5 & 0 & 6 & 0.5 \\
0 & 0 & 0 & 0.5 \\
0.5 & 0.5 & 0.5 & 0
\end{array}\right]
$$

Who is Essential?

$$
\begin{aligned}
& \boldsymbol{B}(\mathbf{0})=\left[\begin{array}{cccc}
0 & 0 & 7 & 0.5 \\
5 & 0 & 6 & 0.5 \\
0 & 0 & 0 & 0.5 \\
0.5 & 0.5 & 0.5 & 0
\end{array}\right] \\
& r(\boldsymbol{B}(\mathbf{0})) \geq\left(5 \cdot \frac{1}{2} \cdot \frac{1}{2}\right)^{1 / 3}>1
\end{aligned}
$$

Gross Substitutes

Assumption (Gross Substitutes)

Let $p_{j}>0$ be the price of j 's effort and 1 be i 's wage. Let

$$
\boldsymbol{a}^{*}(\boldsymbol{p})=\underset{\boldsymbol{a}}{\operatorname{argmax}} u_{i}(\boldsymbol{a}) \text { subject to } \sum_{j \neq i} p_{j} a_{j} \leq a_{i}
$$

Gross Substitutes

Assumption (Gross Substitutes)

Let $p_{j}>0$ be the price of j 's effort and 1 be i 's wage. Let

$$
\boldsymbol{a}^{*}(\boldsymbol{p})=\underset{\boldsymbol{a}}{\operatorname{argmax}} u_{i}(\boldsymbol{a}) \text { subject to } \sum_{j \neq i} p_{j} a_{j} \leq a_{i} .
$$

If only p_{j} increases, then for $k \neq i, j$, the demand a_{k}^{*} does not strictly decrease (in the strong set order); a_{i}^{*} does not strictly increase.

The Proof that $L \subseteq \Sigma_{H}^{*}$ (Hurwicz, Maskin, Postlewaite)

Consider a
Lindahl outcome \boldsymbol{a} under preferences \boldsymbol{u}.

The Proof that $L \subseteq \Sigma_{H}^{*}$ (Hurwicz, Maskin, Postlewaite)

Consider a
Lindahl outcome \boldsymbol{a} under preferences \boldsymbol{u}.

The Proof that $L \subseteq \Sigma_{H}^{*}$ (Hurwicz, Maskin, Postlewaite)

Consider a
Lindahl outcome \boldsymbol{a} under preferences \boldsymbol{u}.

The Proof that $L \subseteq \Sigma_{H}^{*}$ (Hurwicz, Maskin, Postlewaite)

Consider a
Lindahl outcome \boldsymbol{a} under preferences \boldsymbol{u}.

The Proof that $L \subseteq \Sigma_{H}^{*}$ (Hurwicz, Maskin, Postlewaite)

Consider preferences $\widehat{\boldsymbol{u}}$, defined as the linearization of \boldsymbol{u} at \boldsymbol{a}.

The Proof that $L \subseteq \Sigma_{H}^{*}$ (Hurwicz, Maskin, Postlewaite)

Consider preferences $\widehat{\boldsymbol{u}}$, defined as the linearization of \boldsymbol{u} at \boldsymbol{a}.

The Proof that $L \subseteq \Sigma_{H}^{*}$ (Hurwicz, Maskin, Postlewaite)

Note that each agent's
"better-than-a" set is strictly larger under $\widehat{\boldsymbol{u}}$ than under u.

By Maskin's theorem, whatever Σ_{H}^{*} implements under $\widehat{\boldsymbol{u}}$ must also be implemented under \boldsymbol{u}.

The Proof that $L \subseteq \Sigma_{H}^{*}$ (Hurwicz, Maskin, Postlewaite)

Construct preferences increasingly "near" $\widehat{\boldsymbol{u}}$ so that IR and PE alone force outcome of Σ_{H}^{*} to be near \boldsymbol{a}.

By continuity, a must be one of the outcomes
implemented under $\widehat{\boldsymbol{u}}$.

Transferable Numeraire

- Suppose now preferences of the form $u_{i}\left(\boldsymbol{a}, m_{i}\right)$, where m is the net transfer of "money" i receives.

Transferable Numeraire

- Suppose now preferences of the form $u_{i}\left(\boldsymbol{a}, m_{i}\right)$, where m is the net transfer of "money" i receives.
- Assume for this slide that $\frac{\partial u_{i}}{\partial a_{i}}=-1$.

Transferable Numeraire

- Suppose now preferences of the form $u_{i}\left(\boldsymbol{a}, m_{i}\right)$, where m is the net transfer of "money" i receives.
- Assume for this slide that $\frac{\partial u_{i}}{\partial a_{i}}=-1$.
- Define $\theta_{i}(\boldsymbol{a}, \boldsymbol{m})=\left[\frac{\partial u_{i}}{\partial m_{i}}(\boldsymbol{a}, \boldsymbol{m})\right]^{-1}$: inverse marginal utility of income.

Transferable Numeraire

- Suppose now preferences of the form $u_{i}\left(\boldsymbol{a}, m_{i}\right)$, where m is the net transfer of "money" i receives.
- Assume for this slide that $\frac{\partial u_{i}}{\partial a_{i}}=-1$.
- Define $\theta_{i}(\boldsymbol{a}, \boldsymbol{m})=\left[\frac{\partial u_{i}}{\partial m_{i}}(\boldsymbol{a}, \boldsymbol{m})\right]^{-1}$: inverse marginal utility of income.

Proposition

The action profile \boldsymbol{a} is a Lindahl outcome if and only if $\boldsymbol{\theta}=\boldsymbol{\theta} \boldsymbol{B}$ where $m_{i}=\theta_{i}\left(-a_{i}+\sum_{j} B_{i j} a_{j}\right)$.

Explicit Formulas: Microfoundations for Bonacich Centrality

$$
u_{i}(\boldsymbol{a})=-a_{i}+\sum_{j \neq i}\left[G_{i j} a_{j}+H_{i j} \log a_{j}\right]
$$

Explicit Formulas: Microfoundations for Bonacich Centrality

$$
u_{i}(\boldsymbol{a})=-a_{i}+\sum_{j \neq i}\left[G_{i j} a_{j}+H_{i j} \log a_{j}\right]
$$

Let $h_{i}=\sum_{j} H_{i j}$ and assume $r(\boldsymbol{G})<1$.

Explicit Formulas: Microfoundations for Bonacich Centrality

$$
u_{i}(\boldsymbol{a})=-a_{i}+\sum_{j \neq i}\left[G_{i j} a_{j}+H_{i j} \log a_{j}\right]
$$

Let $h_{i}=\sum_{j} H_{i j}$ and assume $r(\boldsymbol{G})<1$.

Fact

\boldsymbol{a} has the centrality property if and only if $\boldsymbol{a}=(\boldsymbol{I}-\boldsymbol{G})^{-1} \boldsymbol{h}$.

Explicit Formulas: Microfoundations for Bonacich Centrality

$$
u_{i}(\boldsymbol{a})=-a_{i}+\sum_{j \neq i}\left[G_{i j} a_{j}+H_{i j} \log a_{j}\right]
$$

Let $h_{i}=\sum_{j} H_{i j}$ and assume $r(\boldsymbol{G})<1$.

Fact

\boldsymbol{a} has the centrality property if and only if $\boldsymbol{a}=(\boldsymbol{I}-\boldsymbol{G})^{-1} \boldsymbol{h}$.

$$
\boldsymbol{a}=(\boldsymbol{I}-\boldsymbol{G})^{-1} \boldsymbol{h}=\sum_{\ell=0}^{\infty} \boldsymbol{G}^{\ell} \boldsymbol{h}
$$

Explicit Formulas: Microfoundations for Bonacich Centrality

$$
u_{i}(\boldsymbol{a})=-a_{i}+\sum_{j \neq i}\left[G_{i j} a_{j}+H_{i j} \log a_{j}\right]
$$

Let $h_{i}=\sum_{j} H_{i j}$ and assume $r(\boldsymbol{G})<1$.

Fact

\boldsymbol{a} has the centrality property if and only if $\boldsymbol{a}=(\boldsymbol{I}-\boldsymbol{G})^{-1} \boldsymbol{h}$.

$$
\boldsymbol{a}=(\boldsymbol{I}-\boldsymbol{G})^{-1} \boldsymbol{h}=\sum_{\ell=0}^{\infty} \boldsymbol{G}^{\ell} \boldsymbol{h}
$$

Say $\boldsymbol{h}=\mathbf{1}$. Then $a_{i}=\binom{$ total value of walks }{ in G ending at $i}$

Bargaining Foundations

- Discrete-time sequential offers bargaining:

Bargaining Foundations

- Discrete-time sequential offers bargaining:
- The current active player proposes a direction $\boldsymbol{d} \in \Delta$ and an upper bound s_{i}.

Bargaining Foundations

- Discrete-time sequential offers bargaining:
- The current active player proposes a direction $\boldsymbol{d} \in \Delta$ and an upper bound s_{i}.
- Each other player j sequentially announces s_{j} or "no".

Bargaining Foundations

- Discrete-time sequential offers bargaining:
- The current active player proposes a direction $\boldsymbol{d} \in \Delta$ and an upper bound s_{i}.
- Each other player j sequentially announces s_{j} or "no".
- If anyone says "no", then the next proposer is active. Otherwise, play $\boldsymbol{a}=\boldsymbol{d}\left(\min _{j} s_{j}\right)$

Bargaining Foundations

- Discrete-time sequential offers bargaining:
- The current active player proposes a direction $\boldsymbol{d} \in \Delta$ and an upper bound s_{i}.
- Each other player j sequentially announces s_{j} or "no".
- If anyone says "no", then the next proposer is active. Otherwise, play $\boldsymbol{a}=\boldsymbol{d}\left(\min _{j} s_{j}\right)$
■ Result: as $\min _{i} \delta_{i} \rightarrow 1$, the MPE payoffs converge to Lindahl payoffs.

Bargaining Foundations

- Discrete-time sequential offers bargaining:
- The current active player proposes a direction $\boldsymbol{d} \in \Delta$ and an upper bound s_{i}.
- Each other player j sequentially announces s_{j} or "no".
- If anyone says "no", then the next proposer is active. Otherwise, play $\boldsymbol{a}=\boldsymbol{d}\left(\min _{j} s_{j}\right)$
■ Result: as $\min _{i} \delta_{i} \rightarrow 1$, the MPE payoffs converge to Lindahl payoffs.
- Does not depend on ratios $\left(1-\delta_{i}\right) /\left(1-\delta_{j}\right)$.

Bargaining Foundations

- Discrete-time sequential offers bargaining:
- The current active player proposes a direction $\boldsymbol{d} \in \Delta$ and an upper bound s_{i}.
- Each other player j sequentially announces s_{j} or "no".
- If anyone says "no", then the next proposer is active. Otherwise, play $\boldsymbol{a}=\boldsymbol{d}\left(\min _{j} s_{j}\right)$
■ Result: as $\min _{i} \delta_{i} \rightarrow 1$, the MPE payoffs converge to Lindahl payoffs.
- Does not depend on ratios $\left(1-\delta_{i}\right) /\left(1-\delta_{j}\right)$.
- Citations:
- Yildiz (Games '03), Dávila and Eeckhout (JET '08), Dávila, Eeckhout, and Martinelli (J Pub Econ Th '09), Penta (J Math Econ '11).

