A Network Approach to Public Goods

Matthew Elliott Cambridge Benjamin Golub Harvard

March 28, 2016

A public goods economy: each agent can exert costly effort to provide different, non-rival benefits to some of the others.

- A public goods economy: each agent can exert costly effort to provide different, non-rival benefits to some of the others.
 - E.g.: countries' effort toward abating water pollution.

- A public goods economy: each agent can exert costly effort to provide different, non-rival benefits to some of the others.
 - E.g.: countries' effort toward abating water pollution.
- Literature on one-shot Nash provision and relationship to network position.

Bergstrom, Blume, and Varian (JPubE 86); Ballester,

Calvó-Armengol, and Zenou (Ema 06); Galeotti and Goyal (AER 11)

- A public goods economy: each agent can exert costly effort to provide different, non-rival benefits to some of the others.
 - E.g.: countries' effort toward abating water pollution.
- Literature on one-shot Nash provision and relationship to network position.

Bergstrom, Blume, and Varian (JPubE 86); Ballester,

Calvó-Armengol, and Zenou (Ema 06); Galeotti and Goyal (AER 11)

How about efficient provision through negotiated favor-trading?

How does that depend on network structure?

- A public goods economy: each agent can exert costly effort to provide different, non-rival benefits to some of the others.
 - E.g.: countries' effort toward abating water pollution.
- Literature on one-shot Nash provision and relationship to network position.

Bergstrom, Blume, and Varian (JPubE 86); Ballester,

Calvó-Armengol, and Zenou (Ema 06); Galeotti and Goyal (AER 11)

How about efficient provision through negotiated favor-trading?

How does that depend on network structure?

 Characterize efficient frontier as well as Lindahl outcomes (with strategic foundations)

- A public goods economy: each agent can exert costly effort to provide different, non-rival benefits to some of the others.
 - E.g.: countries' effort toward abating water pollution.
- Literature on one-shot Nash provision and relationship to network position.

Bergstrom, Blume, and Varian (JPubE 86); Ballester,

Calvó-Armengol, and Zenou (Ema 06); Galeotti and Goyal (AER 11)

How about efficient provision through negotiated favor-trading?

How does that depend on network structure?

- Characterize efficient frontier as well as Lindahl outcomes (with strategic foundations)
 - in terms of eigenvalues and eigenvectors of a matrix of marginal payoff relationships.

- A public goods economy: each agent can exert costly effort to provide different, non-rival benefits to some of the others.
 - E.g.: countries' effort toward abating water pollution.
- Literature on one-shot Nash provision and relationship to network position.

Bergstrom, Blume, and Varian (JPubE 86); Ballester,

Calvó-Armengol, and Zenou (Ema 06); Galeotti and Goyal (AER 11)

How about efficient provision through negotiated favor-trading?

How does that depend on network structure?

- Characterize efficient frontier as well as Lindahl outcomes (with strategic foundations)
 - in terms of eigenvalues and eigenvectors of a matrix of marginal payoff relationships.
 - Conceptually: market outcomes ↔ network centrality measures.

Outline

2 Efficiency

3 Lindahl Outcomes and Network Centrality

4 Conclusions

Players:
$$N = \{1, 2, ..., n\};$$

- Players: $N = \{1, 2, ..., n\};$
- Player *i*'s effort level: $a_i \ge 0$;

- Players: $N = \{1, 2, ..., n\};$
- Player *i*'s effort level: $a_i \ge 0$;
- $u_i : \mathbb{R}^n_+ \to \mathbb{R}$, continuously differentiable, concave;

- Players: $N = \{1, 2, ..., n\};$
- Player *i*'s effort level: $a_i \ge 0$;
- $u_i : \mathbb{R}^n_+ \to \mathbb{R}$, continuously differentiable, concave; Think of **0** as status quo outcome.

- Players: $N = \{1, 2, ..., n\};$
- Player *i*'s effort level: $a_i \ge 0$;
- $u_i : \mathbb{R}^n_+ \to \mathbb{R}$, continuously differentiable, concave; Think of **0** as status quo outcome.
- costly actions: $\frac{\partial u_i}{\partial a_i} < 0$;

- Players: $N = \{1, 2, ..., n\};$
- Player *i*'s effort level: $a_i \ge 0$;
- $u_i : \mathbb{R}^n_+ \to \mathbb{R}$, continuously differentiable, concave; Think of **0** as status quo outcome.
- costly actions: $\frac{\partial u_i}{\partial a_i} < 0$;

• positive externalities:
$$\frac{\partial u_i}{\partial a_j} \ge 0$$
 if $i \neq j$.

The Environment: An Example

Definition

$$B_{ij} = \begin{cases} \frac{\partial u_i / \partial a_j}{-\partial u_i / \partial a_i} & \text{if } i \neq j \\ 0 & \text{otherwise} \end{cases}$$

Definition

How much i values j's help, measured in units of own effort.

Definition

$$B_{ij}(\boldsymbol{a}) = \begin{cases} \begin{bmatrix} \frac{\partial u_i / \partial a_j}{-\partial u_i / \partial a_i} \end{bmatrix} (\boldsymbol{a}) & \text{if } i \neq j \\ 0 & \text{otherwise} \end{cases}$$

How much i values j's help, measured in units of own effort.

Definition

$$B_{ij}(\boldsymbol{a}) = \begin{cases} \begin{bmatrix} \frac{\partial u_i / \partial a_j}{-\partial u_i / \partial a_i} \end{bmatrix} (\boldsymbol{a}) & \text{if } i \neq j \\ 0 & \text{otherwise} \end{cases}$$

How much i values j's help, measured in units of own effort. We assume B(a) is irreducible for all a.

Outline

2 Efficiency

3 Lindahl Outcomes and Network Centrality

4 Conclusions

$$\boldsymbol{B}(\boldsymbol{0}) = \left[\begin{array}{cc} 0 & 8\\ 0.2 & 0 \end{array} \right]$$

$$\boldsymbol{B}(\boldsymbol{0}) = \left[\begin{array}{cc} 0 & 8 \\ 0.2 & 0 \end{array} \right]$$

$$\boldsymbol{B}(\boldsymbol{0}) = \left[\begin{array}{cc} 0 & 8\\ 0.2 & 0 \end{array}\right]$$

$$\boldsymbol{B}(\boldsymbol{0}) = \left[\begin{array}{cc} 0 & 8 \\ 0.2 & 0 \end{array} \right]$$

$$\boldsymbol{B}(\boldsymbol{0}) = \left[\begin{array}{cc} 0 & 8\\ 0.2 & 0 \end{array} \right]$$

$$\boldsymbol{B}(\boldsymbol{0}) = \left[\begin{array}{cc} 0 & 8\\ 0.2 & 0 \end{array} \right]$$

$$oldsymbol{B}(oldsymbol{0}) = \left[egin{array}{cc} 0 & B_{12} \ B_{21} & 0 \end{array}
ight]$$

Result

A Pareto improvement on the status quo a = 0exists if and only if $B_{12} \cdot B_{21} > 1$.

A More Complicated Example

Definition

The spectral radius $r(\boldsymbol{M})$ is the maximum magnitude of any eigenvalue of $\boldsymbol{M}.$

Definition

The spectral radius $r(\boldsymbol{M})$ is the maximum magnitude of any eigenvalue of $\boldsymbol{M}.$

Proposition

A Pareto improvement on the status quo ${m a}={m 0}$ exists if and only if $r({m B}({m 0}))>1.$

Definition

The spectral radius $r(\boldsymbol{M})$ is the maximum magnitude of any eigenvalue of $\boldsymbol{M}.$

Proposition

A Pareto improvement on the status quo a = 0 exists if and only if r(B(0)) > 1.

Proposition

An interior action profile ${\pmb a}$ is Pareto efficient if and only if $r({\pmb B}({\pmb a}))=1.$

Proof Sketch: a^* Pareto-efficient $\Rightarrow r(B(a^*)) = 1$

Take PE a^* , assume $\frac{\partial u_i}{\partial a_i}(a^*) = -1$.

Proof Sketch: a^* Pareto-efficient $\Rightarrow r(B(a^*)) = 1$

Take PE a^* , assume $\frac{\partial u_i}{\partial a_i}(a^*) = -1$. a^* solves Pareto problem: max. $\sum_i \theta_i u_i(a)$.

Proof Sketch: a^* Pareto-efficient $\Rightarrow r(B(a^*)) = 1$

Take PE a^* , assume $\frac{\partial u_i}{\partial a_i}(a^*) = -1$. a^* solves Pareto problem: max. $\sum_i \theta_i u_i(a)$.

FOC:
$$\forall j$$
 $\sum_{i \neq j} \theta_i \frac{\partial u_i}{\partial a_j} - \theta_j = 0$
 $\boldsymbol{\theta} \boldsymbol{B}(\boldsymbol{a}^*) = \boldsymbol{\theta}$

Proof Sketch: a^* Pareto-efficient $\Rightarrow r(B(a^*)) = 1$

Take PE a^* , assume $\frac{\partial u_i}{\partial a_i}(a^*) = -1$. a^* solves Pareto problem: max. $\sum_i \theta_i u_i(a)$.

FOC:
$$\forall j$$
 $\sum_{i \neq j} \theta_i \frac{\partial u_i}{\partial a_j} - \theta_j = 0$
 $\boldsymbol{\theta} \boldsymbol{B}(\boldsymbol{a}^*) = \boldsymbol{\theta}$

- B(a*) is non-negative, irreducible and square.
- θ is non-negative.

Proof Sketch: a^* Pareto-efficient $\Rightarrow r(B(a^*)) = 1$

Take PE a^* , assume $\frac{\partial u_i}{\partial a_i}(a^*) = -1$. a^* solves Pareto problem: max. $\sum_i \theta_i u_i(a)$.

FOC:
$$\forall j$$
 $\sum_{i \neq j} \theta_i \frac{\partial u_i}{\partial a_j} - \theta_j = 0$
 $\boldsymbol{\theta} \boldsymbol{B}(\boldsymbol{a}^*) = \boldsymbol{\theta}$

- B(a*) is non-negative, irreducible and square.
- θ is non-negative.

Perron-Frobenius: an eigenvalue λ of \boldsymbol{B} has a nonnegative left (right) eigenvector if and only if $\lambda = r(\boldsymbol{B})$.

Proof Sketch: a^* Pareto-efficient $\Rightarrow r(B(a^*)) = 1$

Take PE a^* , assume $\frac{\partial u_i}{\partial a_i}(a^*) = -1$. a^* solves Pareto problem: max. $\sum_i \theta_i u_i(a)$.

FOC:
$$\forall j$$
 $\sum_{i \neq j} \theta_i \frac{\partial u_i}{\partial a_j} - \theta_j = 0$
 $\boldsymbol{\theta} \boldsymbol{B}(\boldsymbol{a}^*) = \boldsymbol{\theta}$

• θ is non-negative.

Perron-Frobenius: an eigenvalue λ of \boldsymbol{B} has a nonnegative left (right) eigenvector if and only if $\lambda = r(\boldsymbol{B})$. Moreover, \boldsymbol{B} has an eigenvalue $\lambda \in \mathbb{R}$ equal to $r(\boldsymbol{B})$.

Interpretation of Spectral Radius

Vague Statement

The spectral radius measures the number/intensity of **cycles** in the benefits matrix.

$$\boldsymbol{B}(\mathbf{0}) = \begin{bmatrix} 0 & 0 & 7 & 0.5 \\ 5 & 0 & 6 & 0.5 \\ 0 & 0 & 0 & 0.5 \\ 0.5 & 0.5 & 0.5 & 0 \end{bmatrix}$$

$$\boldsymbol{B}(\mathbf{0}) = \begin{bmatrix} 0 & 0 & 7 & 0.5 \\ 5 & 0 & 6 & 0.5 \\ 0 & 0 & 0 & 0.5 \\ 0.5 & 0.5 & 0.5 & 0 \end{bmatrix}$$

Value of cycle
$$c = (1, 2, 4)$$
:
 $v(c; \mathbf{B}) = B_{21}B_{42}B_{14}$
 $= 5 \cdot \frac{1}{2} \cdot \frac{1}{2}$

$$\boldsymbol{B}(\mathbf{0}) = \begin{bmatrix} 0 & 0 & 7 & 0.5 \\ 5 & 0 & 6 & 0.5 \\ 0 & 0 & 0 & 0.5 \\ 0.5 & 0.5 & 0.5 & 0 \end{bmatrix}$$

Value of cycle
$$c = (1, 2, 4)$$
:
 $v(c; \mathbf{B}) = B_{21}B_{42}B_{14}$
 $= 5 \cdot \frac{1}{2} \cdot \frac{1}{2}$

$$\begin{array}{c} 1 \\ 0.5 \\ 7 \\ 0.5$$

$$r(\boldsymbol{B}) > 1 \qquad \Longleftrightarrow \qquad \lim_{\ell \to \infty} \sum_{\substack{c \text{ a cycle} \\ \text{ of length } \leq \ell}} v(c; \boldsymbol{B}) > 1$$

$$\boldsymbol{B}(\mathbf{0}) = \begin{bmatrix} 0 & 0 & 7 & 0.5 \\ 5 & 0 & 6 & 0.5 \\ 0 & 0 & 0 & 0.5 \\ 0.5 & 0.5 & 0.5 & 0 \end{bmatrix}$$

Value of cycle
$$c = (1, 2, 4)$$
:
 $v(c; \mathbf{B}) = B_{21}B_{42}B_{14}$
 $= 5 \cdot \frac{1}{2} \cdot \frac{1}{2}$

$$r(\boldsymbol{B}) > 1 \qquad \Longleftrightarrow \qquad \lim_{\ell \to \infty} \sum_{\substack{c \text{ a cycle} \\ \text{ of length } \leq \ell}} v(c; \boldsymbol{B}) > 1$$

Player 4 is essential.

If large multilateral negotiation is costly, when can most of the benefits be achieved in smaller groups?

- If large multilateral negotiation is costly, when can most of the benefits be achieved in smaller groups?
- Formalization: a
 - Arbitrary "target" Pareto-efficient a^* ; two groups, M, M^c .

- If large multilateral negotiation is costly, when can most of the benefits be achieved in smaller groups?
- Formalization: a
 - Arbitrary "target" Pareto-efficient a^* ; two groups, M, M^c .
 - Each group can contemplate deviations from a* that are Pareto-improving *for that group*.

- If large multilateral negotiation is costly, when can most of the benefits be achieved in smaller groups?
- Formalization: a
 - Arbitrary "target" Pareto-efficient *a*^{*}; two groups, *M*, *M*^c.
 - Each group can contemplate deviations from a* that are Pareto-improving for that group.
 - Planner can offer subsidies:

$$\widetilde{u}_i(\boldsymbol{a}) = u_i(\boldsymbol{a}) + m_i(\boldsymbol{a}), \qquad m_i(\cdot) \ge 0$$

- If large multilateral negotiation is costly, when can most of the benefits be achieved in smaller groups?
- Formalization: a
 - Arbitrary "target" Pareto-efficient *a*^{*}; two groups, *M*, *M*^c.
 - Each group can contemplate deviations from a* that are Pareto-improving *for that group*.
 - Planner can offer subsidies:

$$\widetilde{u}_i(\boldsymbol{a}) = u_i(\boldsymbol{a}) + m_i(\boldsymbol{a}), \qquad m_i(\cdot) \ge 0$$

 (m_i)_{i∈N} deters deviations from a^{*} if the restriction of a^{*} to M is Pareto efficient given new payoffs (resp. M^c).

- If large multilateral negotiation is costly, when can most of the benefits be achieved in smaller groups?
- Formalization: a
 - Arbitrary "target" Pareto-efficient *a*^{*}; two groups, *M*, *M*^c.
 - Each group can contemplate deviations from a* that are Pareto-improving for that group.
 - Planner can offer subsidies:

$$\widetilde{u}_i(\boldsymbol{a}) = u_i(\boldsymbol{a}) + m_i(\boldsymbol{a}), \qquad m_i(\cdot) \ge 0$$

(m_i)_{i∈N} deters deviations from a* if the restriction of a* to M is Pareto efficient given new payoffs (resp. M^c).
 cost of separation c_M(a*) defined as the infimum of ∑_{i∈N} m_i(a*), taken over deviation-deterring transfers.

Proposition

$$c_M(\mathbf{a}^*) \le \sum \frac{\theta_i}{\theta_j} B_{ij}(\mathbf{a}^*) a_j^*,$$

where the summation is taken over all ordered pairs (i, j)such that one element is in Mand the other is in M^c .

Proposition

$$c_M(\mathbf{a}^*) \le \sum \frac{\theta_i}{\theta_j} B_{ij}(\mathbf{a}^*) a_j^*,$$

where the summation is taken over all ordered pairs (i, j) such that one element is in M and the other is in M^c .

A minimum cut in a graph with suitable weights \mathbf{W} .

Proposition

$$c_M(\mathbf{a}^*) \le \sum \frac{\theta_i}{\theta_j} B_{ij}(\mathbf{a}^*) a_j^*,$$

where the summation is taken over all ordered pairs (i, j)such that one element is in Mand the other is in M^c .

A minimum cut in a graph with suitable weights \mathbf{W} .

 RHS can be small even when groups provide large benefits to each other.

Proposition

$$c_M(\mathbf{a}^*) \le \sum \frac{\theta_i}{\theta_j} B_{ij}(\mathbf{a}^*) a_j^*,$$

where the summation is taken over all ordered pairs (i, j)such that one element is in Mand the other is in M^c .

A minimum cut in a graph with suitable weights **W**.

- RHS can be small even when groups provide large benefits to each other.
- Small when spectral gap of W is small.

- At 0: is it greater than 1?
- Interior: is it different from 1?

- At 0: is it greater than 1?
- Interior: is it different from 1?

• Spectral radius quantifies the strength of all cycles.

- At 0: is it greater than 1?
- Interior: is it different from 1?

• Spectral radius quantifies the strength of all cycles.

■ A player is essential to achieving any Pareto improvement on 0 iff his removal changes r(B(0)) from > 1 to < 1.

Intuition: removal disrupts key cycles. Details

- At 0: is it greater than 1?
- Interior: is it different from 1?

• Spectral radius quantifies the strength of all cycles.

■ A player is essential to achieving any Pareto improvement on 0 iff his removal changes r(B(0)) from > 1 to < 1.</p>

Intuition: removal disrupts key cycles. Details

Additional results: spectral radius as a measure of inefficiency.

■ r(B(a)) - 1 is the rate at which effort would have to be taxed to make the outcome a Pareto efficient. ▶ Details

- At 0: is it greater than 1?
- Interior: is it different from 1?

• Spectral radius quantifies the strength of all cycles.

■ A player is essential to achieving any Pareto improvement on 0 iff his removal changes r(B(0)) from > 1 to < 1.</p>

Intuition: removal disrupts key cycles. • Details

Additional results: spectral radius as a measure of inefficiency.

• r(B(a)) - 1 is the rate at which effort would have to be taxed to make the outcome a Pareto efficient. Pletails

Measures the returns on the best egalitarian improvement.

Outline

2 Efficiency

3 Lindahl Outcomes and Network Centrality

4 Conclusions

$$u_1 = a_2 - \frac{1}{2}a_1^2$$
$$u_2 = a_1 - a_2^2$$

$$u_1 = a_2 - \frac{1}{2}a_1^2$$
$$u_2 = a_1 - a_2^2$$

$$oldsymbol{B}(oldsymbol{a}) = \left[egin{array}{cc} 0 & rac{1}{a_1} \ rac{1}{2a_2} & 0 \end{array}
ight]$$

$$u_1 = a_2 - \frac{1}{2}a_1^2$$
$$u_2 = a_1 - a_2^2$$

$$oldsymbol{B}(oldsymbol{a}) = \left[egin{array}{cc} 0 & rac{1}{a_1} \ rac{1}{2a_2} & 0 \end{array}
ight]$$

 $r(\boldsymbol{B}(\boldsymbol{a})) = (2a_1a_2)^{-1/2}$

From now on, assume set of IR points is bounded.

Definition

A Lindahl outcome is an a^* such that there is a schedule of prices $\{P_{ij} : i \neq j\}$ satisfying, for each i,

$$oldsymbol{a}^* \in rgmax_{u_i}(oldsymbol{a})$$

weak budget
balance

Definition

A Lindahl outcome is an a^* such that there is a schedule of prices $\{P_{ij} : i \neq j\}$ satisfying, for each i,

 $oldsymbol{a}^* \in rgmax_{\mathsf{weak budget}} u_i(oldsymbol{a})$

a satisfies weak budget balance for prices P if $\sum_{j:j\neq i} P_{ij}a_j \le a_i \sum_{j:j\neq i} P_{ji}$.

Definition

A Lindahl outcome is an a^* such that there is a schedule of prices $\{P_{ij} : i \neq j\}$ satisfying, for each i,

 $oldsymbol{a}^* \in \mathop{\mathrm{argmax}}_{\substack{\mathsf{weak budget}\\\mathsf{balance}}} u_i(oldsymbol{a})$

a satisfies weak budget balance for prices P if $\sum_{j:j\neq i} P_{ij}a_j \le a_i \sum_{j:j\neq i} P_{ji}$.

Main theorem: characterization in terms of network centrality.

Lindahl Outcome Graphically

Lindahl Outcome Graphically

Lindahl Outcome Graphically

Centrality Property

Definition

 $a \in \mathbb{R}^n_+$ has the centrality property (or is a centrality action profile) if a
eq 0 and

 $\boldsymbol{a} = \boldsymbol{B}(\boldsymbol{a}; \boldsymbol{u}) \, \boldsymbol{a}.$

Centrality Property

Definition

 $a \in \mathbb{R}^n_+$ has the centrality property (or is a centrality action profile) if a
eq 0 and

 $\boldsymbol{a} = \boldsymbol{B}(\boldsymbol{a}; \boldsymbol{u}) \, \boldsymbol{a}.$

$$a_i = \sum_{j \neq i} B_{ij}(\boldsymbol{a}) \cdot a_j$$

Definition

 $a \in \mathbb{R}^n_+$ has the centrality property (or is a centrality action profile) if a
eq 0 and

 $\boldsymbol{a} = \boldsymbol{B}(\boldsymbol{a}; \boldsymbol{u}) \, \boldsymbol{a}.$

$$a_i = \sum_{j \neq i} B_{ij}(\boldsymbol{a}) \cdot a_j$$

Fixed-point definition of actions.

Agents taking high actions are those who benefit a lot (at the margin) from others who are taking high actions.

The Main Theorem

Definition

 $oldsymbol{a} \in \mathbb{R}^n_+$ has the centrality property if $oldsymbol{a}
eq oldsymbol{0}$ and

$$\boldsymbol{a} = \boldsymbol{B}(\boldsymbol{a}; \boldsymbol{u}) \, \boldsymbol{a}.$$

Definition

 $oldsymbol{a} \in \mathbb{R}^n_+$ has the centrality property if $oldsymbol{a}
eq oldsymbol{0}$ and

 $\boldsymbol{a} = \boldsymbol{B}(\boldsymbol{a}; \boldsymbol{u}) \, \boldsymbol{a}.$

Theorem

A nonzero \boldsymbol{a} is a Lindahl outcome if and only if it has the centrality profile.

- Four questions:
 - 1 How is it proved?

- 1 How is it proved?
- 2 What is eigenvector centrality?

- 1 How is it proved?
- 2 What is eigenvector centrality?
- 3 Why care about Lindahl outcomes?

- 1 How is it proved?
- 2 What is eigenvector centrality?
- 3 Why care about Lindahl outcomes?
- 4 Why is the connection useful?

Four questions:

- 1 How is it proved?
- 2 What is eigenvector centrality?
- 3 Why care about Lindahl outcomes?
- 4 Why is the connection useful?

Rest of talk:

2 Background on eigenvector centrality.

- 1 How is it proved?
- 2 What is eigenvector centrality?
- 3 Why care about Lindahl outcomes?
- 4 Why is the connection useful?
- Rest of talk:
 - 2 Background on eigenvector centrality.
 - 1 Proof of main result.

- 1 How is it proved?
- 2 What is eigenvector centrality?
- 3 Why care about Lindahl outcomes?
- 4 Why is the connection useful?
- Rest of talk:
 - 2 Background on eigenvector centrality.
 - 1 Proof of main result.
 - 3 Strategic foundations for Lindahl outcomes (bargaining, implementation theory).

- 1 How is it proved?
- 2 What is eigenvector centrality?
- 3 Why care about Lindahl outcomes?
- 4 Why is the connection useful?
- Rest of talk:
 - 2 Background on eigenvector centrality.
 - 1 Proof of main result.
 - 3 Strategic foundations for Lindahl outcomes (bargaining, implementation theory).
 - 4 Application: interpretation of Lindahl outcomes in terms of walks in a graph.

Outline

2 Efficiency

3 Lindahl Outcomes and Network Centrality

Eigenvector Centrality

- Proof of Main Theorem
- Strategic Foundations for Lindahl
- Walk Interpretation

4 Conclusions

 Eigenvector centrality: a particular imputation of "importance" to nodes in a network based on connections (introduced in the 1950s).

- **Eigenvector centrality**: a particular imputation of "importance" to nodes in a network based on connections (introduced in the 1950s).
- Heuristically motivated definition (cool kids are friends of other cool kids); widely used to rank (web pages, publications, researchers, firms)

- Eigenvector centrality: a particular imputation of "importance" to nodes in a network based on connections (introduced in the 1950s).
- Heuristically motivated definition (cool kids are friends of other cool kids); widely used to rank (web pages, publications, researchers, firms)

$$c_i \propto \sum_{j
eq i} G_{ij} \cdot c_j$$

- Eigenvector centrality: a particular imputation of "importance" to nodes in a network based on connections (introduced in the 1950s).
- Heuristically motivated definition (cool kids are friends of other cool kids); widely used to rank (web pages, publications, researchers, firms)

$$c_i \, \propto \, \sum_{j
eq i} G_{ij} \, \cdot \, c_j$$

- Literature on foundations:
 - Mechanical (random surfer in PageRank).

- Eigenvector centrality: a particular imputation of "importance" to nodes in a network based on connections (introduced in the 1950s).
- Heuristically motivated definition (cool kids are friends of other cool kids); widely used to rank (web pages, publications, researchers, firms)

$$c_i \, \propto \, \sum_{j
eq i} G_{ij} \, \cdot \, c_j$$

- Literature on foundations:
 - Mechanical (random surfer in PageRank).
 - Axiomatic (Palacios-Huerta and Volij Ema 2004; Altman and Tennenholtz EC 2005; Dequiedt and Zenou 2014).

- Eigenvector centrality: a particular imputation of "importance" to nodes in a network based on connections (introduced in the 1950s).
- Heuristically motivated definition (cool kids are friends of other cool kids); widely used to rank (web pages, publications, researchers, firms)

$$c_i \, \propto \, \sum_{j
eq i} G_{ij} \, \cdot \, c_j$$

Literature on foundations:

- Mechanical (random surfer in PageRank).
- Axiomatic (Palacios-Huerta and Volij Ema 2004; Altman and Tennenholtz EC 2005; Dequiedt and Zenou 2014).
- Cobb-Douglas market models (Acemoglu et al. 2012; Du, Lehrer, and Pauzner 2012).

Outline

2 Efficiency

3 Lindahl Outcomes and Network Centrality

- Eigenvector Centrality
- Proof of Main Theorem
- Strategic Foundations for Lindahl
- Walk Interpretation

4 Conclusions

will show \Rightarrow . Take $a \in \mathbb{R}^n_+ \setminus \{0\}$ s.t. a = B(a)a. • WLOG, assume $\frac{\partial u_i}{\partial a_i} = -1$.

will show \Rightarrow . Take $a \in \mathbb{R}^n_+ \setminus \{\mathbf{0}\}$ s.t. a = B(a)a.

- WLOG, assume $\frac{\partial u_i}{\partial a_i} = -1$.
- By Perron-Frobenius Theorem, can find nonzero $\theta \in \mathbb{R}^n_+$ such that $\theta = \theta B(a)$.

Perron-Frobenius: an eigenvalue λ of B has a nonnegative left (right) eigenvector if and only if $\lambda = r(B)$.

will show \Rightarrow . Take $a \in \mathbb{R}^n_+ \setminus \{\mathbf{0}\}$ s.t. a = B(a)a.

- WLOG, assume $\frac{\partial u_i}{\partial a_i} = -1$.
- By Perron-Frobenius Theorem, can find nonzero $\theta \in \mathbb{R}^n_+$ such that $\theta = \theta B(a)$.
- Set $P_{ij} = \theta_i B_{ij}(\boldsymbol{a})$.

will show \Rightarrow . Take $a \in \mathbb{R}^n_+ \setminus \{\mathbf{0}\}$ s.t. a = B(a)a.

- WLOG, assume $\frac{\partial u_i}{\partial a_i} = -1$.
- By Perron-Frobenius Theorem, can find nonzero $\theta \in \mathbb{R}^n_+$ such that $\theta = \theta B(a)$.
- Set $P_{ij} = \theta_i B_{ij}(\boldsymbol{a})$. These prices work.

will show \Rightarrow . Take $a \in \mathbb{R}^n_+ \setminus \{\mathbf{0}\}$ s.t. a = B(a)a.

- WLOG, assume $\frac{\partial u_i}{\partial a_i} = -1$.
- By Perron-Frobenius Theorem, can find nonzero $\theta \in \mathbb{R}^n_+$ such that $\theta = \theta B(a)$.

• Set $P_{ij} = \theta_i B_{ij}(\boldsymbol{a})$. These prices work. Budget balance:

$$\sum_{j:j\neq i} P_{ij}a_j \le a_i \sum_{j:j\neq i} P_{ji}$$

will show \Rightarrow . Take $a \in \mathbb{R}^n_+ \setminus \{\mathbf{0}\}$ s.t. a = B(a)a.

- WLOG, assume $\frac{\partial u_i}{\partial a_i} = -1$.
- By Perron-Frobenius Theorem, can find nonzero $\theta \in \mathbb{R}^n_+$ such that $\theta = \theta B(a)$.
- Set $P_{ij} = \theta_i B_{ij}(\boldsymbol{a})$. These prices work. Budget balance:

$$\sum_{\substack{j:j\neq i}} P_{ij}a_j \le a_i \sum_{\substack{j:j\neq i}} P_{ji}$$
$$\sum_{\substack{j:j\neq i}} \theta_i B_{ij}a_j \le a_i \underbrace{\sum_{\substack{j:j\neq i}} \theta_j B_{ji}}$$

will show \Rightarrow . Take $a \in \mathbb{R}^n_+ \setminus \{\mathbf{0}\}$ s.t. a = B(a)a.

- WLOG, assume $\frac{\partial u_i}{\partial a_i} = -1$.
- By Perron-Frobenius Theorem, can find nonzero $\theta \in \mathbb{R}^n_+$ such that $\theta = \theta B(a)$.
- Set $P_{ij} = \theta_i B_{ij}(\boldsymbol{a})$. These prices work. Budget balance:

$$\sum_{\substack{j:j\neq i}} P_{ij}a_j \le a_i \sum_{\substack{j:j\neq i}} P_{ji}$$
$$\sum_{\substack{j:j\neq i}} \theta_i B_{ij}a_j \le a_i \underbrace{\sum_{\substack{j:j\neq i}} \theta_j B_{ji}}_{j:j\neq i}$$
$$\sum_{\substack{j:j\neq i}} \theta_i B_{ij}a_j \le a_i \quad \theta_i$$

will show \Rightarrow . Take $a \in \mathbb{R}^n_+ \setminus \{0\}$ s.t. a = B(a)a.

- WLOG, assume $\frac{\partial u_i}{\partial a_i} = -1$.
- By Perron-Frobenius Theorem, can find nonzero $\theta \in \mathbb{R}^n_+$ such that $\theta = \theta B(a)$.
- Set $P_{ij} = \theta_i B_{ij}(\boldsymbol{a})$. These prices work. Budget balance:

$$\sum_{j:j\neq i} P_{ij}a_j \le a_i \sum_{j:j\neq i} P_{ji}$$

$$\sum_{j:j\neq i} \theta_i B_{ij}a_j \le a_i \underbrace{\sum_{j:j\neq i} \theta_j B_{ji}}_{j:j\neq i}$$

$$\sum_{j:j\neq i} \theta_i B_{ij}a_j \le a_i \quad \theta_i$$

$$B(a)a \le a$$

will show \Rightarrow . Take $a \in \mathbb{R}^n_+ \setminus \{\mathbf{0}\}$ s.t. a = B(a)a.

- WLOG, assume $\frac{\partial u_i}{\partial a_i} = -1$.
- By Perron-Frobenius Theorem, can find nonzero $\theta \in \mathbb{R}^n_+$ such that $\theta = \theta B(a)$.
- Set $P_{ij} = \theta_i B_{ij}(\boldsymbol{a})$. These prices work. Optimization:

• Take $j, k \neq i$. Then

$$rac{P_{ij}}{P_{ik}} = rac{\partial u_i / \partial a_j}{\partial u_i / \partial a_k}.$$

will show \Rightarrow . Take $a \in \mathbb{R}^n_+ \setminus \{0\}$ s.t. a = B(a)a.

- WLOG, assume $\frac{\partial u_i}{\partial a_i} = -1$.
- By Perron-Frobenius Theorem, can find nonzero $\theta \in \mathbb{R}^n_+$ such that $\theta = \theta B(a)$.

• Set $P_{ij} = \theta_i B_{ij}(\boldsymbol{a})$. These prices work. Optimization:

• Take $j, k \neq i$. Then

$$\frac{P_{ij}}{P_{ik}} = \frac{\theta_i B_{ij}}{\theta_i B_{ik}} = \frac{\partial u_i / \partial a_j}{\partial u_i / \partial a_k}.$$

will show \Rightarrow . Take $a \in \mathbb{R}^n_+ \setminus \{0\}$ s.t. a = B(a)a.

- WLOG, assume $\frac{\partial u_i}{\partial a_i} = -1$.
- By Perron-Frobenius Theorem, can find nonzero $\theta \in \mathbb{R}^n_+$ such that $\theta = \theta B(a)$.

• Set $P_{ij} = \theta_i B_{ij}(\boldsymbol{a})$. These prices work. Optimization:

• Take $j, k \neq i$. Then

$$\frac{P_{ij}}{P_{ik}} = \frac{\theta_i B_{ij}}{\theta_i B_{ik}} = \frac{\partial u_i / \partial a_j}{\partial u_i / \partial a_k}.$$

$$\frac{P_{ij}}{w_i} = \frac{\frac{\partial u_i}{\partial a_j}}{-\frac{\partial u_i}{\partial a_i}}.$$

will show \Rightarrow . Take $a \in \mathbb{R}^n_+ \setminus \{0\}$ s.t. a = B(a)a.

- WLOG, assume $\frac{\partial u_i}{\partial a_i} = -1$.
- By Perron-Frobenius Theorem, can find nonzero $\theta \in \mathbb{R}^n_+$ such that $\theta = \theta B(a)$.

• Set $P_{ij} = \theta_i B_{ij}(\boldsymbol{a})$. These prices work. Optimization:

• Take $j, k \neq i$. Then

$$\frac{P_{ij}}{P_{ik}} = \frac{\theta_i B_{ij}}{\theta_i B_{ik}} = \frac{\partial u_i / \partial a_j}{\partial u_i / \partial a_k}.$$

• Note $w_i = \sum_{j:j \neq i} P_{ji} = \sum_j \theta_j B_{ji} = \theta_i$.

$$\frac{P_{ij}}{w_i} = \frac{\frac{\partial u_i}{\partial a_j}}{-\frac{\partial u_i}{\partial a_i}}.$$

will show \Rightarrow . Take $a \in \mathbb{R}^n_+ \setminus \{0\}$ s.t. a = B(a)a.

- WLOG, assume $\frac{\partial u_i}{\partial a_i} = -1$.
- By Perron-Frobenius Theorem, can find nonzero $\theta \in \mathbb{R}^n_+$ such that $\theta = \theta B(a)$.

• Set $P_{ij} = \theta_i B_{ij}(\boldsymbol{a})$. These prices work. Optimization:

• Take $j, k \neq i$. Then

$$\frac{P_{ij}}{P_{ik}} = \frac{\theta_i B_{ij}}{\theta_i B_{ik}} = \frac{\partial u_i / \partial a_j}{\partial u_i / \partial a_k}.$$

• Note $w_i = \sum_{j:j \neq i} P_{ji} = \sum_j \theta_j B_{ji} = \theta_i$.

$$\frac{P_{ij}}{w_i} = \frac{\theta_i B_{ij}}{\theta_i} = \frac{\partial u_i / \partial a_j}{-\partial u_i / \partial a_i}.$$

Centrality Property \Leftrightarrow Lindahl Outcome

will show \Rightarrow . Take $a \in \mathbb{R}^n_+ \setminus \{0\}$ s.t. a = B(a)a.

- WLOG, assume $\frac{\partial u_i}{\partial a_i} = -1$.
- By Perron-Frobenius Theorem, can find nonzero $\theta \in \mathbb{R}^n_+$ such that $\theta = \theta B(a)$.

• Set $P_{ij} = \theta_i B_{ij}(\boldsymbol{a})$. These prices work. Optimization:

• Take $j, k \neq i$. Then

$$\frac{P_{ij}}{P_{ik}} = \frac{\theta_i B_{ij}}{\theta_i B_{ik}} = \frac{\partial u_i / \partial a_j}{\partial u_i / \partial a_k}.$$

• Note $w_i = \sum_{j:j \neq i} P_{ji} = \sum_j \theta_j B_{ji} = \theta_i$.

$$\frac{P_{ij}}{w_i} = \frac{\theta_i B_{ij}}{\theta_i} = \frac{\partial u_i / \partial a_j}{-\partial u_i / \partial a_i}.$$

Outline

2 Efficiency

3 Lindahl Outcomes and Network Centrality

- Eigenvector Centrality
- Proof of Main Theorem

Strategic Foundations for Lindahl

Walk Interpretation

4 Conclusions

• Negotiators around a table; discrete time; discount rates δ_i .

- Negotiators around a table; discrete time; discount rates δ_i .
- The one talking (i) proposes exchange rate a ray r and a maximum quantity q_i.

- Negotiators around a table; discrete time; discount rates δ_i .
- The one talking (i) proposes exchange rate a ray r and a maximum quantity q_i.
- Vote on this ray sequentially: can either say "no" (then next player proposes) or name a quantity $q_i > 0$.

- Negotiators around a table; discrete time; discount rates δ_i .
- The one talking (i) proposes exchange rate a ray r and a maximum quantity q_i.
- Vote on this ray sequentially: can either say "no" (then next player proposes) or name a quantity $q_i > 0$.
- If everyone agrees, implement $a = q_{\min}r$.

- Negotiators around a table; discrete time; discount rates δ_i .
- The one talking (i) proposes exchange rate a ray r and a maximum quantity q_i.
- Vote on this ray sequentially: can either say "no" (then next player proposes) or name a quantity $q_i > 0$.
- If everyone agrees, implement $a = q_{\min}r$.

Theorem

If 0 is inefficient and utilities are strictly concave, then: in any *efficient perfect equilibrium*, a Lindahl outcome is played.

• Consider all mechanisms for negotiating an outcome (with binding power to implement agreed outcome).

- Consider all mechanisms for negotiating an outcome (with binding power to implement agreed outcome).
- Ask that mechanism behave well across all types and equilibria:

- Consider all mechanisms for negotiating an outcome (with binding power to implement agreed outcome).
- Ask that mechanism behave well across all types and equilibria:
 - types: concave *u_i* with assumed signs of derivatives;

- Consider all mechanisms for negotiating an outcome (with binding power to implement agreed outcome).
- Ask that mechanism behave well across all types and equilibria:
 - types: concave *u_i* with assumed signs of derivatives;
 - behave well: efficient, individually rational, continuous.

- Consider all mechanisms for negotiating an outcome (with binding power to implement agreed outcome).
- Ask that mechanism behave well across all types and equilibria:
 - types: concave *u_i* with assumed signs of derivatives;
 - behave well: efficient, individually rational, continuous.
- Then Lindahl outcomes are always equilibrium outcomes.

- Consider all mechanisms for negotiating an outcome (with binding power to implement agreed outcome).
- Ask that mechanism behave well across all types and equilibria:
 - types: concave *u_i* with assumed signs of derivatives;
 - behave well: efficient, individually rational, continuous.
- Then Lindahl outcomes are always equilibrium outcomes. To avoid equilibrium selection fight, Lindahl mechanism is the best bet.

Outline

2 Efficiency

3 Lindahl Outcomes and Network Centrality

- Eigenvector Centrality
- Proof of Main Theorem
- Strategic Foundations for Lindahl
- Walk Interpretation

4 Conclusions

Vague Statement

A node's centrality measures the number/intensity of **walks** in the benefits matrix that end at that node.

Walks and their Values

$$\boldsymbol{B}(\mathbf{0}) = \begin{bmatrix} 0 & 0 & 7 & 0.5 \\ 5 & 0 & 6 & 0.5 \\ 0 & 0 & 0 & 0.5 \\ 0.5 & 0.5 & 0.5 & 0 \end{bmatrix}$$

Value of walk
$$w = (3, 1, 2)$$
:
 $v(w; \mathbf{B}) = B_{13}B_{21}$
 $= 7 \cdot 5$

Walks and their Values

$$\boldsymbol{B}(\mathbf{0}) = \begin{bmatrix} 0 & 0 & 7 & 0.5 \\ 5 & 0 & 6 & 0.5 \\ 0 & 0 & 0 & 0.5 \\ 0.5 & 0.5 & 0.5 & 0 \end{bmatrix}$$

Value of walk
$$w = (3, 1, 2)$$
:
 $v(w; \mathbf{B}) = B_{13}B_{21}$
 $= 7 \cdot 5$

Walks can repeat nodes: e.g.,
$$(3, 1, 2, 4, 3, 2)$$
.

Centrality in Terms of Walks

Define

 $V_i^{\downarrow}(\ell; \boldsymbol{B}) = \sum$ $v(w; \boldsymbol{B}).$ w a walk ending at iof length $\tilde{\ell}$

Centrality in Terms of Walks

Define

$$V_i^{\downarrow}(\ell; \boldsymbol{B}) = \sum_{\substack{w \text{ a walk ending at } i \\ \text{ of length } \ell}} v(w; \boldsymbol{B}).$$

Fact

Assume $oldsymbol{B}(oldsymbol{a})$ is aperiodic. $oldsymbol{a}$ has the centrality property if and only if

$$rac{a_i}{a_j} = \lim_{\ell o \infty} rac{V_i^\downarrow(\ell; oldsymbol{B})}{V_j^\downarrow(\ell; oldsymbol{B})}.$$

Each agent's effort proportional to the total value of long walks he terminates ("total incoming benefits").

Contributions

$\mathsf{PE} \Leftrightarrow \boldsymbol{\theta} = \boldsymbol{\theta} \boldsymbol{B}(\boldsymbol{a}) \Leftrightarrow r(\boldsymbol{B}(\boldsymbol{a})) = 1$

Contributions

$\begin{array}{lll} \mathsf{PE} \ \Leftrightarrow \ \ \pmb{\theta} = \pmb{\theta} \pmb{B}(\pmb{a}) \ \ \Leftrightarrow \ \ r(\pmb{B}(\pmb{a})) = 1 \\ \\ \mathsf{Lindahl} \ \Leftrightarrow \ \ P_{ij} = \theta_i B_{ij} \ \ \Leftrightarrow \ \ \pmb{a} = \pmb{B}(\pmb{a}) \pmb{a} \end{array}$

 Looking at the benefits network sheds light on public goods problem.

- Looking at the benefits network sheds light on public goods problem.
- Efficiency issues:
 - r(B(a)) measures amplification of favor-giving.

- Looking at the benefits network sheds light on public goods problem.
- Efficiency issues:
 - r(B(a)) measures amplification of favor-giving.
 - Who is essential to achieving any Pareto improvement? (Cycle-makers.)

Summary

- Looking at the benefits network sheds light on public goods problem.
- Efficiency issues:
 - r(B(a)) measures amplification of favor-giving.
 - Who is essential to achieving any Pareto improvement? (Cycle-makers.)
- Characterization of market outcome in terms of centrality:
 - Price equilibrium ⇔ more central agents (ones at ends of high-value walks) contribute more.

Summary

- Looking at the benefits network sheds light on public goods problem.
- Efficiency issues:
 - r(B(a)) measures amplification of favor-giving.
 - Who is essential to achieving any Pareto improvement? (Cycle-makers.)
- Characterization of market outcome in terms of centrality:
 - Price equilibrium ⇔ more central agents (ones at ends of high-value walks) contribute more.
 - Conceptual punchline: can think of market outcomes using network centrality!

Summary

- Looking at the benefits network sheds light on public goods problem.
- Efficiency issues:
 - r(B(a)) measures amplification of favor-giving.
 - Who is essential to achieving any Pareto improvement? (Cycle-makers.)

• Characterization of market outcome in terms of centrality:

- Price equilibrium ⇔ more central agents (ones at ends of high-value walks) contribute more.
- Conceptual punchline: can think of market outcomes using network centrality!
- Encouraging metaphor, but need to address "markets you can take literally".

Outline

1 Setup

2 Efficiency

3 Lindahl Outcomes and Network Centrality

4 Conclusions

Further Results

- Analogous characterization with transferable numeraire.
 Details
- Explicit formulas for centrality action profiles in parameterized economies. (New microfoundations for network centrality measures). • Details
- Next step: analogous exercise for Walrasian outcomes in other settings to examine key nodes, robustness of market to removing nodes, etc.

 Knows only that preference profile u will lie in the domain U of all profiles satisfying our maintained assumptions.

- Knows only that preference profile u will lie in the domain U of all profiles satisfying our maintained assumptions.
- Selects a mechanism:

- Knows only that preference profile u will lie in the domain U of all profiles satisfying our maintained assumptions.
- Selects a mechanism:

- Knows only that preference profile u will lie in the domain U of all profiles satisfying our maintained assumptions.
- Selects a mechanism:
 - a strategy set ∑_i for each agent (let ∑ = ∏_i∑_i);
 - and an outcome function $g: \Sigma \to \mathbb{R}^n_+$ to prescribe actions.

- Knows only that preference profile u will lie in the domain U of all profiles satisfying our maintained assumptions.
- Selects a mechanism:
 - a strategy set ∑_i for each agent (let ∑ = ∏_i∑_i);
 - and an outcome function $g: \Sigma \to \mathbb{R}^n_+$ to prescribe actions.
- Given a mechanism $H = (\Sigma, g)$, let $\Sigma_H^* : \mathcal{U} \rightrightarrows \mathbb{R}^n_+$ be the equilibrium correspondence.

- Knows only that preference profile u will lie in the domain U of all profiles satisfying our maintained assumptions.
- Selects a mechanism:
 - a strategy set Σ_i for each agent (let $\Sigma = \prod_i \Sigma_i$);
 - and an outcome function $g: \Sigma \to \mathbb{R}^n_+$ to prescribe actions.
- Given a mechanism $H = (\Sigma, g)$, let $\Sigma_H^* : \mathcal{U} \rightrightarrows \mathbb{R}^n_+$ be the equilibrium correspondence.
- Designer wants
 - **PE**: all equilibria to be Pareto efficient;

- Knows only that preference profile u will lie in the domain U of all profiles satisfying our maintained assumptions.
- Selects a mechanism:
 - a strategy set Σ_i for each agent (let $\Sigma = \prod_i \Sigma_i$);
 - and an outcome function $g: \Sigma \to \mathbb{R}^n_+$ to prescribe actions.
- Given a mechanism $H = (\Sigma, g)$, let $\Sigma_H^* : \mathcal{U} \rightrightarrows \mathbb{R}^n_+$ be the equilibrium correspondence.
- Designer wants
 - **PE**: all equilibria to be Pareto efficient;
 - **IR**: all equilibria to Pareto dominate **0** (IR);

We imagine the designer of a mechanism.

- Knows only that preference profile u will lie in the domain U of all profiles satisfying our maintained assumptions.
- Selects a mechanism:
 - a strategy set Σ_i for each agent (let $\Sigma = \prod_i \Sigma_i$);
 - and an outcome function $g: \Sigma \to \mathbb{R}^n_+$ to prescribe actions.
- Given a mechanism $H = (\Sigma, g)$, let $\Sigma_H^* : \mathcal{U} \rightrightarrows \mathbb{R}^n_+$ be the equilibrium correspondence.
- Designer wants
 - **PE**: all equilibria to be Pareto efficient;
 - **IR**: all equilibria to Pareto dominate **0** (IR);
 - continuity: small changes in preferences not to cause large changes in equilibrium actions (Σ^{*}_H is uhc).

We imagine the designer of a mechanism.

- Knows only that preference profile u will lie in the domain U of all profiles satisfying our maintained assumptions.
- Selects a mechanism:
 - a strategy set Σ_i for each agent (let $\Sigma = \prod_i \Sigma_i$);
 - and an outcome function $g: \Sigma \to \mathbb{R}^n_+$ to prescribe actions.
- Given a mechanism $H = (\Sigma, g)$, let $\Sigma_H^* : \mathcal{U} \rightrightarrows \mathbb{R}^n_+$ be the equilibrium correspondence.
- Designer wants the mechanism to be **reliable**:
 - **PE**: all equilibria to be Pareto efficient;
 - **IR**: all equilibria to Pareto dominate **0** (IR);
 - continuity: small changes in preferences not to cause large changes in equilibrium actions (Σ^{*}_H is uhc).

Mechanism definition:

- strategy set Σ_i for each agent (let Σ = ∏_iΣ_i);
- an outcome function $g: \Sigma \to \mathbb{R}^n_+$ to prescribe actions.

Example:

Mechanism definition:

strategy set Σ_i for each agent (let Σ = ∏_iΣ_i);

• an outcome function $g: \Sigma \to \mathbb{R}^n_+$ to prescribe actions.

Example:

•
$$\Sigma_1 = \Sigma_2 = \mathbb{R}^2_+;$$

Mechanism definition:

strategy set Σ_i for each agent (let Σ = ∏_iΣ_i);

• an outcome function $g: \Sigma \to \mathbb{R}^n_+$ to prescribe actions.

Example:

$$\Sigma_1 = \Sigma_2 = \mathbb{R}^2_+;$$

$$g(a^{(1)}, a^{(2)}) = \min\{a^{(1)}, a^{(2)}\}.$$

Mechanism definition:

- strategy set Σ_i for each agent (let Σ = ∏_iΣ_i);
- an outcome function $g: \Sigma \to \mathbb{R}^n_+$ to prescribe actions.

Example:

•
$$\Sigma_1 = \Sigma_2 = \mathbb{R}^2_+;$$

 $g(a^{(1)}, a^{(2)}) = \min\{a^{(1)}, a^{(2)}\}.$

Satisfies desiderata?

Mechanism definition:

strategy set Σ_i for each agent (let Σ = ∏_iΣ_i);

• an outcome function $g: \Sigma \to \mathbb{R}^n_+$ to prescribe actions.

Example:

•
$$\Sigma_1 = \Sigma_2 = \mathbb{R}^2_+;$$

 $g(a^{(1)}, a^{(2)}) = \min\{a^{(1)}, a^{(2)}\}.$

Satisfies desiderata?

No. Has many inefficient equilibria.

Hurwicz Foundations for Lindahl

Theorem (Hurwicz 1979, Hurwicz-Maskin-Postlewaite 1994)

Recall **reliable** = PE + IR + uhc. Assume $n \ge 3$.

Recall reliable = PE + IR + uhc. Assume $n \ge 3$.

1 If H is reliable, then L is a sub-correspondence of Σ_{H}^{*} . That is, every Lindahl outcome is an equilibrium outcome of H.

Recall reliable = PE + IR + uhc. Assume $n \ge 3$.

- **1** If H is reliable, then L is a sub-correspondence of Σ_{H}^{*} . That is, every Lindahl outcome is an equilibrium outcome of H.
- **2** There is a reliable mechanism H such that $\Sigma_H^* = L$.

Recall reliable = PE + IR + uhc. Assume $n \ge 3$.

- **1** If H is reliable, then L is a sub-correspondence of Σ_{H}^{*} . That is, every Lindahl outcome is an equilibrium outcome of H.
- **2** There is a reliable mechanism H such that $\Sigma_H^* = L$.

Mechanism H satisfies **payoff-uniqueness** under u if all elements of $\Sigma_{H}^{*}(u)$ are payoff-equivalent (no selection conflict).

Recall reliable = PE + IR + uhc. Assume $n \ge 3$.

- **1** If H is reliable, then L is a sub-correspondence of Σ_{H}^{*} . That is, every Lindahl outcome is an equilibrium outcome of H.
- **2** There is a reliable mechanism H such that $\Sigma_H^* = L$.

Mechanism H satisfies **payoff-uniqueness** under u if all elements of $\Sigma_{H}^{*}(u)$ are payoff-equivalent (no selection conflict).

Payoff-uniqueness is achievable exactly for those u such that all Lindahl outcomes under u are payoff-equivalent. Proof of theorem

• Explicit condition for uniqueness • Details

Public goods.

Classical theory: Wicksell (1896); Lindahl (1919); Samuelson (1954); Coase (1960); Foley (1970); Roberts (1973, 1974).

- Classical theory: Wicksell (1896); Lindahl (1919); Samuelson (1954); Coase (1960); Foley (1970); Roberts (1973, 1974).
- Foundations based on mechanisms (implementation theory): Groves-Ledyard (1977); Hurwicz (1979a,b); Hurwicz, Maskin, Postlewaite (1994); Maskin (1999).

- Classical theory: Wicksell (1896); Lindahl (1919); Samuelson (1954); Coase (1960); Foley (1970); Roberts (1973, 1974).
- Foundations based on mechanisms (implementation theory): Groves-Ledyard (1977); Hurwicz (1979a,b); Hurwicz, Maskin, Postlewaite (1994); Maskin (1999).
- Bargaining theory: Yildiz (2003), Dávila, Eeckhout, and Martinelli (2009), Penta (2011).

- Classical theory: Wicksell (1896); Lindahl (1919); Samuelson (1954); Coase (1960); Foley (1970); Roberts (1973, 1974).
- Foundations based on mechanisms (implementation theory): Groves-Ledyard (1977); Hurwicz (1979a,b); Hurwicz, Maskin, Postlewaite (1994); Maskin (1999).
- Bargaining theory: Yildiz (2003), Dávila, Eeckhout, and Martinelli (2009), Penta (2011).
- Technical: network (eigenvector) centrality.
 - Concepts: Markov (1906); Leontief (1928); Katz (1953); Bonacich (1987).

- Classical theory: Wicksell (1896); Lindahl (1919); Samuelson (1954); Coase (1960); Foley (1970); Roberts (1973, 1974).
- Foundations based on mechanisms (implementation theory): Groves-Ledyard (1977); Hurwicz (1979a,b); Hurwicz, Maskin, Postlewaite (1994); Maskin (1999).
- Bargaining theory: Yildiz (2003), Dávila, Eeckhout, and Martinelli (2009), Penta (2011).
- Technical: network (eigenvector) centrality.
 - Concepts: Markov (1906); Leontief (1928); Katz (1953); Bonacich (1987).
 - Recent applications: Brin and Page (1998); Ballester, Calvó-Armengol, and Zenou (2006); Acemoglu et al. (2012).

$$P_{ij} = \theta_i B_{ij}(\boldsymbol{a})$$

$$P_{ij} = \theta_i B_{ij}(\boldsymbol{a})$$

Suppose agent is maximizing $u_i(x_1, x_2, \dots, x_n)$ subject to $\sum_j p_j x_j \leq m$.

$$P_{ij} = \theta_i B_{ij}(\boldsymbol{a})$$

- Suppose agent is maximizing $u_i(x_1, x_2, \dots, x_n)$ subject to $\sum_j p_j x_j \le m$.
- Lagrangian:

$$\mathcal{L} = u_i(x_1, x_2, \dots, x_n) - \mu_i \left(\sum_j p_j x_j - m\right).$$

$$P_{ij} = \theta_i B_{ij}(\boldsymbol{a})$$

- Suppose agent is maximizing $u_i(x_1, x_2, \dots, x_n)$ subject to $\sum_j p_j x_j \le m$.
- Lagrangian:

$$\mathcal{L} = u_i(x_1, x_2, \dots, x_n) - \mu_i \left(\sum_j p_j x_j - m \right).$$

$$\bullet \ \mu_i \cdot p_j = \frac{\partial u_i}{\partial a_j}.$$

$$P_{ij} = \theta_i B_{ij}(\boldsymbol{a})$$

- Suppose agent is maximizing $u_i(x_1, x_2, \dots, x_n)$ subject to $\sum_j p_j x_j \le m$.
- Lagrangian:

$$\mathcal{L} = u_i(x_1, x_2, \dots, x_n) - \mu_i \left(\sum_j p_j x_j - m \right).$$

•
$$\mu_i \cdot p_j = \frac{\partial u_i}{\partial a_j}$$
.
• $p_j = \theta_i \cdot \frac{\partial u_i}{\partial x_j}$ where $\theta_i = \mu_i^{-1}$.

Proposition

$$r(\boldsymbol{B}) = \lim_{\ell \to \infty} \left[\sum_{\substack{c \text{ a cycle} \\ \text{of length } \leq \ell}} v(c; \boldsymbol{B}) \right]^{1/\ell}$$

Proposition

$$r(\boldsymbol{B}) = \lim_{\ell \to \infty} \left[\sum_{\substack{c \text{ a cycle} \\ \text{of length } \leq \ell}} v(c; \boldsymbol{B}) \right]^{1/\ell}$$

Note

$$\operatorname{trace}\left(\boldsymbol{B}^{\ell}\right) = \sum_{i} \left(\boldsymbol{B}^{\ell}\right)_{ii} = \sum_{\substack{c \text{ a cycle} \\ \text{ of length } \ell}} v(c; \boldsymbol{B}).$$

Proposition

$$r(\boldsymbol{B}) = \lim_{\ell \to \infty} \left[\sum_{\substack{c \text{ a cycle} \\ \text{of length } \leq \ell}} v(c; \boldsymbol{B}) \right]^{1/\ell}$$

Note

$$\operatorname{trace}\left(\boldsymbol{B}^{\ell}\right) = \sum_{i} \left(\boldsymbol{B}^{\ell}\right)_{ii} = \sum_{\substack{c \text{ a cycle} \\ \text{ of length } \ell}} v(c; \boldsymbol{B})$$

• Let d be such that $\lambda^d \in \mathbb{R}^n_+$ for every eigenvalue λ of **B** with $|\lambda| = r(B)$. (Exists by Wielandt, 1950.)

Proposition

$$r(\boldsymbol{B}) = \lim_{\ell \to \infty} \left[\sum_{\substack{c \text{ a cycle} \\ \text{of length } \leq \ell}} v(c; \boldsymbol{B}) \right]^{1/\ell}$$

Note

$$\operatorname{trace}\left(\boldsymbol{B}^{\ell}\right) = \sum_{i} \left(\boldsymbol{B}^{\ell}\right)_{ii} = \sum_{\substack{c \text{ a cycle} \\ \text{of length } \ell}} v(c; \boldsymbol{B})$$

- Let d be such that $\lambda^d \in \mathbb{R}^n_+$ for every eigenvalue λ of **B** with $|\lambda| = r(B)$. (Exists by Wielandt, 1950.)
- Write $\rho = r(B)$. We have $\operatorname{trace}(B^{\ell}) \leq n\rho^{\ell}$ always.

Proposition

$$r(\boldsymbol{B}) = \lim_{\ell \to \infty} \left[\sum_{\substack{c \text{ a cycle} \\ \text{of length } \leq \ell}} v(c; \boldsymbol{B}) \right]^{1/\ell}$$

Note

$$\operatorname{trace}\left(\boldsymbol{B}^{\ell}\right) = \sum_{i} \left(\boldsymbol{B}^{\ell}\right)_{ii} = \sum_{\substack{c \text{ a cycle} \\ \text{of length } \ell}} v(c; \boldsymbol{B})$$

- Let d be such that $\lambda^d \in \mathbb{R}^n_+$ for every eigenvalue λ of **B** with $|\lambda| = r(B)$. (Exists by Wielandt, 1950.)
- Write $\rho = r(B)$. We have $\operatorname{trace}(B^{\ell}) \leq n\rho^{\ell}$ always. For ℓ divisible by d, we also have $\rho^{\ell} + O(s^{\ell}) \leq \operatorname{trace}(B^{\ell})$ with $s < \rho$.

Original economy (separable case):

$$u_i(\boldsymbol{a}) = b_i(\boldsymbol{a}_{-i}) - c_i(a_i).$$

Original economy (separable case):

$$u_i(\boldsymbol{a}) = b_i(\boldsymbol{a}_{-i}) - c_i(a_i).$$

Modified economy:

$$u_i^{(\tau)}(\boldsymbol{a}) = b_i(\boldsymbol{a}_{-i}) - \boldsymbol{\tau} c_i(a_i).$$

Original economy (separable case):

$$u_i(\boldsymbol{a}) = b_i(\boldsymbol{a}_{-i}) - c_i(a_i).$$

Modified economy:

$$u_i^{(\tau)}(\boldsymbol{a}) = b_i(\boldsymbol{a}_{-i}) - \tau c_i(a_i).$$

Proposition

The interior action profile a is a Pareto efficient outcome under $u^{(\tau)}$ if and only if $\tau = r(B(a))$.

Original economy (separable case):

$$u_i(\boldsymbol{a}) = b_i(\boldsymbol{a}_{-i}) - c_i(a_i).$$

Modified economy:

$$u_i^{(\tau)}(\boldsymbol{a}) = b_i(\boldsymbol{a}_{-i}) - \tau c_i(a_i).$$

Proposition

The interior action profile a is a Pareto efficient outcome under $u^{(\tau)}$ if and only if $\tau = r(B(a))$.

Write $\tau = 1 + t$ (where t is a tax). A tax of $t = r(\boldsymbol{B}(\boldsymbol{a})) - 1$ on contributions would be necessary to dissuade a social planner from increasing contributions. **(Back)**

Definition

The **bang for the buck** vector b(a, d) at an action profile a from moving in a direction $d \in \Delta$ is defined by

Definition

The **bang for the buck** vector b(a,d) at an action profile a from moving in a direction $d \in \Delta$ is defined by

 $b_i(\boldsymbol{a}, \boldsymbol{d}) = rac{i$'s marginal benefit i's marginal cost

Definition

The **bang for the buck** vector b(a, d) at an action profile a from moving in a direction $d \in \Delta$ is defined by

$$b_i(\boldsymbol{a}, \boldsymbol{d}) = rac{i$$
's marginal benefit}{i's marginal cost $= rac{\sum_j rac{\partial u_i}{\partial a_j} d_j}{-rac{\partial u_i}{\partial a_i} d_i}$

Definition

The **bang for the buck** vector b(a, d) at an action profile a from moving in a direction $d \in \Delta$ is defined by

$$b_i(oldsymbol{a},oldsymbol{d}) = rac{i$$
's marginal benefit}{i's marginal cost $= rac{\sum_j rac{\partial u_i}{\partial a_j} d_j}{-rac{\partial u_i}{\partial a_i} d_i}$

A direction $d \in \Delta$ is **egalitarian at** a if every entry of b(a, d) is the same.

Definition

The **bang for the buck** vector b(a, d) at an action profile a from moving in a direction $d \in \Delta$ is defined by

$$b_i(\boldsymbol{a}, \boldsymbol{d}) = rac{i$$
's marginal benefit}{i's marginal cost $= rac{\sum_j rac{\partial u_i}{\partial a_j} d_j}{-rac{\partial u_i}{\partial a_i} d_i}$

A direction $d \in \Delta$ is **egalitarian at** a if every entry of b(a, d) is the same.

Proposition

At any a, there is a unique egalitarian direction $d^{eg}(a)$. Every entry of $b(a, d^{eg}(a))$ is equal to the spectral radius of B(a).

• At any a, the matrix B(a) is nonnegative and irreducible.

- At any a, the matrix B(a) is nonnegative and irreducible.
- There is a real largest eigenvalue ρ and a Perron vector $\pmb{d} \in \Delta$ s.t.

$$\boldsymbol{B}(\boldsymbol{a})\,\boldsymbol{d}=\rho\cdot\boldsymbol{d}.$$

- At any a, the matrix B(a) is nonnegative and irreducible.
- There is a real largest eigenvalue ρ and a Perron vector $d \in \Delta$ s.t.

$$\boldsymbol{B}(\boldsymbol{a})\,\boldsymbol{d}=\rho\cdot\boldsymbol{d}.$$

• In other words, for each i,

$$\rho = \frac{\sum_{i} B_{ij} d_j}{d_i} = \frac{\sum_{j} \frac{\partial u_i}{\partial a_j} d_j}{-\frac{\partial u_i}{\partial a_i} d_i}.$$

- At any a, the matrix B(a) is nonnegative and irreducible.
- There is a real largest eigenvalue ρ and a Perron vector $\pmb{d} \in \Delta$ s.t.

$$\boldsymbol{B}(\boldsymbol{a})\,\boldsymbol{d}=\rho\cdot\boldsymbol{d}.$$

In other words, for each i,

$$\rho = \frac{\sum_{i} B_{ij} d_j}{d_i} = \frac{\sum_{j} \frac{\partial u_i}{\partial a_j} d_j}{-\frac{\partial u_i}{\partial a_i} d_i}.$$

 By uniqueness of the Perron vector, there is no other egalitarian direction.

$$\boldsymbol{B}(\mathbf{0}) = \begin{bmatrix} 0 & 0 & 7 \\ 5 & 0 & 0 \\ 0 & 6 & 0 \end{bmatrix}.$$

$$\boldsymbol{B}(\mathbf{0}) = \left[\begin{array}{ccc} 0 & 0 & 7 \\ 5 & 0 & 0 \\ 0 & 6 & 0 \end{array} \right].$$

$$r(\boldsymbol{B}(\mathbf{0})) = (5 \cdot 6 \cdot 7)^{1/3} \approx 5.94.$$

$$\boldsymbol{B}(\mathbf{0}) = \begin{bmatrix} 0 & 0 & 7 \\ 5 & 0 & 0 \\ 0 & 6 & 0 \end{bmatrix}.$$

$$r(\boldsymbol{B}(\mathbf{0})) = (5 \cdot 6 \cdot 7)^{1/3} \approx 5.94.$$

 Geometric mean of weights along a cycle is always a lower bound on r(B(0)).

$$\boldsymbol{B}(\mathbf{0}) = \begin{bmatrix} 0 & 0 & 7 \\ 5 & 0 & 0 \\ 0 & 6 & 0 \end{bmatrix}.$$

$$r(\boldsymbol{B}(\mathbf{0})) = (5 \cdot 6 \cdot 7)^{1/3} \approx 5.94.$$

- Geometric mean of weights along a cycle is always a lower bound on r(B(0)).
- Cycles also provide an upper bound. If no cycles, then r(B(0)) = 0.

Who is Essential?

Who is Essential?

Who is Essential?

$$\boldsymbol{B}(\mathbf{0}) = \begin{bmatrix} 0 & 0 & 7 \\ 5 & 0 & 6 \\ 0 & 0 & 0 \end{bmatrix}$$

 $r(\boldsymbol{B}(\boldsymbol{0}))=0$

(no cycles)

$$\boldsymbol{B}(\mathbf{0}) = \begin{bmatrix} 0 & 0 & 7 & 0.5\\ 5 & 0 & 6 & 0.5\\ 0 & 0 & 0 & 0.5\\ 0.5 & 0.5 & 0.5 & 0 \end{bmatrix}$$

$$\boldsymbol{B}(\mathbf{0}) = \begin{bmatrix} 0 & 0 & 7 & 0.5 \\ 5 & 0 & 6 & 0.5 \\ 0 & 0 & 0 & 0.5 \\ 0.5 & 0.5 & 0.5 & 0 \end{bmatrix}$$

 $r(\boldsymbol{B}(\boldsymbol{0}))>1$

(lots of cycles)

$$\boldsymbol{B}(\mathbf{0}) = \begin{bmatrix} 0 & 0 & 7 & 0.5 \\ 5 & 0 & 6 & 0.5 \\ 0 & 0 & 0 & 0.5 \\ 0.5 & 0.5 & 0.5 & 0 \end{bmatrix}$$

$$\boldsymbol{B}(\mathbf{0}) = \begin{bmatrix} 0 & 0 & 7 & 0.5 \\ 5 & 0 & 6 & 0.5 \\ 0 & 0 & 0 & 0.5 \\ 0.5 & 0.5 & 0.5 & 0 \end{bmatrix}$$
$$r(\boldsymbol{B}(\mathbf{0})) \ge (5 \cdot \frac{1}{2} \cdot \frac{1}{2})^{1/3} > 1$$

Assumption (Gross Substitutes)

Let $p_j > 0$ be the price of j's effort and 1 be i's wage. Let

$$oldsymbol{a}^*(oldsymbol{p}) = rgmax_{oldsymbol{a}} u_i(oldsymbol{a}) ext{ subject to } \sum_{j
eq i} p_j a_j \leq a_i.$$

Assumption (Gross Substitutes)

Let $p_j > 0$ be the price of j's effort and 1 be i's wage. Let

$$oldsymbol{a}^*(oldsymbol{p}) = rgmax_{oldsymbol{a}} u_i(oldsymbol{a}) ext{ subject to } \sum_{j
eq i} p_j a_j \leq a_i.$$

If only p_j increases, then for $k \neq i, j$, the demand a_k^* does not strictly decrease (in the strong set order); a_i^* does not strictly increase.

Consider preferences \hat{u} , defined as the linearization of u at a.

Back

Note that each agent's "better-than-a" set is strictly larger under \hat{u} than under u.

By Maskin's theorem, whatever Σ_{H}^{*} implements under \hat{u} must also be implemented under u.

Back

Suppose now preferences of the form $u_i(a, m_i)$, where m is the net transfer of "money" i receives.

- Suppose now preferences of the form u_i(a, m_i), where m is the net transfer of "money" i receives.
- Assume for this slide that $\frac{\partial u_i}{\partial a_i} = -1$.

- Suppose now preferences of the form u_i(a, m_i), where m is the net transfer of "money" i receives.
- Assume for this slide that $\frac{\partial u_i}{\partial a_i} = -1$.

Define
$$\theta_i(\boldsymbol{a}, \boldsymbol{m}) = \left[\frac{\partial u_i}{\partial m_i}(\boldsymbol{a}, \boldsymbol{m})\right]^{-1}$$
: inverse marginal utility of income.

- Suppose now preferences of the form $u_i(a, m_i)$, where *m* is the net transfer of "money" *i* receives.
- Assume for this slide that $\frac{\partial u_i}{\partial a_i} = -1$.

Define
$$\theta_i(\boldsymbol{a}, \boldsymbol{m}) = \left[\frac{\partial u_i}{\partial m_i}(\boldsymbol{a}, \boldsymbol{m})\right]^{-1}$$
: inverse marginal utility of income.

Proposition

The action profile \boldsymbol{a} is a Lindahl outcome if and only if $\boldsymbol{\theta} = \boldsymbol{\theta} \boldsymbol{B}$ where $m_i = \theta_i \left(-a_i + \sum_j B_{ij} a_j \right)$.

$$u_i(\boldsymbol{a}) = -a_i + \sum_{j \neq i} \left[G_{ij} a_j + H_{ij} \log a_j \right]$$

$$u_i(\boldsymbol{a}) = -a_i + \sum_{j \neq i} \left[G_{ij} a_j + H_{ij} \log a_j \right]$$

Let $h_i = \sum_j H_{ij}$ and assume $r(\boldsymbol{G}) < 1$.

$$u_i(\boldsymbol{a}) = -a_i + \sum_{j \neq i} \left[G_{ij} a_j + H_{ij} \log a_j \right]$$

Let $h_i = \sum_j H_{ij}$ and assume $r(\boldsymbol{G}) < 1$.

Fact

 $m{a}$ has the centrality property if and only if $m{a} = (m{I} - m{G})^{-1}m{h}.$

$$u_i(\boldsymbol{a}) = -a_i + \sum_{j \neq i} \left[G_{ij} a_j + H_{ij} \log a_j \right]$$

Let $h_i = \sum_j H_{ij}$ and assume $r(\boldsymbol{G}) < 1$.

Fact

 $m{a}$ has the centrality property if and only if $m{a} = (m{I} - m{G})^{-1}m{h}.$

$$oldsymbol{a} = (oldsymbol{I} - oldsymbol{G})^{-1}oldsymbol{h} = \sum_{\ell=0}^{\infty} oldsymbol{G}^{\ell}oldsymbol{h}$$

$$u_i(\boldsymbol{a}) = -a_i + \sum_{j \neq i} \left[G_{ij} a_j + H_{ij} \log a_j \right]$$

Let $h_i = \sum_j H_{ij}$ and assume $r(\boldsymbol{G}) < 1$.

Fact

 $m{a}$ has the centrality property if and only if $m{a} = (m{I} - m{G})^{-1}m{h}.$

$$m{a} = (m{I} - m{G})^{-1}m{h} = \sum_{\ell=0}^{\infty} m{G}^{\ell}m{h}$$

Say $m{h} = m{1}$. Then $a_i = \left(egin{smallmatrix} {
m total \ value \ of \ walks} \ {
m in \ G \ ending \ at \ i}
ight)$

Discrete-time sequential offers bargaining:

• The current active player proposes a direction $d \in \Delta$ and an upper bound s_i .

- The current active player proposes a direction $d \in \Delta$ and an upper bound s_i .
- Each other player j sequentially announces s_j or "no".

- The current active player proposes a direction $d \in \Delta$ and an upper bound s_i .
- Each other player j sequentially announces s_j or "no".
- If anyone says "no", then the next proposer is active. Otherwise, play a = d (min_j s_j)

- The current active player proposes a direction $d \in \Delta$ and an upper bound s_i .
- Each other player j sequentially announces s_j or "no".
- If anyone says "no", then the next proposer is active. Otherwise, play a = d (min_j s_j)
- Result: as $\min_i \delta_i \to 1$, the MPE payoffs converge to Lindahl payoffs.

Discrete-time sequential offers bargaining:

- The current active player proposes a direction $d \in \Delta$ and an upper bound s_i .
- Each other player j sequentially announces s_j or "no".
- If anyone says "no", then the next proposer is active. Otherwise, play a = d (min_j s_j)
- Result: as $\min_i \delta_i \to 1$, the MPE payoffs converge to Lindahl payoffs.

• Does not depend on ratios $(1 - \delta_i)/(1 - \delta_j)$.

Discrete-time sequential offers bargaining:

- The current active player proposes a direction $d \in \Delta$ and an upper bound s_i .
- Each other player j sequentially announces s_j or "no".
- If anyone says "no", then the next proposer is active. Otherwise, play a = d (min_j s_j)
- Result: as $\min_i \delta_i \to 1$, the MPE payoffs converge to Lindahl payoffs.

• Does not depend on ratios $(1 - \delta_i)/(1 - \delta_j)$.

- Citations:
 - Yildiz (*Games* '03), Dávila and Eeckhout (*JET* '08), Dávila, Eeckhout, and Martinelli (*J Pub Econ Th* '09), Penta (*J Math Econ* '11).

