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Strategic agents choose whether to be active in networked markets. The value of being active depends on the

activity choices of specific counterparties. Several markets are coupled when agents’ participation decisions

are complements across markets. We model the problem of an analyst assessing the robustness of coupled

networked markets during a crisis—an exogenous negative payoff shock—based only on partial information

about the network structure. We give conditions under which exit spirals emerge—abrupt collapses of activity

following shocks. Market coupling is a pervasive cause of fragility, creating exit spirals even between networks

that are individually robust. The robustness of a coupled network system can be improved if one of two

markets is replaced by a centralized one, or if links become more correlated across markets.
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1. Introduction

Many important financial instruments are traded in networked markets: Over-the-counter (OTC)

markets in which agents trade with—or otherwise depend on—only a subset of possible counter-

parties. Due to search or other frictions, market participants cannot adjust their counterparties

instantly, and so trading relationships are persistent. Examples of networked markets include the

markets for corporate bonds (Hendershott and Menkveld 2014, Di Maggio et al. 2021), repo (Hüser

et al. 2021), municipal bonds (Li and Schürhoff 2019), securitizations (Hollifield et al. 2017), and
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the overnight interbank market (Afonso et al. 2013). Such markets are large1 and their fragility

has been discussed as an important component of the 2007/2008 global financial crisis. Gorton and

Metrick (2012), for example, argue that a central aspect of the crisis was a system-wide run on

short-term collateralized debt, and in particular on certain non-government bond repo markets.2

Market participants’ decisions about whether to be active in various markets are strategic: Coun-

terparties’ activity decisions affect an agent’s incentives to participate in a market. At the same

time, there are linkages across markets. An agent’s activities in different markets can be comple-

mentary, for example when access to one market makes it easier to operate in another.3 Markets

may also be linked because of fixed costs: Having established infrastructure for holding or trad-

ing one type of asset, the marginal costs of entering other markets are smaller. A third channel

comes from the benefits of engaging in multiple lines of business. A risk-averse agent will be more

willing to intermediate if the revenue stream from one market can be added to that from another

market, increasing the risk-adjusted value of the combined revenue stream. Such spillovers have

been studied to some extent in centralized markets (Brunnermeier and Pedersen 2009), but are

not well-understood in coupled networked markets. Indeed, the combination of within-market net-

worked strategic interactions, as well as the linkage of activity decisions across markets, presents

a rich and complex setting.

1 The market for asset backed securities had about $652 billion outstanding at the end of the global financial crisis,

while the municipal bond market had about $4 trillion outstanding at the end of 2012. Copeland, Martin, and Walker

(2014) estimate the sum of all repo outstanding on a typical day in July and August 2008 to be $6.1 trillion.

2 Similarly, Krishnamurthy, Nagel, and Orlov (2014) show that markets for asset-backed commercial paper (ABCP)

experienced a significant contraction.

3 For instance, Brunnermeier and Pedersen (2009) argue—in the context of a centralized market—that the market for

repo (short-term loans secured by collateral such as bonds) and the market for the underlying collateral are coupled.

The complementarity works as follows: when the bond market is less liquid, traders are less willing to take a bond as

collateral (because they will have a hard time selling it in case of counterparty default), so fewer loans are extended

at a given price. Conversely, repo funding is used to finance collateral (e.g., bond) purchases, so illiquidity in the repo

market reduces liquidity in the collateral market.
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Understanding how networked markets respond to stress in the presence of complex payoff inter-

actions is of fundamental importance. In this paper, we study the endogenous determination of

activity in such markets. Motivated by our interest in fragility, we study the expectations of an

analyst, for example a policymaker, with only partial knowledge of the network structure, assessing

the stability of the system. Our main results identify circumstances in which such analysts should

be especially concerned about an exit spiral—a sudden collapse of activity in the system.

We model the level of activity of the market as the outcome of a strategic interaction in Section

2 by examining the Nash equilibria of a networked market game, where each agent decides whether

or not to be active in various markets. Activity may represent provision of liquidity, servicing

payment obligations, or other actions that support counterparties’ activity. An agent’s benefit

from being active depends on the activity decisions of its counterparties—also called network

neighbors—in various markets, rather than in just a single market in isolation. We study a fairly

rich class of payoffs which go beyond existing analyses. In our specification of payoffs, agents receive

benefits that depend on their neighbors’ activities (in a way that allows for flexible spillovers within

and across markets), while facing a fixed cost if they are active in any market. Fixed costs are

idiosyncratic and drawn from a distribution governed by a parameter (corresponding to exogenous

economic conditions) that stochastically shifts costs up or down. After setting out a tractable

framework for studying such markets, we state basic results on equilibrium existence in Section 2.

Throughout, we make the most optimistic equilibrium selection possible by focusing on activity in

the maximal equilibrium. In principle, an omniscient analyst with full knowledge of the network

could use this information to fully assess the aggregate level of activity in the market as a whole,

as well as that of any individual neighborhood.

Our main results, however, do not assume an omniscient analyst. Instead, we take the perspective

of a macroprudential stress test conducted before the game is played. An analyst specifies a crisis

scenario and wants to know how the crisis affects the activity decisions of market participants. A

fundamental challenge in such a stress test is that authorities have only limited information about



Aymanns, Georg, and Golub: Exit Spirals in Coupled Networked Markets
4 Forthcoming in Operations Research

Network realization
given a degree distribution

Cost draws

Network
after nodes with high cost have withdrawn

Figure 1 Illustration timing of our model in one market. First a crisis network is realized. Second, agents’ cost

draws are realized and the game unfolds, causing some agents to chose to withdraw from the market.

the network structure in the crisis scenario.4 The timeline of our model is intended to accommodate

this feature, and is illustrated for one market in Figure 1. First, a random crisis network is realized

in each market, whose links specify the potential trading partners of the agents. The distribution

of the crisis networks reflects the analyst’s ex-ante uncertainty, discussed above, and allows us to

capture heterogeneities in the agents’ network connectedness (number of counterparties). Next, the

agents’ costs are drawn from a distribution, with the aggregate cost parameter mentioned above

determining the severity of the crisis scenario. For some agents, the fixed cost may be so large that

they immediately withdraw, irrespective of any other agent’s action.

In the realized crisis networks, the game we described earlier is played. The analyst conducting

the macroprudential stress test wishes to assess the expected equilibrium activity in the maximal

equilibrium from an ex-ante perspective. Thus, our calculations focus on the expected activity

4 In particular, certain counterparty relationships may be effectively shut down due to bilateral exposure limits or

other events—see, for example, Di Maggio et al. (2021), Perignon et al. (2018). Online Appendix C offers evidence

from the 2008 financial crisis showing that active overnight lending links between large banks changed substantially

during the crisis. In a large cross-country comparison of 13 jurisdictions, Anand et al. (2018) discuss how analysts

make inferences about granular network data based on the partial data available to them.
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measure, with expectations taken over the crisis network realization and the distribution of fixed

costs. We examine the expected activity as a function of the severity of the aggregate cost shock

in order to probe how sensitive activity is to the economic environment. In particular, we are

interested in a situation when small shifts in costs can cause a collapse in activity.

Our first set of results on this are stated for a reasonably general class of network games of

strategic complements. We provide a sufficient condition for there to be a discontinuous collapse

of activity—an exit spiral. The sufficient condition is an upper bound on the benefit an agent

derives from a single link. The condition entails that complementarities across links are crucial to

supporting activity. We show how this condition obtains naturally in coupled markets but also in

some environments with a single network—for example, a model of financial contagion.5 The main

contribution of Section 3 is that it studies Nash equilibria with fairly flexible payoffs, and gives

sufficient conditions for discontinuous collapses.6

Next, we seek to better understand the comparative statics of fragility, and when coupling

between markets creates fragility that would otherwise be absent. In Section 4, we thus focus on a

class of situations in which the complementarity between markets is strong, while complementarities

within a market are weak. More precisely, we introduce a setting of simple complementarities, where

each agent finds it optimal to be active in all networks if and only if it has one active neighbor in

each. The resulting equilibrium outcomes have a natural graph-theoretic interpretation. Building

on results in graph theory, we can precisely describe the conditions for exit spirals. This setting

turns out to be one in which coupling between markets is crucial to discontinuous collapses: exit

spirals occur exactly when networked markets are coupled, whereas each network would be robust

if it were operating on its own. In this setting we can also give an intuition in terms of network

structure for how coupling brings about exit spirals. We do this by introducing the notion of fragile

connectors. A fragile connector is an agent whose connectedness to others is fragile—dependent

5 For a recent survey of the growing literature, see Glassermann and Young (2016).

6 This stands in contrast to a physics literature, which typically considers more mechanical processes (Dodds and

Watts 2004) and often examines them through approximate mean-field analyses.
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on a few counterparties or even just a single counterparty—in one market, and which provides

support to many agents in other markets.

We use the explicit calculations available in the setting of simple complementarities to examine

several follow-up questions about the conditions that foster fragility and policies that may ame-

liorate it. An important determinant of fragility is how correlated, or overlapping, links are across

distinct markets. Our basic model takes neighborhoods across markets to be independent. We show

that the fragility of coupled networked markets—their susceptibility to exit spirals—is reduced

when markets have more links in common. That is, when an agent’s counterparties in one market

are more likely to be counterparties in the other. In addition, when one market is centralized with

all agents being connected via an exchange, exit spirals do not arise. What is more, when one of the

markets is centralized, the size of the shock needed to cause activity to dry up is larger than in the

case of coupled non-centralized markets. Lastly, we study explicit numerical examples in canonical

types of networks—coupled Erdös-Rényi networks and scale free (power law) networks—to illus-

trate the starkness of the discontinuity in the case of two coupled network markets, in particular

in comparison with the continuous transition in the case where one of the markets is centralized.

Our closing discussion, in Section 5, examines two of our key assumptions: the existence of

strategic complementarities and the exogenously fixed network structure. The discussion also sur-

veys the related literature and our contributions relative to it. Though network models have been

used extensively to describe interlinked financial obligations, local trading relationships, and other

over-the-counter markets, there has been much less study of the distinctive economic implications

of coupled networked markets. The conclusions emphasized above—the existence of exit spirals,

the benefits of centralizing at least one market, and the benefits of greater overlap between two

networked markets—demonstrate some of the implications that are economically interesting and

potentially relevant for policy analysis.

2. Model

In this section we present a model of network games with coupled activity decisions, and then

illustrate it with some examples. This model serves as the setting of our most general results.
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2.1. A game: Participation in coupled markets

We will define a game in which agents strategically choose whether to be active in each of multiple

markets. There is a set N of agents, and a set M of markets. Agents may trade bilaterally with

one another in each market µ∈M. Agents interact in a given market only with a subset of other

agents; this subset can depend on the market. The set of relationships among agents in market µ

is taken as exogenous and described by a directed network Gµ. A directed network G is a set of

nodes V (G) together with a set E(G) of directed links, i.e., ordered pairs (i, j) with i, j ∈N . We

assume there are no self-links.7 All markets share the same node set: V (Gµ) =N . We call a tuple

(Gµ)µ∈M a multilayer network.

We write i
µ→ j for a link from i to j in market µ, which we interpret as any interaction that

supports j’s activity. The µ above the arrow indicates the market in question; if the market is

understood or its identity is unimportant, we omit µ. We offer a few examples. In a trading

application, a link could represent i trading with j (fulfilling orders, offering quotes, etc. on request

from j).8 In a debt contracts application, a link could represent a credit relationship whereby i

makes (re-)payments to j, which supports j’s ability to pay its creditors in turn.

It will be useful to define an agent’s neighborhood (e.g. the set of its trading partners or debtors).

Because there are multiple networked markets, we will keep track of multiple neighborhoods.

Definition 2.1 (Neighborhoods). The in-neighborhood of agent i in market µ is the set of

agents whose directed links point to i in Gµ:

K−
i,µ = {j | j→ i∈E(Gµ)},

and can be interpreted as the set of agents supporting i. The in-degree of agent i in market µ is

the size of the in-neighborhood d−i,µ = |K−
i,µ|.

7 That is, for all networks we consider, (i, i) /∈E(G).
8 Trading links are often reciprocal, but we allow for the possibility that they track the flow of one asset, so that for

example i always sells an asset to j but never buys it.
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Analogously, we define the set of agents that are supported by i as the out-neighborhood K+
i,µ

by replacing j→ i with i→ j in the above definition. The out-degree d+i,µ is defined as the number

of these agents.

Agents play a complete-information game of strategic activity choice. Let ai,µ ∈ {0,1} denote

agent i’s decision of whether to be active in market µ, with the tuple ai = (ai,µ)µ∈M being agent i’s

action. We use the notation a for the profile of all agents’ actions, i.e. a= (ai)i∈N . An agent’s payoff

will depend on the actions of other players and the realization of an exogenous, agent-specific cost

ci.

An agent’s payoff is

ui(a) = bi(a; (Gµ)µ∈M)− ci
∨

µ∈M

ai,µ, (1)

where
∨

µ∈M ai,µ is defined to be 1 if any of the ai,µ is 1. Here bi(·) is a real-valued function

describing the benefits of being active. The cost ci > 0 is a random variable, independent of all

other random realizations in the model, reflecting the fixed cost to be paid if the agent is active

in any market. The distribution of costs is F (c;x) where x ∈ [0,1] is an aggregate parameter that

will shift all costs (a simple example is that x is subtracted from all costs).

We impose structure on the game via several assumptions.

Assumption 2.1 (Maintained assumptions on benefits and costs). We assume:

1. If x< x′, then F (c;x)≤ F (c;x′), and F (0;x) = 0 for all x.

2. bi is bounded: there is a real number b so that bi(a; (Gµ)µ∈M)≤ b for all values of the arguments.

Moreover, whenever bi is positive, it is strictly increasing in each ai,µ.

3. We have limx→0F (b,x) = 0.

Part (1) of the assumption says that as x increases, costs stochastically decrease. Part (2) of the

assumption says there is an upper bound b on the benefits, and that increasing one’s action in any

component has some (possibly very small) benefit.9 Part (3) says that as x decreases to 0, all costs

shift to be above this upper bound.

9 This assumption is very convenient technically, as we will see in the following few paragraphs.
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Under these assumptions, an agent’s best response to its neighbors’ actions can be summarized

as follows:

Ri(a−i) =


1 if bi((1,a−i); (Gµ)µ∈M)≥ ci

0 otherwise.

(2)

Here, 1 refers to the tuple of all ones, and similarly for 0. The notation (1,a−i) refers to the action

profile where i takes action 1 in every market and the others’ actions are given by a−i. Note that

(2) states that each agent i takes the same action in all markets µ in any best response. This holds

because, upon choosing to be active in one market the costs of being active in more markets are

the same while the benefits are higher. As a result, for the purposes of studying equilibria and

possible deviations,10 it will suffice to keep track of only a single action yi for each agent across

all layers. We will often call it simply i’s action, and correspondingly refer to a single-valued best

response, and single-valued equilibrium actions.

In view of the previous paragraph, we work with a vector of actions y in which yi is the action

of node i in every layer.

Assumption 2.2 (Structural assumptions on benefit function). We assume that:

1. The value bi(y; (Gµ)µ∈M) depends only on yℓ for those ℓ with a directed path to i using links

in any market11 in (Gµ)µ∈M.

2. The function bi is anonymous: Let φ is any measurable function φ :N →N . Upon relabeling

all agents according to φ, for all i the function bφ(i) is equal to bi.

3. The benefit function bi((1,y−i); (Gµ)µ∈M)) is weakly increasing in the vector y−i of others’

actions, and is zero when all in-neighbors ℓ of i have yℓ = 0.

Part (1) gives a meaning to the links in the network: payoffs of i can depend only on agents with

a path of dependency links indirectly supporting i. Part (2) of the assumption says that labels do

10 When an agent deviates to a strategy with different actions across all layers, the agent can get at least as high a

payoff from a deviation which involves only one action across all layers.

11 That is, paths like ℓ
µ1→ ℓ1

µ2→ ℓ2 · · ·
µp→ i.
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not matter: payoffs depend on network structure and actions, not on players’ indices. Part (3) of

the assumption is stronger than necessary but very convenient technically, because it permits the

use of monotone comparative statics techniques.

A key outcome of interest will be the fraction of active agents, or, equivalently, the probability

that an agent selected uniformly at random is active. For concreteness, we will focus on the maxi-

mum expected value of this outcome across pure-strategy equilibria of the game.12 Denote the set

of such equilibria S. Letting I denote an agent sampled uniformly at random, we define

A((Gµ)µ∈M) = max
σ∈S

E [yI | (Gµ)µ∈M] . (3)

Looking at activity in a maximal equilibrium, defined to be a σ that is a maximizer of the expec-

tation in the above expression, corresponds to making the most optimistic equilibrium selection

possible. The expectation is over draws of the costs for each node, as well as the draw of the agent

I. Because the game is supermodular, there is a unique equilibrium that is maximal, and it is

maximal in a very strong sense: for each realization of cost draws, the action profile y played in

this equilibrium pointwise dominates the vector y′ corresponding to any other equilibrium. More-

over, natural iterative dynamics converge to this outcome: start with the profile where all agents

start out active, and then have everyone iteratively best-respond to previous actions. Formally, this

corresponds to applying R repeatedly to the vector (1, . . . ,1). For more detail on supermodular

games, maximal equilibria, and other natural learning dynamics reaching them, see, e.g., Milgrom

and Roberts (1990), Milgrom and Shannon (1994), and Adlakha and Johari (2013).

Recall also that we assumed the game is one of complete information among the agents; this

assumption is made for simplicity. However, it turns out that the iterative dynamic just described

leads to the equilibrium in question even if agents have much less knowledge than in the complete-

information benchmark. In particular, the myopic dynamic described above clearly does not require

agents to know others’ cost draws in order to best-respond to their actions.

12 Strategies in such equilibria correspond to maps σi : Rn → {0,1} describing each agent’s entry decision for given

cost draws; recall the game is one of complete information, so these are known.



Aymanns, Georg, and Golub: Exit Spirals in Coupled Networked Markets
Forthcoming in Operations Research 11

2.2. Examples

We now discuss two economic applications that fit into the environment described. These describe

relevant environments in which economic surplus is generated from activity within the markets,

motivating more concretely the interest in activity levels and exit spirals.

2.2.1. Trading networks Our model can be interpreted as describing the willingness of

intermediaries to be active in trading networks. The agents N in this model are intermediaries.

Each intermediary i∈N is associated with a single fundamental trader—a customer to whom this

intermediary exclusively provides market access—who may be a buyer or seller.13 There are some

pre-existing relationships that are capable of facilitating over-the-counter transactions between

intermediaries; these constitute the multilayer network (Gµ)µ∈M .

Consider first a market µ in isolation. Fundamental buyers and sellers cannot interact directly

but must trade through an intermediary. Each period, a number of random fundamental buyer-

seller pairs are drawn uniformly at random, constituting a positive fraction of all possible pairs. A

given fundamental seller can only trade with its associated fundamental buyer if there is a directed

link between their respective counterparties. More precisely, if fundamental seller A is associated

with intermediary iA, who has a link from intermediary iB, who is associated with fundamental

buyer B, then A and B can trade. In that case, the four parties critical to a trade then share

the surplus—for concreteness, equally, as in Goyal and Vega-Redondo (2007). Integrating over the

uncertainty, the trading revenues to an intermediary are then proportional to its neighborhood size.

When there are multiple markets, the same trading protocol plays out in each market separately,

and revenues from trading accrue separately across markets.

There are several ways to model the economics of the coupling between markets. The simplest,

and the one in our basic model, is that the two markets are coupled due there being a common

fixed cost paid for being active in at least one market. Markets could also be coupled via the

13 These customers are not part of the network, but should be thought of as being attached to the nodes of the

network.
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benefits of being active. For instance, suppose an intermediary can choose to allocate a fixed capital

budget across markets and that the benefit derived from a given market is proportional to the

allocated capital. Then, unless buyer-seller pairs across markets are perfectly correlated, a risk-

averse intermediary will choose to diversify its activity across markets rather than focusing it on

single market, and be better off for this diversification. Conversely, as an intermediary loses access

to one market, it cannot compensate perfectly by re-allocating capital to another market.

A final example of coupling comes from technological or institutional complementarities between

trading in different markets. An interesting instance of this is the link between the financial market

for repo (short-term debt secured by collateral such as bonds) and the market for the underlying

collateral. Intermediaries use repo loans to fund intermediation activity in collateral—indeed, repo

is a dominant source of short-term credit. At the same time, intermediaries use access to the market

for collateral in order to support their own repo lending activities. Access to the collateral market

is valuable because it allows an intermediary to liquidate the collateral securing repo loans in case

of counterparty default, making repo trading less risky. For deeper discussion of this institutional

coupling, see Gorton and Metrick (2012), Brunnermeier and Pedersen (2009).

In all of these cases, there are strategic complementarities across intermediaries in being active.

Intermediaries’ payoffs are increasing in the other intermediaries’ activity since (a) intermediaries

only receive a payoff if they provide access to trade for their fundamental buyers or sellers, (b) this

becomes more likely as other intermediaries become active.

Note that though the intermediation in this setting is (just for simplicity) restricted to operate in

one step, there are clearly longer-distance strategic effects: if one intermediary’s neighborhoods are

too small to provide enough trading benefits to cover the costs of operation, that intermediary will

withdraw and make other traders’ neighborhoods smaller, thus reducing their trading revenues,

and they may withdraw as well—and so on.

2.2.2. Contagion of financial distress In this application, links reflect financial obligations.

Agents are financial intermediaries who decide whether to be active, which means servicing their
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debts, or to be inactive, which means defaulting. Each network Gµ represents a different type of

financial obligation.14 The in-neighbors of intermediary i are intermediaries j
µ→ i who have an

obligation to i via instrument µ. Conversely, the out-neighbors of intermediary i are intermediaries

i
µ→ j to whom i has an obligation via instrument µ. We assume that within and across instruments

all of intermediary i’s creditors — i.e., its out-neighbors — have equal seniority and funds recouped

in one market can be used to pay obligations in any other market, without restriction.15 Thus,

in case of default of an intermediary, its creditors are paid pro rata. This means that an inter-

mediary cannot default selectively in one market, while remaining active in another, since doing

so would violate the seniority constraint. Furthermore, as is common, we assume that defaulting

intermediaries incur large bankruptcy costs.

In the following we formalize this model of financial contagion. Let Lji,µ denote the nominal value

of obligations of intermediary j to intermediary i. Similar to Eisenberg and Noe (2001), Acemoglu

et al. (2015), let τji,µ(aj,µ) be the payments by intermediary j to intermediary i in market µ if j

chooses action aj,µ. We assume that for each intermediary i nominal obligations match nominal

assets, i.e.,
∑

j∈K−
i,µ
Lji,µ =

∑
j∈K+

i,µ
Lij,µ, recalling that our K notation denotes neighborhoods.

We make the standard assumption that if intermediaries are active, they pay their obligations in

full. If they choose to be inactive (i.e., default), they only pay a fraction of their obligations, i.e.,

Lji,µ = τji,µ(1)> τji,µ(0). The payoff of being active for intermediary i is then

ui(a; (Gµ)µ) =
∑
µ

 ∑
j∈K−

i,µ

τji,µ(aj,µ)−
∑

j∈K+
i,µ

τij,µ(ai,µ)−B(1− ai,µ)

− ci
∨

µ∈M

ai,µ,

14 For example interbank loans (Allen and Gale 2000), certificates of deposit (Perignon et al. 2018), or derivatives.

Donaldson et al. (2022) discuss netting in interbank networks. D’Errico and Roukny (2021) discuss when derivatives

can be compressed. For our illustrative model, we abstract away from such issues and assume that obligations can be

neither netted nor compressed.

15 Restrictions might arise through regulations such as the separation of investment and retail banking under the

Glass-Steagall Act, or limits to transfer funds between subsidiaries of a bank holding company. The benefit function

could be modified to accommodate such restrictions.
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where we assume that the bankruptcy cost B is sufficiently large to make voluntary default

unattractive. As before, there is a fixed cost ci the intermediary incurs to be active. In this applica-

tion it can be thought of as an adverse shock to the intermediary. Note that an intermediary must

default if its obligations and costs exceed the payments made to it and the seniority constraint

implies that it must then default in all markets.16

Because intermediary i’s payoff increases in the activity of intermediaries who have an obligation

to i, this game is supermodular. As in the general model in Section 2.1, due to the structure of the

payoff function and the additional constraints, in any best-response, intermediaries take the same

action across markets.

It is worth remarking on how our work fits into financial contagion models. Such models have

focused on the existence and properties of market clearing vectors (e.g., Eisenberg and Noe (2001),

Acemoglu et al. (2015)) as well as the sizes or overall damage of cascades of default (e.g., Acemoglu

et al. (2015), Elliott et al. (2014), Glasserman and Young (2015)). See Glassermann and Young

(2016) for a detailed survey. In focusing on activity decisions, we are closer to the second strand.

3. Stress tests in random networks

3.1. Macroprudential stress testing and ex-ante expected activity

In our analysis, we focus on situations where the ex-ante expected number of active agents is of

interest. This is, for example, the case in macroprudential stress tests (e.g. Constâncio (2017),

Anderson et al. (2018)) in which an analyst has imperfect knowledge about the network structure

of financial obligations, anticipates a crisis scenario and asks what will happen to agents’ activity.

There are at least three reasons why analysts, even at central banks, do not have perfect knowl-

edge of the structure of financial networks. First, and almost tautologically, only historical network

data can be observed. An analyst undertaking a macroprudential stress test is interested in future

16 It would be possible to include these constraints in the payoff function, but for clarity we prefer to include them

as explicit constraints in the agents’ decision problem.
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Figure 2 Stress testing and crisis timeline.

scenarios, so the analyst must always extrapolate from historical data. Second, even as data collec-

tion efforts of regulators have increased following the global financial crisis, granular information

about many financial instruments is not available.17 Third, many intermediaries are both nation-

ally and internationally connected. However, granular data about international financial linkages

between individual financial institutions is not usually available.18 Our model of the crisis network

is thus captured by a distribution over multilayer networks, G∈∆((Gµ)µ∈M).

With this in mind, our model has a timeline that can be divided into two phases: a stress testing

phase (t= 0) and a crisis phase (t= 1,2,3). Let us first consider the events of the crisis phase. Fix

a cost distribution F (c;x) and a distribution G over multilayer networks. At t = 1, a multilayer

network (Gµ)µ∈M is drawn. At t= 2, the agents’ costs are drawn. Finally, at t= 3, an equilibrium

activity level, given the multilayer network and cost draws, is realized, subject to our selection of the

maximum-activity equilibrium. In the stress testing phase, the analyst thus forms an expectation:

Â=E[A((Gµ)µ∈M)],

17 See, for example, the discussion in Anand et al. (2018).

18 The Bank for International Settlements provides the BIS locational database which provides country-level bilateral

information–albeit for a subset of countries only.
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where the expectation is taken according to the distributions assessed by the analyst at t= 0, i.e.

F (c;x) and G. In this application, the transformed cost parameter 1− x can be interpreted as a

measure of the size of the aggregate shock.19 In what follows, our object of interest will be the

expected equilibrium activity measure Â and its dependence on the distributions F (c;x) and G,

reflecting different beliefs of the analyst over crisis scenarios. Figure 2 illustrates the sequencing of

events and highlights where the primitives of the model are relevant.

A key question is whether—from the ex ante perspective of the analyst—the random crisis

network is robust or fragile: whether activity degrades gradually as the crisis gets worse, or whether

it exhibits extreme sensitivity. We probe this by studying how sensitive the network is to the shock

size 1−x. In particular, a configuration is said to be fragile if the total activity is highly sensitive

to the value of 1−x.

3.2. Random network model

For the rest of this section, we study contagion in random networks, which we interpret as the crisis

networks at t= 1, with the randomness modeling the uncertainty at the time of the stress test. We

work for technical convenience with a continuum model, where the set of nodes is N = [0,1]. For

each market µ ∈M, fix a joint distribution (pjk,µ)j,k where pjk,µ is the fraction of agents with in-

degree j and out-degree k in market µ. (Here j and k range over the nonnegative integers.) Assume

that the distributions satisfy, for each µ, that
∑∞

j,k jpjk,µ =
∑∞

j,k kpjk,µ, so that in aggregate, the

measure of in-links matches that of out-links. We use a model G which draws a multilayer graph

on a continuum of agents with three key properties: (i) the realized degree distribution in market µ

is (pjk,µ)j,k; (ii) any node ℓ’s probability of being in a given node’s in-neighborhood in market µ is

proportional to the out-degree of ℓ in market µ, corresponding to uniform matching conditional on

degrees; (iii) the neighborhoods of any countable set of nodes are independent conditional on the

realized degrees. In Appendix B.1 we present a continuum version of the Bollobás configuration

model formalizing the construction of such a G.

19 Recall that a larger value of x corresponds to stochastically lower costs.
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We focus on degree distributions as the key parameters in the distribution G because this is the

main dimension identified as important for contagions (see, e.g., (Newman 2002)); other structure

could also be incorporated into the analyst’s distribution over coupled networks. Models based

on degree distributions make the study of contagions tractable. Indeed, we will be able to study

conditions for fragility without parametric assumptions on the shape of the degree distribution.

We also impose:

Assumption 3.1. The random networks Gµ are mutually independent random variables with dis-

tribution Gµ.

This implies that, for example, agent i’s in-degree in Gµ is independent of its in-degree in Gµ′ for

µ ̸= µ′. This assumption is convenient for the sharpest statements of results, but not necessary. We

relax this assumption in Section 4.7 in the context of our leading illustration.

3.3. General sufficient condition for discontinuity

We now state sufficient conditions on the environment that guarantee that there is a discontinuity

in the maximal equilibrium. We begin with general conditions, and then discuss them and illustrate

them in more specific cases.

Definition 3.1 (Exit spiral). Fix the parameters of the environment (i.e., of the game and the

network structure). We say an exit spiral occurs at xcrit, if:

1. There is an Acrit > 0 such that whenever x > xcrit, we have Â ≥ Acrit asymptotically almost

surely;

2. For x< xcrit, the activity measure satisfies Â= 0 almost surely.

Let b(1) be the supremum of the functions bi across all multilayer networks and action profiles

a in which i has only one active neighbor in any network. Let e−µ be the expected in-degree of the

origin of a random edge in Gµ, and let

e= max
µ∈M

e−µ .
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Proposition 1 (Sufficient condition for discontinuity). Suppose that there is an x so that

Â> 0 (i.e., there is positive activity at some x). Suppose further that, uniformly over x, we have

F (b(1);x)e < 1.

Then there is an xcrit > 0 such that there is an exit spiral at xcrit.

A natural case in which the condition holds is when an agent derives no benefit from having

only a single link in one network.

Corollary 1 (Sufficient condition for discontinuity). Suppose that, b(1) = 0. Then, if there

is an x such that Â> 0, then there is an exit spiral at some xcrit.

This arises naturally in coupled markets, if access to a market µ′ is required to get positive

net incremental value from relationships in a market µ. More generally, the sufficient condition in

Proposition 1 holds if b(1) is small enough; note the condition F (b(1);x) imposes a joint restriction

on benefits and costs.

3.3.1. Proof intuition The idea behind the proof is to analyze a fixed-point condition that

must hold at equilibrium, and show that this condition is not consistent with equilibria having

very low activity levels. As an extreme simplifying assumption, made only for exposition in this

intuitive sketch, suppose that all nodes have the same in-degree in all layers.

Let ρ(α;x) be the probability that an agent has ui(1;1A)≥ ui(0;1A) when all in-neighbors of any

node20 are playing yi = 1 independently with probability α. This can be viewed as an “aggregate

reaction function”: it describes the aggregate level of activity occurring in a best response to activity

level α. We show in the proof that equilibrium requires

ρ(α;x) = α.

The fixed point condition says when neighbors are active independently with probability α, on

average others have incentives to be active at the same rate.

20 Note that in general, nodes that are not immediate neighbors of i may matter for i’s payoffs.
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Now, if the maximum equilibrium level of activity decreases to 0 continuously as x decreases,

then there must be solutions of ρ(α;x) = α with arbitrarily small α (and some values of x). But the

proof shows that under the assumed condition (F (b(1);x)e < 1), there cannot be such solutions,

because ρ(α;x) < α for α in a neighborhood of 0, uniformly over x. This, in turn, is proved by

establishing that the derivative21 of ρ in its first entry is less than 1, uniformly across x. This is

where the key sufficient condition F (b(1);x)e < 1 comes into play.

This gives some of the ideas of the proof. The actual proof is challenging for two reasons. First,

some key steps in the above argument were heuristic, such as that we can treat neighbors of a node

as independent at equilibrium—something which is far from obvious in general. Second, assuming

uniform degrees reduced the problem to a one-dimensional one, but in reality the problem is high-

dimensional because there are many layers and each node has a “degree type,” with different

degrees in each layer. The proof accounts for these subtleties and shows that, nevertheless, the

basic idea sketched above can be carried through.

3.3.2. Discussion The main value of Proposition 1 comes from its generality. While we use

the random network structure of the configuration model, our assumptions in Section 2.1 on the

game otherwise allow for a large class of payoffs. For example, we can have payoffs depend on the

activity patterns of indirect neighbors, as in the debt example of Section 2.2.2. To our knowledge,

despite active literatures on phase transitions and, separately, on network games, rigorous results

on phase transitions in large-network games are rare.

Though the result is primarily motivated by our study of multiple coupled markets, it is more

general. The condition of the proposition, F (b(1);x)e < 1, applies whether the setting has a single

market or many. The key aspect of the condition is a small enough benefit of individual links. Dis-

continuities occur when complementarities are crucial to generating incentives for activity, whether

these complementarities are within- or across-market.22

21 Actually, this slope condition is weaker than the condition we impose in our result and stronger results can be

obtained by studying ρ (and its generalization which appears in the proof) near 0.

22 Indeed, the proof shows that, were incentives from activity to come purely from the value of single links, this would

not be enough to support activity under the condition F (b(1);x)e < 1.
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Strong complementarities across links can arise within a single market. For example, in the finan-

cial obligation example of Section 2.2.2, it may be unlikely that a node would function given just

one actively repaying counterparty; multiple counterparties paying their obligations can be neces-

sary to ensure an agent’s activity. Note that such a market would experience fragility essentially

irrespective of the situation in other coupled markets. Even if all complementary markets were to

perform well, within-market complementarities would cause fragility in such a case.

The presence of spillovers across markets generates a distinct force for fragility. Suppose that

there are two markets, and each market individually is robust, unlike the example we just gave:

Each individual market would not experience fragility if we fixed a certain positive level of activity

in the other markets. Nevertheless, when multiple markets are coupled and subject to shocks, the

system becomes fragile. This is, of course, also consistent with the proposition. Since b(1) is defined

as an upper bound on benefits when a node has just one link across all markets, b(1) can be low

entirely because of complementarity across, and not within, markets. Thus, coupling of markets

can create fragility where none would be expected based on single-market considerations. The next

section is devoted to fleshing out this point and exploring the mechanics and implications in more

detail in a setting where spillovers across markets play the key role.

4. Coupled networked markets with simple complementarities

The previous section established a discontinuity result in some generality, but left two main ques-

tions open. First, the setting there was abstract and yielded only a general sufficient condition

for discontinuity. It is valuable to have a more concrete specification of payoffs to examine exact

conditions for discontinuity and the comparative statics of the resulting fragility. To this end, we

specialize to a game with simple complementarities. This game is designed to focus on the effects of

coupling: links within a market are perfectly substitutable, while there is complementarity between

an agent’s operations across markets. We will see that the analysis of our equilibrium activity

measure is quite tractable and reduces to the graph-theoretic notion of a mutual giant component.

This allows us to flesh out the point, anticipated at the end of the previous section, that coupling

can create fragility when none would be present without coupling.
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Second, at a more technical level, working with a continuum of agents in the previous section

was a convenient idealization, and technically necessary to obtain rigorous results in the generality

we had there. However, because real networks contain finite numbers of agents, it is valuable to

check that the discontinuities documented above do in fact occur with large but finite numbers

of agents. To this end, we consider finite models in this section and study them for large enough

populations, rather than working directly at the limit.23

4.1. Model

We simplify the model introduced in Section 2.1 along three dimensions. First, we restrict attention

to two coupled networked markets—call them the market for asset R and asset C, for concreteness.

It will be apparent how to generalize the definitions to an arbitrary number of markets. The choice

of names is inspired by the case of the repo and collateral markets, which are complements due to

their institutional coupling, discussed in Section 2.2.1 on trading games (but the force for coupling

could also come from the other channels discussed there, such as risk-sharing considerations).

Second, as a stark version of the coupling between the two markets, we assume that the benefit

function b(·) exhibits a strong form of complementarity; this assumption will make it possible to

characterize the structure of equilibria and their fragility much more explicitly than we could in

the previous section.

Assumption 4.1. 1. The function b is nonnegative and nondecreasing in a−i.

2. b(a−i) = 0 if and only if Si,R = 0 or Si,C = 0, where

Si,µ =
∑

j∈K−
i,µ

aj,µ.

Part (i) of the assumption means that the game is supermodular. Thus, its maximal equilibrium

can be found by starting from the maximum feasible actions a= (1, . . . ,1), and repeatedly applying

23 This analysis requires certain detailed characterizations from frontier results in random graph theory. Thus, we do

not expect that an analogous finite-n analysis is available for the full generality of the results in the previous section,

though this presents an important set of questions for further work.
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the best response function, R until convergence (Milgrom and Roberts 1990). Part (ii) of the

assumption means that an agent receives no benefit from being active if in one of the two markets

it has no active neighbors, but otherwise derives a positive benefit. This will allow us to establish

a simple link between the maximal equilibrium of the supermodular game and specific graph-

theoretic concepts. In the context of coupled trading networks, this amounts to assuming that not

having access to the other market prevents earning a positive return, while a single counterparty

offers enough access to make activity valuable.24

Third, we make the following assumption about the agents’ cost draws.

Assumption 4.2. The agents’ costs are i.i.d with distribution F (c,x), where, for some fixed ϵ > 0

F (c,x) =


x for c < b+ ϵ

1 otherwise.

Thus, in the limit as n→∞, a fraction 1−x of agents, drawn uniformly at random, will receive a

cost draw that exceeds the maximum benefit of being active and hence these agents will choose to

be inactive. Let W denote this set of agents. We will identify the realization of W with that of the

cost draw c, and will refer to the agents in W as the shocked agents and to 1−x as the size of the

shock. Under these assumptions, an agent’s best response to its in-neighbors’ actions simplifies to:

Ri(a−i) =


1 if i /∈W and Si,R(a−i) ·Si,C(a−i)> 0

0 otherwise.

(4)

As before, this allows us to reduce the analysis from now on to a one-dimensional description of

a agent i’s action, yi, which, without loss of generality, is that agent’s action in all markets.

24 In the case of repo and collateral that we have discussed, this assumption corresponds to a strong institutional

coupling whereby one cannot profitably intermediate in the repo market without access to the collateral market, and

one cannot obtain liquidity for collateral purchases without repo market access. Empirically, it would correspond to

the property that conditional on entering, agents earn positive gross profits if and only if they have access to trading

opportunities in both markets.
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4.2. Equilibrium in given networks

In the following, we will provide a graph-theoretic description of the maximal equilibrium. Suppose

that, at x= 1, the networks satisfy the following assumption.

Assumption 4.3. All agents have at least one incoming edge in GR and GC.

In this case, when x= 1, so that no firms are shocked, the maximal equilibrium is y∗ = 1. We can

think of this as a pre-shock situation, in which no agents have received a cost shock; our assumption

guarantees that no agents withdraw from the networks when x= 1. This result is stated and proved

as Lemma 2 in Appendix A.4.1 (using some terminology we introduce later in this section). Starting

from such a baseline, we can consider equilibrium outcomes for more interesting realizations of

the cost shock when x < 1. We refer to this regime as the post-shock regime. In the following we

characterize how the post-shock equilibrium depends on the structure of the networks GC and GR.

Let GC(W ) and GR(W ) denote the networks after all the edges corresponding to the agents in W

(i.e., those that have received a bad cost draw, c > b) have been removed. To link the equilibrium

outcome to the structure of GC(W ) and GR(W ), we first define a stable subset of nodes in a network

G.

Definition 4.1 (Stable subset). In a network G = (V,E), a subset V ′ ⊂ V is stable if, for each

i∈ V ′, there is a j ∈ V ′ such that (j, i)∈E. That is, every node in V ′ has an incoming edge from

V ′.

We now make an analogous definition for coupled networks.

Definition 4.2 (Mutually stable subset). Let GR and GC be directed graphs. A mutually

stable subset of the coupled network (GR, GC) is a set V ′ of nodes that is stable in Gµ for all

µ∈ {R,C}.

The existence and size of mutually stable subsets is closely related to the existence of a maximal

equilibrium in our game. Indeed, the following proposition provides a precise connection between

the two objects.
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Proposition 2 (Maximal equilibrium and mutually stable subsets). In the maximal

equilibrium action profile conditional on the set W , denoted by y∗, the set of active agents (those

with y∗i = 1) equals the maximal mutually stable subset of (GR(W ),GC(W )).

In other words, if we fix W and take a stable subset of (GR(W ),GC(W )) that is maximal under

set inclusion and set their activity level to 1, we get the action profile W induced in the maximal

equilibrium. That this is an equilibrium follows from the form of R: First, none of these agents

have been shocked, as the shocked ones were removed from (GR(W ),GC(W )). Second, all agents

in such a set have, by definition of a mutually stable subset, at least one incoming link in both

networks from other agents in the set, so, by definition of R, it is an equilibrium for all of them

to be active. To complete the proof of Proposition 2, we must show that no equilibrium has a set

of active agents that is larger than the set of those active in y∗. To this end, take y satisfying

R(y) = y and observe that this set of agents (by definition of R) is mutually stable. Thus it must

be contained in the maximal mutually stable set.

4.3. Equilibrium in random networks

We now study the equilibrium in the random networks setting, with the stress-testing motivation

discussed in Section 3.1.

4.3.1. Network model We now define the network model we study in this section. As before,

we will specify the distribution of crisis networks. The only difference relative to the continuum

configuration model is that there is a finite number of nodes, allowing us to analyze the key

questions without the idealization of the continuum limit.

Let d+
µ = (d+i,µ)ni=1 and d−

µ = (d−i,µ)ni=1 be sequences of non-negative integers representing the out-

degree and in-degree, respectively, of all agents in market µ ∈ {R,C}, where as before n= |N |. In

Appendix A.4, we impose some technical conditions on these degree sequences that make random

graphs generated from them well-behaved. These assumptions ensure, for example, that the first

and second moments of the degree distributions remain bounded in the limit n→∞ and that the
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sum of all out-degrees matches the sum of all in-degrees. Let Gµ(n,d+
µ ,d

−
µ ) be the set of graphs on

n nodes with degree sequences d+
µ and d−

µ . A random network Gµ (for an n which is left implicit in

the notation) is then a draw from Gµ(n,d+
µ ,d

−
µ ) uniformly at random. Our simulations deal with

these graphs directly. In our analytical results, we study large networks i.e., ones with n sufficiently

large. In this limit, our technical assumptions impose that these degree sequences are consistent

with some joint distributions (pjk,µ)j,k for µ ∈ {R,C}, where pjk,µ is the fraction of agents with

in-degree j and out-degree k in network µ. We fix these degree distributions throughout the section.

We assume that:

Assumption 4.4. The random networks GR and GC are independent realizations of GR and GC,

respectively.

This implies that, for example, agent i’s out-degree in GR is independent of its out-degree in GC .

In Section 4.7, we relax this assumption. In addition we assume that:

Assumption 4.5. For µ∈M and all k≥ 0, we have p0k,µ = 0.

In other words, we assume that each node has at least one incoming link in both networks with

probability 1. This is the analog of Assumption 4.3, and thus (without any shocks) all nodes are

in a maximal stable set, and indeed in a mutually stable set (see Lemma 2 in Appendix A.4.1).

4.3.2. The giant out-component In the following, we will show that in the random network

case as n→∞ the characterization of the maximal stable set in a given network is reducible to the

study of the giant out-component in the network. Similarly, the maximal mutually stable set in a

given multilayer network can be reduced to the mutual giant out-component. We now build up to

the definition of these objects. We will begin by introducing the giant out-component for a single

network and hence will drop the network index where appropriate to simplify notation.

It is important to note that G(W ) — the network with the shocked agents stripped of their edges

— is equal in distribution to a draw from G with a different (suitably thinned) degree distribution.

Thus, all arguments here apply equally to the shocked and unshocked cases and we drop the

argument W for readability.
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Definition 4.3 (Strongly connected subsets and components). In a network G = (V,E),

a subset V ′ ⊂ V is strongly connected if, for any nonempty, proper subset V ′′ ⊆ V ′, there is an edge

from V ′′ to V ′ \V ′′.25 A strongly connected component is a maximal strongly connected subset with

more than one node.

Now, fix a single network µ and its associated degree distribution (pjk,µ)j,k. Degree sequences

d+
µ = (d+i,µ)ni=1 and d−

µ = (d−i,µ)ni=1 are drawn from that distribution, satisfying the technical assump-

tions of Appendix A.4. We can now define the giant out-component.

Definition 4.4 (Giant out-component). Define Lµ,n to be any largest-cardinality strongly

connected component L′
µ,n and all nodes reachable by following a directed path out from L′

µ,n.26

Then the sequence of graphs is said to have a giant out-component if Lµ,n is well-defined for all

large enough n and for some constant c > 0 that depends only on (pjk,µ)j,k, |Lµ,n| tends, with

probability one, to cn.

It can be shown that, under the technical assumptions made above, if the sequence has a giant

out-component, then asymptotically Lµ,n is uniquely determined—see Cooper and Frieze (2004).

Suppressing the n index, we denote the subgraph of Gµ associated with it by GCo(Gµ).

The concept of a giant out-component generalizes to multilayer networks (Buldyrev et al. 2010).

In particular, we make the following definition.

Definition 4.5 (Mutual giant out-component). For large enough n, the mutual giant out-

component MGCo(GR,GC) is defined to be the induced graph on the intersection of nodes in

GCo(GR) and GCo(GC).

In other words, a node is in the mutual giant out-component if it is in the giant out-component

in each network. Moreover, the fraction of nodes in a mutually stable subset that are outside the

mutual giant out-component is negligible for large n (Buldyrev et al. 2010). Therefore, the size of

25 Note this implies an edge exists in the other direction as well.

26 Every nonempty proper subset has an edge to its complement or from it.
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the mutual giant out-component proves an asymptotically exact estimate of the size of the mutually

stable set.

Thus, by Proposition 2, the limit fraction of nodes in the mutual giant out-component is the

fraction of active agents in equilibrium as n goes to infinity, which we denote by Â, suppressing

the subscript n. For further details see Appendix A.4.2.

4.4. Exit spirals

We can now present our result on exit spirals in coupled networked markets with complementarities.

We need one more assumption:

Assumption 4.6. Fix (pjk,µ)j,k; select, uniformly at random, a fraction 1−x of nodes and remove

all their edges.27 Let c(x) be the size of the giant out-component in the resulting graph. Giant

component concavity holds if c is concave in x over the range where c(x)> 0.

Then we have the following:

Proposition 3. Under the assumptions in this section, in coupled networked markets with com-

plementarities, there is an exit spiral at some xcrit, as defined in Definition 3.1.

Proposition 3 states that there are two activity regimes, and the one that obtains depends on the

fraction of agents that receive a bad cost draw. If the shock is sufficiently small, i.e. less than some

1−xcrit in size, agents in both markets remain active. However, if the shock size increases beyond

its critical value by an arbitrarily small amount, activity in both markets vanishes—i.e., an exit

spiral occurs. The transition between the active and the “frozen” (i.e. zero-activity) market regime

is discontinuous at the critical shock size: starting from an active market, the withdrawal of a very

small measure of additional agents is amplified through the coupled structure of the markets to the

27 If technical assumptions in the appendix apply to the original graph, they also apply to the graph obtained from

this process, called the “percolated” graph, so the results we use from Cooper and Frieze (2004) about giant out-

components still hold.
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extent that all activity disappears entirely. Formally, this is reflected in the fact that at 1− xcrit,

activity goes from a strictly positive value to 0.28

If shock size is increased, more agents become inactive, and some agents lose all their counter-

parties, being forced to withdraw as well. The question is when and why this should result in a

discontinuous loss of activity.

Here, we can provide some intuition for how the interaction between the networked markets

can amplify collapses. In subsequent discussions we offer more technical discussions explaining

when this possibility is realized. A key ingredient in an exit spiral is a type of node we call a

fragile connector—which we now define informally (see Fig. 3 for an illustrative example). A fragile

connector is an agent with few counterparties in the market for one asset (say, R) and many

counterparties in the other market (say, C). The agent is fragile since it can easily lose access to

its support in one market, which becomes more likely as the shock size is increased. Once this

occurs, the withdrawal of the node causes a severe spillover effect on the other market, where it has

a chance of destabilizing other fragile connectors of the “opposite” type. The proposition implies

that there is indeed a critical shock size at which such a spiral unfolds.

The analysis of when such a cascade occurs at some shock size is closely related to our general

discontinuity analysis. Indeed, as we now demonstrate, in a continuum configuration model, the

result would follow from an application of Corollary 1. Assumption 4.5 implies that at x= 1, there

is exists a mutual giant out-component and the fraction of agents outside it vanishes as n→∞ (see

also Appendix A.4.2). Nodes in the mutual giant out-component form the set of active agents in

the maximal equilibrium. As a result, for x= 1, there is positive activity. Assumption 4.1 implies

that b(1) = 0: Agents derive no benefit from being active if there is no active neighbor in one of

the two networked markets. It is straightforward to check that the rest of Assumption 2.1 holds as

well. This means that Corollary 1 applies and exit spirals must obtain.

However, as one of the purposes of this section is to establish the analogous result in a finite-

population model, we must undertake a more detailed analysis, which we do in the next subsection.

28 While the result is stated in the n→∞ limit, numerical experiments show that exit spirals can make large networks

susceptible to full collapse after the removal of a single node.
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1

1

Asset R

Asset C

Figure 3 Illustrative example of a fragile connector: Agent 1 is a stylized example of a fragile connector. It receives

support in the market for asset R from only a single agent and is therefore susceptible to the withdrawal

of this critical neighbor. At the same time agent 1 is the sole provider of support to a number of agents

in the market for asset C—it acts as a connector in this. Thus if agent 1 decided to be inactive, it would

lead to a loss of access to support for a large number of agents in the market for asset C. The existence

of such fragile connectors is crucial in the mechanism underlying Proposition 3.

4.4.1. Graph-theoretic proof intuition We now sketch how Proposition 3 is proved by

studying the size of the mutual giant out-component as we vary x (see Appendix A.5 for the detailed

proof). First, recall that activity is positive in the n→∞ limit if and only if there is a mutually

stable set in the two networks that comprises a positive fraction of nodes. As mentioned above,

we can relate this to a notion from random graph theory called the mutual giant out-component

(Buldyrev et al. 2010). The fraction of agents in a mutual giant out-component satisfies a fixed-

point condition: A node’s probability of being in the mutual giant out-component depends on its

neighbors’ probability of being in it. (The degree sequences d+
µ and d−

µ (for both values of µ) and

the size of the shock enter this equation.) The key insight is related to the intuition sketched in

Section 3.3.1: If the mutual giant out-component is small (comprising a fraction c of nodes), then

the probability that a node happens to link to nodes in it in two layers simultaneously is smaller

(of order c2). Thus, “small” solutions for the mutual giant out-component size are not sustainable,

and activity must disappear discontinuously.
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There is another perspective on the fixed-point equation analyzed in this argument. We can

define two interacting branching processes occurring in the two networks, which in distribution

reflect the extended network neighborhood around a typical node. The degree distributions d+
µ

and d−
µ and the size of the shock determine the branching probabilities. The probability of non-

extinction for such a process is determined by a system of coupled equations whose largest solution

yields Â(x), and these are precisely the equations discussed in the previous paragraph. If, starting

from a randomly chosen agent, the branching process goes extinct, a node cannot form part of

the giant out-component. The argument of the previous paragraph thus shows that under the

conditions we have studied, small non-extinction probabilities are not sustainable. Appendix A.4

formalizes this further. Amini et al. (2016) and Elliott et al. (2014), as well as Buldyrev et al.

(2010) use branching-process ideas to characterize giant components, though none of these papers

characterize outcomes for arbitrary degree distributions in coupled networks.

4.5. Avoiding exit spirals through market centralization

One of the advantages of the explicit payoffs in this section is that we can characterize the threshold

xcrit for an exit spiral, and compare the robustness of the market to related situations of interest,

such as those that might be brought about by policy interventions.

An important counterfactual is that in which one market, say C, is centralized. By that we

mean, that each agent active in the market can interact with all other agents, as it is the case in a

securities exchange with a central clearinghouse. Formally, let ḠC denote the complete network, and

assume for this subsection that GC = ḠC . Then, the set of active agents in the maximal equilibrium

defined in Section 2.1 corresponds to the maximal stable set in GR, because, since GC is complete,

it is also a mutually stable set.

Following the same argument as in the previous section, it can be easily deduced that, asymptot-

ically, the fraction of nodes in the giant out-component of network GR is the fraction of nodes in the

maximal stable set in the random graph with n nodes. Thus, the size of the giant out-component

c, as defined in Definition 4.4, is the equilibrium expected activity.



Aymanns, Georg, and Golub: Exit Spirals in Coupled Networked Markets
Forthcoming in Operations Research 31

Recall that, in the shocked regime with x < 1, the degree distribution governing GR is thinned,

and thus as x changes c changes too. We can now state the main result for the case where one

market is centralized:

Proposition 4. Let GR be drawn as described in Section 4.3.1 and let GC = ḠC be a complete

network. Then, there exists an xc
crit such that

(a) • Â is continuous at xc
crit,

• Â> 0 for x> xc
crit,

• Â= 0 for x≤ xc
crit.

(b) Furthermore, if 1 − xcrit is the shock size at which activity vanishes when GR, GC are both

random networks as defined in Section 4.3 and Assumption 4.6 holds, then 1−xc
crit > 1−xcrit.

This result shows that, when one of the two markets is complete—e.g., if it corresponds to a

centralized exchange—the transition from the active to the frozen market regime is no longer

abrupt but smooth. In addition, the transition always occurs at a larger shock size in the presence

of a centralized exchange. Here, activity is less sensitive to the inactivity of a single agent and

can only vary smoothly with the size of the shock: An exit spiral, with discontinuous withdrawal,

is not possible. Comparing the two propositions emphasizes the stabilizing effect of a centralized

exchange on activity in the presence of shocks.

The main difference between the case when both networks are genuinely over-the-counter and

the centralized market case is the absence of fragile connectors. Since in the complete network for

asset C all agents support each other, there can be no contagion through the complete network.

While an agent may be fragile in the market for asset R, its withdrawal cannot lead to a large

number of subsequent withdrawals in the market for asset C. The absence of fragile connectors

therefore removes the amplification effect that results from the complementarity of the markets for

asset R and asset C. This leads to a smooth transition and an increased critical shock size.

The proof of Proposition 4a is a straightforward application of known results on the giant

out-component in directed networks (see Newman (2002) and Cooper and Frieze (2004)). These
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immediately yield the smooth transition of activity regimes in Proposition 4a . As in our proof

of Proposition 3, the technique behind the analysis of the size of the giant out-component as a

function of x is expressing the probability that a random node is in the giant out-component via

a fixed-point equation. For instance, it can be seen that a node is in the giant weak component if

and only if at least one neighbor is. The resulting fixed-point equation characterizes the size of the

giant out-component and its behavior as we vary x. Intuitively, Proposition 4b obtains because an

exit spiral can never propagate through the complete network, all other choices of GC must lead to

a smaller critical shock size. For the full proof of Proposition 4, see Appendix A.5.

4.6. Numerical examples

At a qualitative level, the results so far have shown that fragility is a robust property of the systems

in question for a large set of degree distributions. For concreteness, we now illustrate the results

in Propositions 3 and 4 by considering particular degree distributions: the binomial (Erdős-Rényi)

and scale-free (power law) degree distributions.

Erdős-Rényi: This is the simplest type of random network, corresponding to random matching

of counterparties. This type of graph is obtained by letting each directed link exist with a given

probability q. We hold the average in- and out-degree λ= nq fixed as n varies. Here, due to the

independence of in- and out-degrees the joint degree distribution factorizes into pjk = pjpk with

pj = pk and pk =
(
n−1
k

)
qk(1− q)n−k−1.

Scale free: A more realistic random graph structure models the wide heterogeneity in degrees

often seen in real networks. As for the Erdős-Rényi networks we assume that the in- and out-degrees

are independent, such that the joint degree distribution factorizes into pjk = pjpk. We take pj = pk

and pk = Cµk
−α for α ∈ (2,3] and k > 1. The constant that normalizes the degree distribution

is C = 1/(ζ(α) − 1), where ζ(·) is the Riemann zeta function. The exponent α determines how

dispersed the degree distribution is; for α< 2, the variance of the degree distribution diverges.
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Figure 4 Equilibrium expected activity Â as a function of the size of the shock 1−x in an Erdős-Rényi network

with average degree λ= 5.
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Figure 5 Equilibrium expected activity Â as a function of the size of the shock 1−x in a scale free network.

Illustrating the results: We solve for the activity measure of the maximal equilibrium Â numer-

ically; the detailed calculations can be found in Online Appendix E. For each degree distribution,
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we also compute Â when the market for asset C is replaced by a complete network. In Fig. 4

and 5 we present the results for the binomial and scale free degree distributions, respectively. The

findings of Propositions 3 and 4 are apparent. First, in the case of two coupled networked markets

(GR, GC) there is a discontinuous transition from the active to the frozen market regime. Second,

when the market for asset C is replaced by a complete network, yielding the pair (GR, ḠC), the

transition is smooth and occurs at a greater shock size. Our results are robust to the choice of

parameters as long as the degree distributions satisfy the requirements laid out at the beginning

of this section.

It is clear that the discontinuities are stark, and under our parameters, the transition for the

power-law case is steeper and happens for a smaller shock size, even though average degree is

actually lower.

4.7. Correlations between networked markets

Assumption 4.4 imposed that GR and GC are independent draws from their respective distributions.

Under this assumption, an agent’s counterparties in the market for asset R are uncorrelated with its

counterparties in the market for asset C. In many cases however, the presence of an edge between

two agents in a given market is correlated with their being linked in another market. Here we

discuss how this affects our results.

Let GR and GC be random networks with the same degree distribution. Then, there is a sequence

M(n) so that, as n→ ∞, both |E(GC)|/M(n) and |E(GR)|/M(n) tend to 1. Define the overlap

measure of network similarity as:

ω=
#{i→ j | i→ j ∈E(GC)∧ i→ j ∈E(GR)}

M
.

If GR and GC are independent, as n→∞ the fraction of overlapping edges vanishes and ω= 0. If GR

is a copy of GC , all edges overlap and ω= 1. Let GC and GR be two Erdős-Rényi random networks

with overlap ω. How are the results in Proposition 3 affected by different levels of overlap?
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Let us discuss some extreme cases to build intuition. The independent-networks case that has

been a focus of our results is essentially the ω= 0 case, because with n→∞ and finite degrees, the

probability of two independently drawn neighborhoods overlapping tends to 0. Now, for the other

extreme, consider ω= 1, so that GR = GC . The maximal equilibrium when ω= 1 is the same as the

maximal equilibrium when the market for asset C is a complete network. This is because, as in the

case where GC is complete, the mutually stable subsets are exactly the stable subsets of GR. Thus

for ω= 1, the results in Proposition 4 apply while for ω= 0, the results in Proposition 3 apply.

Varying the overlap parameter ω then interpolates between these two extremes. If the overlap

is not too high, the sensitivity to shocks is still quite pronounced, as in the independent-networks

case covered by Proposition 3. For higher values, the dependence of activity on x is much smoother.

Numerical and heuristic calculations show that the transition occurs at an overlap of approximately

ωc = 2/3 if GC and GR are Erdős-Rényi random networks. The details can be found in Online

Appendix F.

Thus, as the two networked markets become more similar, i.e. as agents share more counterparties

across markets, activity becomes more resilient to cost shocks. This seemingly contradicts the notion

that a diversified set of counterparties protects against random shocks to an agent’s counterparties.

However, the complementary nature of the networked markets makes diversification here harmful

rather than helpful and leads instead to an amplification of cost shocks through the networked

markets.

In Appendix F, we also compute Â as a function of the shock size explicitly for two levels of

overlap ω = {0.2,0.8}. As expected for ω = 0.2, we observe a discontinuous transition from the

active to the frozen regime, while for ω = 0.8, we observe a continuous transition. We compute Â

both via our approximate method and numerically by iterating the best response functions. Note

that the heuristic solution approximates the numerical solution quite well, though there are clear

finite size effects for the numerical solution (we used n= 2000).
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5. Discussion

5.1. Strategic complementarity

We have studied network games with strategic complements throughout. This was one of the main

structural assumptions imposed on the game in Section 2.

Strategic complements is a restrictive assumption: it rules out, for instance, a situation where

competition from a new market participant reduces another agent’s intermediation rents more than

it would increase that agent’s new business.

However, the assumption of strategic complements is used only to ensure certain technical con-

ditions are satisfied in our analysis. For instance, it is used to show the existence of equilibria in

the continuum configuration model and to establish certain monotonicities that underlie the tech-

niques there. We are then able to formalize the kinds of “mean field” calculations that are often

performed heuristically in related models (see, e.g. Newman (2002)).

Once these technical properties are established, strategic complementarities play no further role

in the analysis. Indeed, our main analysis of exit sprials studies an aggregate reaction function, as

discussed in Section 3.3.1. It is here that the substantive conditions that govern exit spirals are

introduced. These properties control the reaction function ρ(α;x) near α= 0 (i.e., analyzes best-

responses when few other agents are adopting). None of this analysis relies on strategic complements

or even monotonicity of the aggregate reaction function ρ. To be clear, these technical properties

play an important role in our analysis. However, the core phenomena we analyze are more general,

and carrying through the analysis discussed in Section 3.3.1 under weaker assumptions on the game

presents an interesting direction for future work.

5.2. Network formation

To keep our analysis tractable, we have assumed that the crisis networks are drawn independently

at random across markets. This means that agents cannot choose with whom to connect, but

instead take their neighbors as given when deciding whether to be active or not. An important,
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though difficult, question is how outcomes would change if instead the network were (at least

partly) formed endogenously. It is not obvious whether network formation mitigates or exacerbates

exit spirals: there are forces in both directions and which force dominates depends on the specifics

of the network formation game as well as the subsequent activity game. A good way to build

intuition about these forces, is to ask when fragile connectors—the drivers of our results on exit

spirals under simple complementarities—become more or less likely.

If endogenous network formation causes counterparties to become correlated across networks,

overlap would increase. This would make fragile connectors less likely and thus mitigate exit spi-

rals, as discussed in Section 4.7. Several authors provide possible reasons for counterparties to be

correlated (Farboodi 2021, Erol and Vohra 2020), including Elliott et al. (2021), who show that

risk-shifting can cause an agent to link to predominantly similar agents in both networks. Overlap

could also increase if the cost of forming a link to an agent in one market is very small when a

link to that agent already exists in another market. Finally, if agents know a potential neighbor’s

degree type, they might choose to avoid connecting to a (potential) fragile connector in the first

place, thereby making them less prevalent in the network.

On the other hand, the potential harm caused by exit spirals constitutes an externality. In

particular, fragile connectors do not internalize the damage that follows indirectly when they

decide to be inactive. Therefore, fragile connectors will, from the perspective of a social planner,

underinvest in creating and maintaining additional links to protect against shocks. Relatedly, risk

averse agents might prefer to link to different agents across networks such that if a neighbor

withdraws in one market, the link in the other markets is not automatically lost as well. This would

in turn would reduce the overlap between networks, making exit spirals more likely (see again our

discussion in Section 4.7).

Finally, the nature of exit spirals makes for a particularly stark contrast between the returns to

investment for a planner and for individual agents. Take the case where an exit spiral exists at a

value xcrit > 0, and consider an extended model where a social planner could, at a cost, mitigate
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the aggregate shock, effectively increasing x.29 The social returns to this would be very high, since

aggregate activity has a very steep slope in x near the critical value of xcrit. Now suppose that,

at the same configuration, each individual agent could instead invest to reduce the impact of the

shock locally, for example by creating more links. Holding other agents’ behavior fixed, the system

winds up at the critical status quo on the brink of collapse, such extra investment would make no

difference when all the agent’s neighbors’ collapse in an exit spiral. Exit spirals are fundamentally

an aggregate phenomenon and individual agents are powerless to stop them when they happen,

even if they can change their local environment. Avoiding or mitigating them requires a coordinated

response, or a planner’s direct intervention.

This short discussion already highlights some of the intricacies of adding network formation

and comparing a social planner with decentralized outcomes. We believe these issues raise some

interesting economic questions for future work. Elliott et al. (2022) offer some analysis along these

lines in a related setting motivated by a distinct supply chain application.

5.3. Relation to the Literature

Trading and liquidity. Our model allows us to study the existence of exit spirals in networked

markets. As discussed in Section 2.2.1, the decision modeled could be that of intermediaries choosing

whether to be active in a trading game. This links our paper to the literature studying illiquidity

spirals. The closest analogue to our model in this literature is the model of Brunnermeier and

Pedersen (2009), who study the coupling between repo and collateral. Our model of exit spirals

in coupled networked markets explicitly takes into account the OTC network structure of these

markets. This sets us apart from Brunnermeier and Pedersen (2009) who study the feedback

between market and funding liquidity in centralized markets, abstracting from network structure.

Our model shows that the network structure alone, abstracting from haircut and pricing feedback,

can lead to a significant amplification of exogenous shocks in coupled networked markets. Acharya,

29 This could be by directly increasing x, or by making the network denser.
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Gale, and Yorulmazer (2011) show how a bank’s ability to obtain secured funding depends on the

risk and liquidation value of the collateral and how this dependency leads to a feedback between

collateral and debt markets mediated by the debt capacity (essentially, quantity) offered. Differently

from these two papers, we show that, given the complementarity of two coupled networked markets

the networked nature of these markets is sufficient to generate a feedback between the two markets

that amplifies an initial exogenous shock.

A related paper studying market freezes is Acemoglu et al. (2020), which shows that anticipated

defaults can lead to ex ante credit freezes in interbank networks. Their model has a specific trad-

ing protocol and market freezes obtain as subgame perfect equilibria of a borrowing and lending

game. While our paper also studies market freezes, our focus is on the role of complementarities

and coupling and the question under what conditions a positive activity equilibrium disappears

discontinuously, i.e. when exit spirals are possible.

Financial over-the-counter networks. Most empirical studies of OTC markets focus on finan-

cial exposure networks. A common finding of these studies is that OTC markets have non-trivial

network structure, rather than being complete (see, for example, Di Maggio, Kermani, and Song

(2021) on the inter-dealer corporate bond market and Li and Schürhoff (2019) on the market for

municipal bonds). Craig and Von Peter (2014) show, for example, that the German interbank

market has a network structure that can best described as a core-periphery network.30 In the inter-

national context, Gabrieli and Georg (2014) show that the Euroarea interbank market follows a

core-periphery structure less closely, with relatively safe and large international banks connecting

the different national core-periphery networks. The importance of relatively safe intermediaries in

facilitating the functioning of an over-the-counter interbank market is also highlighted by Frei et al.

(2022) in a rich model of trading in OTC markets. We take from this literature the point that the

structure of over-the-counter trading networks is important. Our contribution to it is to highlight

the importance of coupling between such markets, and to study qualitative conditions under which

such coupling introduces new fragilities.

30 The robustness of coupled core-periphery networks is studied in a previous version of this article, with analogues

of the main findings presented here.
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Contagion in financial networks. In Section 2.2.2, we discuss how our model can be applied

to the case of financial contagion. A large literature studies contagion in financial networks that

ensues when the default of one financial institution causes the subsequent default of other financial

institutions (see, for example, Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015), Elliott, Golub, and

Jackson (2014), Zawadowski (2013), and Farboodi (2021), as well as Glassermann and Young (2016)

for an extensive overview). Burkholz, Leduc, Garas, and Schweitzer (2016) study cascading failures

in a multiplex network. Firms in their model have a core and a subsidiary business unit who are

each exposed to possible contagion within their respective network of business relationships. A

default of the core business unit will lead to a default of the subsidiary, but not necessarily vice

versa.

Multilayer network theory. There is a growing literature in applied mathematics and physics on

coupled, or multilayer, networks. A seminal paper is Buldyrev, Parshani, Pau, Stanley, and Havlin

(2010), and since then there have been a variety of applications, including, e.g., to the question

of whether firms should spin off subsidiary units. In terms of the theory of coupled networks,

our contribution is to study the equilibrium of network games defined on such networks, and to

formulate conditions on payoff and network structure that facilitate exit spirals. Our general results

on coupled network games of strategic complements, in Section 3.3, go well beyond the existing

literature, accommodating arbitrary network games of strategic complements, and highlighting the

key role of complementarity across links as the main economic force.

Games on networks. Our paper is also related to the networks literature in economic theory,

especially to the literature on contagion and games on networks. Papers such as Blume (1993) and

Ellison (1993) first suggested that local interaction, modeled via a network structure, can be used

to study the likelihood that various equilibria would be played and how an economy may reach an

equilibrium. Whereas these early papers focus on noisy heuristic adjustment procedures, Morris

(1997, 2000) studies games with standard (no-noise) solution concepts and related networks to

games of incomplete information. The latter paper’s results, applied to a network game, show when
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a network can support heterogeneous actions, and what conditions result in equilibria such as (in

our context) “everyone withdraws.” Jackson and Yariv (2007) and Galeotti, Goyal, Jackson, Vega-

redondo, and Yariv (2009) develop this sort of model to accommodate random networks described

by a degree distribution. Our approach has much in common with this theoretical literature on

games in networks. The main innovation relative to these papers is that we study multilayer net-

works, and analyze how the multilayer aspect of their structure affects the best-response structure

of the game, especially when the underlying networks are random. Equilibria depend more sharply

on the parameters of the network than has been reported previously, due to the discontinuities

discussed above. Indeed, the study of large-scale phase transition phenomena has been challenging

due to the difficulty of formulating equilibrium conditions capturing the key macroscopic outcomes

(Jackson and Yariv 2007). Our results provide some methodological advances as well as concrete

illustrations that there are interesting phenomena that can be studied using these advances.

6. Conclusion

We develop a general model of large coupled networked markets and study the maximal equilibria

of the resulting supermodular activity game from the perspective of an analyst who is uncertain

about the network. Networked markets can be coupled for a variety of reasons. In our canonical

example, we consider a model where an agent derives benefits from other agents’ activity—in any

market—and incurs a fixed cost for being active in any market. But networked markets can also

be coupled via the benefits of being active, i.e. if activity in two markets provides a strictly larger

benefit than the sum of the benefits of being active in each market individually. A particularly

stark form of coupling arises if two markets are institutionally coupled, for example when secured

funding is necessary to create demand for collateral and where the availability of secured funding

depends on the existence of a market for the underlying collateral.

Coupling creates fragility because it makes links highly complementary, and thus prone to simul-

taneous collapse. Indeed, coupled markets are distinctively prone to fragility: we show that even

without any complementarity between links in each constituent network, a coupled network sys-

tem is prone to exit spirals. Replacing at least one networked market by a centralized exchange
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reduces the extent of exit spirals and increases the resilience against exogenous shocks. Increasing

overlap—making the networked markets more similar—also increases resilience.

Our analysis highlights a number of pertinent issues for policymakers. First, we illustrate the

potential fragility of activity in networked markets and show how it may be reduced by moving

towards centralized exchanges. Second, our results highlight the importance of better measurement

of the structure of these markets, in particular with respect to identifying fragile connectors.

Moving forward, a natural next step would be to extend the model to account for incomplete

information among agents when they decide whether to be active. In this setting, the realization of

the shock profile or the parameters entering agents’ best response functions may only be partially

known to them. This would, for example, allow us to study how activity is affected by changes in

agents’ beliefs about the distribution of the exogenous shock. In turn, this would permit a study of

the realistic phenomenon that market activity may cease entirely due to bad news, connecting to

the literature on higher-order beliefs in games of incomplete information (Golub and Morris 2017,

Morris and Yildiz 2019). Interactions between the fragilities we have identified and ones arising

from information present a rich source of theoretical questions.

Appendix

A. Technical details and proofs

A.1. Equilibrium in the continuum configuration model

We will, throughout, refer to each agent’s action as the single-valued yi ∈ {0,1}; this is because in

any best response, actions ai,µ are identical as µ ranges over the set of layers M, so there is no

loss for the purpose of studying equilibria. We also introduce a piece of notation: write ui(yi,v) for

the payoff i receives when i takes action yi and the actions of all other players are set according to

the vector v. We write 1A for the vector (i.e., function) in RN such that yi = 1 if i ∈A and yi = 0

otherwise.

We now define a “best response” operator. For any measurable set of nodes A, let

B(A) = {i∈N : ui(1;1A)≥ ui(0;1A)}.

This is the set of agents who weakly prefer to be active in response to everyone in A being active.
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Now define the following family of sets iteratively:

A(0) =N = [0,1]

∀t≥ 0 A(t+ 1) = B(A(t)).

The set A(t) can be interpreted as the set of tentatively active agents, determined by a certain

algorithm. The algorithm starts by initializing everyone to be active, and at each stage, t + 1,

keeping agents active who have a best response of yi = 1 given that every ℓ∈A(t) plays yℓ = 1. We

can then define

α(t) = measure(At).

Note that while the A(t) are random subsets of [0,1], their measures are deterministic, since in

the continuum model there is no aggregate uncertainty.

Because the game is one of strategic complements, standard results (Milgrom and Shannon (1994)

and Kleene’s fixed point theorem) imply that the A(t) are decreasing sets and so they converge

to a limit A(∞) =
⋂

tA(t) with measure α(∞) = limt→∞α(t). Moreover, B(A(∞)) = A(∞), and

y = 1A(∞) corresponds to the maximal equilibrium, in the sense that all other equilibria have

strictly fewer active agents (up to measure zero sets).

A.2. General discontinuity result: Preliminaries and proof

We will now be more explicit about the sequence α(t) described in the previous subsection. That

is, we will consider the fraction of nodes made active at each successive stage of the process, by

considering the random in-neighborhood of any node and the activity outcomes in it.

Due to a standard sampling bias, the distribution of a node’s in-degree conditional on being an

in-neighbor of some other node is not the unconditional distribution of in-degrees. We will need

to account for this. However, because the layers are all independent, in the continuum matching

process the probability of i matching with the same node in multiple layers is zero. Thus, each in-

neighbor of i is an in-neighbor in exactly one layer. Let qδ−,µ be the probability that an in-neighbor

of i in layer µ has in-degrees δ− = (d−µ )µ∈M. For an explicit form of this distribution see Section

A.2.2.

In the iterative process of the previous section, define αδ−(t) to be the probability that a random

node with in-degree type δ− is in A(t). Then define α̃(t;µ) by

α̃(t;µ) =
∑
δ−

qδ−,µαδ−(t),

the probability that a randomly drawn in-neighbor in layer µ is in A(t).
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Definition A.1. Given a vector α̃ = (α̃(µ))µ∈M, let ρδ−(α̃;x) be the probability that an agent

of in-degree type δ− has ui(1;1A) ≥ ui(0;1A) when all in-neighbors of any node ℓ in each layer µ

are in A independently with probability α̃(µ). In computing this probability, we also integrate over

the random cost draw cℓ.

At this point, it will be useful to recall several implications of Assumption 2.2 that guarantee the

function ρδ−(α̃;x) is well-defined. In the continuum configuration model, the fan-in of any node31

is a branching process with finitely many nodes. Part (1) of the assumption guarantees that the

utility of the node depends only on the activity levels in that branching process, and thus the event

ui(1;1A)≥ ui(0;1A) is measurable with respect to a countable family of random variables. By part

(2) of the assumption, the probability does not depend on the node’s identity.

It is straightforward to establish inductively that at each stage t+ 1 of the best-response pro-

cess of the previous subsection, for almost all i, it holds that neighbors’ membership in A(t) are

independent random variables, because the extended in-neighborhoods of two neighbors of i are

almost surely non-overlapping. (This is important to check because Definition A.1 presumes such

independence.) Thus,

αδ−(t) = ρδ−(α̃(t− 1);x).

And then, averaging this equation weighted by the degree type of a random in-neighbor, we have

the iteration

α̃(t;µ) =
∑
δ−

qδ−,µρδ−(α̃(t− 1);x). (5)

To recover the actual share α(t) of active nodes at stage t of the process, we simply average

values of ρδ− according to the population distribution of in-degree types δ−, to get

α(t) =
∑
δ

pδ−αδ−(t) =
∑
δ−

pδ−ρδ−(α̃(t− 1);x). (6)

From this it is clear that the sequence of vectors (α̃(t))∞t=1 is sufficient to determine the masses of

active agents at each step and the (maximum) equilibrium active share α(∞). This sequence, in

turn, is determined by a function appearing in the iteration (5). More precisely, let Q :RM →RM

be defined by

Qµ(z;x) =
∑
δ−

qδ−,µρδ−(z;x). (7)

With this definition of Q and the initialization α̃(0) = 1, equation (5) implies that we can compute

the sequence (α̃(t))∞t=1 using

α̃(t) =Q(α̃(t− 1);x).

31 Defined to be all nodes that have a path to i using links in any layer.
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Note that the function Q is clearly continuous and each of its entries is weakly increasing in each

entry of the input under our maintained assumptions. Moreover, Q(1) ≤ 1. Thus, (α̃(t))∞t=1 is a

weakly decreasing sequence of real numbers, converging to the (elementwise) largest z ∈ RM so

that Q(z;x) = z.

We summarize the key finding in this lemma:

Lemma 1. Let Q be defined by (7). There is a vector z∗ satisfying

Q(z;x) = z

and such that for any z′ satisfying the displayed equation equation we have z′ ≤ z∗ entrywise. The

activity measure at the largest equilibrium of the activity game is given by

α(∞) =
∑
δ−

pδ−ρδ−(z∗;x).

B ecause Q is a monotone mapping under the partial order on RM given by entrwise ≤, Tarski’s

fixed-point theorem guarantees the existence of z∗ as claimed. The other part of the result is just

an application of (6).

A.2.1. Proof of Proposition 1 By the assumption made in the proposition statement, for

large enough x, the function Q has a strictly positive fixed point.

Define

m(x) = max
µ∈M

z∗(µ;x).

We have noted that m(x)> 0 for some x. Also, by Assumption 2.1, for sufficiently small x, we have

m(x) = 0.

We claim that m(x) has a discontinuity as we vary x, which establishes the existence of an exit

spiral. We must rule out the existence of a sequence of xp → x such that m(xp) is arbitrarily small

and positive for large p.

To this end, recall that ρδ−(α̃;x) is the probability that an agent of in-degree type δ− has

ui(1;1A) ≥ ui(0;1A) when all in-neighbors of any node ℓ in layer µ are in A independently with

probability α̃(µ).

Also recall

Qµ(z;x) =
∑
δ−

qδ−,µρδ−(z;x).

Now we will argue that, for all x∈ (0,1), we have

∂Qµ(0;x)

∂zµ′
=
∑
δ−

qδ−,µ

∂ρδ−(0;x)

∂zµ′
definition of Qµ

≤ F (b(1);x)
∑
δ−

qδ−,µδ
−
µ see below

≤ F (b(1);x)e definition of e.
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In the middle step, we reason as follows. First, by Assumption 2.2(3), the derivative is identically

zero when no neighbors of i are active, so the only contribution will be from events where at least

one neighbor of i is active. Second, if ∥z∥ is small, any events where two neighbors of i are active

are negligible relative to events where exactly one neighbor of i is active. Because intersections of

these independent events are negligible, we may simply add up over them. In the event that some

single neighbor of i is active, the probability that this makes i want to be active is bounded by the

probability that ci ≤ b(1), since the right-hand side bounds the benefit to i of neighbor activity; this

probability is upper bounded by F (b(1);x). Adding up across all neighbors gives the expression,

since there are δ−µ in-neighbors of i in layer µ.

Using the hypothesis that F (b(1);x)e= c < 1, this shows that for all small enough z, we have

(using the Euclidean norm)

∥Q(z)∥ ≤ c∥z∥+O(∥z∥2),

which means that it is impossible for Q to have a fixed point with m(x) arbitrarily small, since

that fixed point would have

∥Q(z)∥= ∥z∥.

A.2.2. Details on in-neighbor degree distribution Recall that (pjk,µ)j,k be the joint distri-

bution of in- and out-degrees, with pjk,µ being the probability that in-degree is j and out-degree

is k in layer µ.

Define

p−j,µ :=
∑
k

k

λ
pjk,µ,

where λ is a constant chosen so that
∑∞

j=1 p
−
j = 1. This is the probability that the initial node of

a randomly chosen link in layer µ in the continuum configuration model has in-degree j (see for

example Cooper and Frieze (2004) and Newman (2010)). The idea is that that a node’s probability

of being the initial node is proportional to its out-degree k, due to the half-edge matching process

of the configuration model.

Because the layers are all independent, in the continuum matching process the probability of

matching with the same node in multiple layers is zero. Thus, each in-neighbor is an in-neighbor in

exactly one layer. The probability that an in-neighbor in layer µ has in-degree type δ− = (d−µ )µ∈M

is then

qδ−,µ = p−dµ,µ
∏
µ′ ̸=µ

pd−
µ′ ,µ

′ .
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A.3. The configuration model: Finite networks

In the following we introduce random networks which are drawn uniformly at random conditional

on a degree distribution, formalizing the details of the model first introduced in Section 3.2. A

standard device for generating and analyzing these graphs is the configuration model. All of the

concepts introduced below apply equally to each market µ∈M. To avoid notional clutter, we drop

the subscript µ for now.

For each n, let d+
n = (d+i,n)ni=1 and d−

n = (d−i,n)ni=1 be sequences of non-negative integers repre-

senting the out-degrees and in-degrees, respectively, of agents i ∈ N , where as before n = |N | is

the cardinality of the set of agents. Note that all out-edges must have a corresponding in-edge,

therefore
∑n

i d
+
i,n =

∑n

i d
−
i,n. For a given n, denote the empirical distribution of degrees by

pjk,n :=
1

n
#{i∈N | d+i,n = j, d−i,n = k}.

The n in the subscript distinguishes this empirical distribution, associated with a given n, from

an asymptotic distribution that is independent of the particular population size n, which we will

introduce below.

Given d+
n and d−

n satisfying the consistency condition noted above between total in- and out-

degrees, let G(n,d+
n ,d

−
n ) be the set of graphs with degree sequences d+

n ,d
−
n . We define a standard

device, the configuration model, for drawing graphs uniformly from this set:

Definition A.2 (Bollobás configuration model—see, e.g., Amini et al. (2016)).

Consider a set of nodes N = {1, ..., n} and degree sequences d+
n = (d+i,n)ni=1 and d−

n = (d−i,n)ni=1.

Define for each node i a set of incoming and outgoing half-edges, H−
i and H+

i , respectively. The

set of all incoming and outgoing half edges is denoted by H− and H+, respectively. A random

directed multigraph G̃(n,d+
n ,d

−
n ) drawn from the configuration model is then induced in the

obvious way from a matching of all incoming half-edges H− to outgoing half-edges H+ drawn

uniformly at random from the set of all such matchings. This multigraph may contain self-edges

or multiple edges between two nodes. A graph without self-edges or multiple edges is a simple

graph, and we condition on realizations that yield simple graphs. It is a standard fact that the

resulting random variable is a draw uniformly at random from G(n,d+
n ,d

−
n ).

We are only interested in simple graphs and therefore need to impose conditions on the degree

sequences to ensure that the probability of self-edges and multiple edges vanishes. We follow Amini

et al. (2016) and Britton et al. (2007) and impose some standard conditions to ensure this, which

turn out to yield this and other useful technical properties. The conditions are easiest to impose

on an infinite tuple ((d+
n ,d

−
n ))∞n=1 of pairs of degree sequences. The first set of conditions on an

infinte tuple is:
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Assumption A.1. For each n, d+
n and d−

n are sequences of non-negative integers such that∑n

i d
+
i,n =

∑n

i d
−
i,n and, for some joint distribution (pjk)j,k≥0, over in- and out-degrees

1. pjk,n → pjk for every j, k≥ 0 as n→∞,

2. λ :=
∑

j,k pjkj =
∑

j,k pjkk ∈ (0,∞),

3.
∑n

i=1(d
+
i,n)2 + (d−i,n)2 =O(n).

Note that conditions (2) and (3) imply that the average degree and the second moment degrees

cannot diverge as the network becomes large. When this condition holds, we say it holds and the

infinite tuple of degree sequences is consistent with the joint distribution (pjk)j,k≥0.

We follow Cooper and Frieze (2004) and further require that the infinite tuple is proper. The tech-

nical assumptions comprising this definition require that a quantity akin to the degree sequence’s

second moment must grow much slower with the network size than the maximum degree of the

sequence. This ensures that, while the maximum degree may go to infinity, the degree sequence

does not become too dispersed:

Assumption A.2 (Proper degree sequences, Cooper and Frieze (2004)). Let ∆n denote

the maximum degree. Then

1. Let ψn =max
(∑

j,k

j2kpjk,n
λn

,
∑

j,k

k2jpjk,n
λn

)
. If ∆n →∞ with n then ψn = o(∆n).

2. ∆n ≤ n1/12

logn
.

We call an infinite tuple that satisfies Assumptions A.1 and A.2 well-behaved.

So far we have dealt with a single network. Now we extend our formalism to deal with two

networks. To do this, we consider two infinite tuples ((d+
C,n,d

−
C,n))∞n=1 and ((d+

R,n,d
−
R,n))∞n=1, which

are always well-behaved and are viewed as random variables.

Now note that our assumption that the two networks GR and GC are drawn independently

(Assumption 3.1) implies d+iC,n, d
+
iR,n and d+iC,n, d

−
iR,n and d−iC,n, d

+
iR,n and d−iC,n, d

−
iR,n for all i∈N . In

other words, the in (out) degree of an intermediary in the repo market gives no information about

its in- (out-) degree in the collateral market. The networks GR,n and GC,n are independent, uniform

draws from the sets G(n,d+
n,R,d

−
n,R) and C(n,d+

n,C ,d
−
n,C), respectively.

A.4. Results on coupled networks with simple complementarities

A.4.1. General facts

Lemma 2. Suppose Assumption 4.3 is satisfied. Then in a maximal equilibrium, y∗i = 1 for all i;

equivalently, the maximal stable set consists of all nodes.

F ix a G and define Ĝ to be the same graph with all edges reversed. Note in this graph each

node has at least one outgoing edge. If we follow an arbitrary path, continuing by some out-edge

at each step, then we will eventually reach a cycle of more than one node (since there are no
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self-edges by assumption). From this it follows that any directed path ends in a strong component.

Thus (remembering the fact that Ĝ is G with edges reversed) it follows that any node in G has

a directed path leading to it from a strong component in G. Now, note that both this set and the

path together constitute a stable set. There is such a set for each node, and they are all stable;

thus their unions stable. This proves the result.

A.4.2. Equilibrium and the mutual giant component Building on Section 4.3.2 we can

now establish a connection between the equilibrium activity defined in Section 3.1 and certain

asymptotic properties of the random graphs defined above. The size of the mutual giant out-

component and the equilibrium activity measure are related as follows.

Lemma 3. Let y∗ be an equilibrium for GR, GC and with W being the set of shocked nodes. Then

A(y∗) =
1

n

∑
i

y∗i ≥
1

n
|MGCo(GR(W ),GC(W ))|.

In the limit of large networks we obtain

lim
n→∞

1

n

∑
i

y∗i →
1

n
|MGCo(GR(W ),GC(W ))|,

The size of the mutual giant out-component is a lower bound on the size of the maximal mutually

stable set, and thus the number of active agents in equilibrium. It is only a lower bound since there

may exist small, mutually stable components outside the mutual giant out-component. However,

as the network becomes large, results from Cooper and Frieze (2004) imply that the relative size

of these small mutually stable components vanishes; the reason is that even the weak components

in either of the two markets which are not part of the giant out-component have a negligible size

as n→∞. Therefore, in the limit of large networks the size of the mutual giant out-component

is sufficient to compute the equilibrium activity. In the following we will discuss how the mutual

giant out-component can be found.

A.4.3. A branching process approximation of equilibrium activity In this section we

will invoke results from the theory of branching processes and probability generating functions to

compute the size of the giant mutual out-component (see Cooper and Frieze (2004) and Buldyrev

et al. (2010)). We will first characterize the giant out-component in a single market (i.e., one graph

without any coupling) and will then proceed to derive the size of the mutual giant out-component.

Computing the giant out-component The distribution of the out-degree of the terminal node of

a randomly chosen link in a large graph is, in the n→∞ limit, given by

p+k :=
∑
j

j

λ
pjk,
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where pjk is the joint distribution for in- and out-degrees (see for example Cooper and Frieze

(2004) and Newman (2010)). Note that the out-link is j times more likely to end up at a node with

in-degree j. The average degree λ enters as a normalizing constant.32

Suppose one starts to explore the network from a randomly chosen link via a breadth-first search

algorithm. How many agents can one reach by following only out-going links? In a random network

model, this exploration process can be approximated by a standard branching process where the

number of offspring (i.e. outgoing links) of any node is distributed according to (p+k )∞k=0.
33 Let

H(z) :=
∑

k p
+
k z

k denote the corresponding probability generating function. Recall the following

useful result on the extinction probability of a branching process (see Athreya and Jagers (2012)):

Lemma 4. The probability f that the branching process defined by (p+k )∞k=0 goes extinct is the

smallest solution to f =H(f).

Then, the size of the giant out-component is given by a simple corollary of Lemma 4 (see for

example Newman (2010)) that we summarize in the following lemma.

Lemma 5. Given the probability f that the branching process defined by (p+k )∞k=0 goes extinct, the

fraction of nodes in the giant out-component is

g(f) := 1−
∑
jk

pjkf
k.

This follows from the fact that the probability that a random node with k outgoing links is not in

the giant out-component is simply fk.

Equilibrium activity and the mutual giant out-component Now that we have established how to

compute the size of the giant out-component for a single network we can proceed to derive the

size of the mutual giant component. The following derivation builds on results of Buldyrev et al.

(2010). From now on we will associate each of the quantities introduced in Section A.4.3 with the

markets for asset C and asset R via the subscripts C or R respectively. For example, HC(z) will

be the probability generating function of the out-degree process for the network corresponding to

the market for asset C.

32 The distribution for the in-degree of the terminal node of a randomly chosen link can be defined similarly but is

not of interest for us.

33 Of course this only corresponds to the number of agents explored if the breadth-first search does not turn back on

itself and does not re-explore parts it has already seen. The assumption that this does not occur is usually referred

to as the requirement that the network is “locally tree-like”, i.e. that there are no short cycles. Hence the application

of the branching process is indeed an approximation. However, under our maintained technical assumptions, Cooper

and Frieze (2004) show rigorously that this approximation is indeed valid.
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Consider the following coupled branching process—first, with x = 1, i.e., no shock. Choose a

link at random in GR and follow it the node it goes into. Since GC and GR are independent by

assumption, the agent we reach will be in the giant out-component of GC with probability sC (the

fraction of nodes in the giant out-component in the collateral network).

If the node is not in the giant out-component of GC the branching process will not continue

further. We may equivalently assume that in that case the node reached has no out-neighbors. As

discussed by Newman (2010) the branching process is identical in distribution to one in which we

“thin” the degree distribution of the collateral network as follows:

p̂jk,R(sC) :=
∞∑
l=j

∞∑
m=k

plm,R︸ ︷︷ ︸
A

(
l

j

)
(1− sC)l−jsjC︸ ︷︷ ︸

B

(
m

k

)
(1− sC)m−kskC︸ ︷︷ ︸

C

. (8)

The distribution p̂jk,R(sC) is the joint distribution of in- and out-degrees of the network for asset

R after a fraction 1− sC of nodes has been removed uniformly at random. The transformed degree

distribution consists of three terms: A,B and C. A corresponds to the initial probability that a

random node has in-degree l and out-degree m. B is the probability that j out of initially l in-links

are present after thinning. Finally, C is the probability that k out of initially m out-links are present

after thinning. An equivalent argument can be made for the market for asset C. Again we obtain

a transformed degree distribution p̂jk,C(sR). Similarly, we define the transformed distributions for

the out-degree process p̂+k,R(sC) and p̂+k,C(sR).

Now, suppose a fraction 1 − x of nodes, selected uniformly at random, withdraws from the

markets due to the cost shock. We call x the size of the shock. The final size of the mutual giant

out-component (and thus activity in the maximal equilibrium) is then determined by the branching

process on the residual networks GR(W ) and GC(W ) after the withdrawal of the shocked agents.

Let Â(x) be the expected activity of the maximal equilibrium.

Lemma 6. Given the degree-distributions pjk,µ for µ ∈ {R,C} and a shock of size 1− x, the size

of the giant out-component in the R (C) network s∗R (s∗C) is the greatest solution to

sR = xgR(fR, sC) = x

(
1−

∑
jk

p̂jk,R(sC)fk
R

)
,

fR =HR(fR, sC) =
∑
k

p̂+k,R(sC)fk
R,

sC = xgC(fC , sR) = x

(
1−

∑
jk

p̂jk,C(sR)fk
C

)
,

fC =HC(fC , sR) =
∑
k

p̂+k,C(sR)fk
C .

(9)

activity is then

Â(x) := s∗ = xgR(xgC(s∗)).
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To see this, note that the expression xgR(xgC(s∗)) is monotonically increasing in s (see Lemma

10) in [0,1]. Then by Tarski’s fixed point theorem a maximum fixed point s∗ exists. Note that

the realization of the shock bounds the size of the giant out-component, and thereby equilibrium

activity, from above by x. This is simply because a fraction of 1− x of agents withdraw from the

markets due to the shock realization.

Suppose now that one of the markets is replaced by a centralized exchange so that we can

replace the corresponding network by a complete network. What is the size of the mutual giant

out-component?

Lemma 7. Let GR be a random network. Let ḠC be a complete network. Given a shock of size x,

the size of the giant out-component in the R network s∗R is the greatest solution to

sR = gR(fR, x) = x

(
1−

∑
jk

p̂jk,R(x)fk
R

)
,

fR =HR(fR, x) =
∑
k

p̂+k,R(x)fk
R.

activity is then

Â(x) := s∗R = gR(fR, x).

Thus, if the C network is replaced by a complete network, the size of the mutual giant out-

component is simply the size of the giant out-component of the R network taken on its own (we

have discussed the study of its size above). To see this, first note that if ḠC is complete there will

be no contagion through ḠC . All agents in ḠC are active except those that are not in the giant

out-component of the repo market. Therefore it is not necessary to compute the size of the giant

out-component in the collateral network via a branching process as in Lemma 6. The greatest fixed

point exists by the same argument as in the proof of Lemma 6.

A.5. Proofs of random network results

In the following we will prove Propositions 3 and 4. Our main contribution is to provide conditions

on the degree distributions of the random networks for which Propositions 3 and 4 holds. We will

first provide a sketch of the proof of Proposition 4a since this is a standard result from the literature

(see Cooper and Frieze (2004)) and is useful for the subsequent proofs of 3 and 4b.

For the proof of Proposition 4 we will use standard properties of a generic probability generating

function (pgf) that we summarize in the following remark.

Remark 1. A generic pgf f(s) =
∑

i pis
i has the following properties:

(i) f(0) = p0,

(ii) f(1) = 1,
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(iii) f ′(1) = df/ds(1)> 0 (increasing),

(iv) d2f/ds2 > 0 (convex) for s > 0.

Therefore s∗ = f(s∗) has a solution s∗ < 1 if f ′(1)> 1. Otherwise only the trivial solution s∗ = 1

exists. s∗ = 0 is not a solution if p0 > 0. Note that the solution s∗ is continuous in the slope f ′(1),

i.e. as f ′(1)→ 1 we have that s∗ → 1.

We illustrate some graphical intuition for this proof in Figure 8 in Online Appendix D.

Proposition 4. Recall that for x= 1 we have H(z) =
∑

k p
+
k z

k with p+k =
∑

k jpjk/λ. It can be

shown, see for example Newman (2010) or Cooper and Frieze (2004), that after a fraction 1 − x

of intermediaries are removed uniformly at random from the network, the pgf of the out-degree

distribution becomes Ĥ(z,x) = H(1 − x + xz). From remark 1 we know that f = H(f) = 1 if

dH/dz(1) = H ′(1) ≤ 1 and f < 1 if H ′(1) > 1. When f = 1 the size of the giant out-component

vanishes, i.e. g(1) = 0. If f < 1 the size of the giant out-component is g(f)> 0, i.e. the giant out-

component exists. Thus we need to ask at which xc the derivative of the pgf becomes Ĥ ′(1) = 1.

Note that Ĥ ′(1) = xH ′(1). Thus

xc =
1

H ′(1)
=

λ∑
jk pjkjk

. (10)

Since f is continuous as the derivative Ĥ ′(1) changes, it is also continuous in x which determines

Ĥ ′(1). Note that Assumption 4.5 ensures that in the absence of a shock there exists a giant out-

component of positive size. This concludes the proof.

Lemma 8. Let f(x) denote the smallest solution f =H(f,x). Then f(x) is continuous, monoton-

ically decreasing in x for x∈ [0,1].

Lemma 8. f(x) =H(f(x), x) is continuous follows from the proof of Proposition 4. To show

that f(x) is monotonically decreasing we use the result from the proof of Proposition 4 that

x ∈ [0, xc]: f = 1 =⇒ df/dx= 0. Now consider what happens when x ∈ (xc,1] and f < 1. In this

case we derive for df/dx:

df

dx
=

1

λ

∑
jk

jkpjk(1−x+xf)k−1

︸ ︷︷ ︸
dH/df1/x

(
f +x

df

dx
− 1

)
,

df

dx
=
dH

df
(f,x)

1

x

(
f +x

df

dx
− 1

)
,

df

dx
=
dH

df
(f,x)

1

x

(
1− dH

df
(f,x)

)−1

(f − 1).

Note that for supercritical x the derivative of H(f,x) with respect to f evaluated at the intersection

with the diagonal is less than one, i.e. for x∈ (xc,1] dH
df

(f,x)< 1, where H(f,x) = f < 1; see Figure
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8 in Online Appendix D for a graphical intuition. This can be seen as follows. Clearly for there

to exist a solution f < 1 to f =H(f,x), H(f,x) must cross the diagonal. But since dH
df

(1, x)> 1

for x ∈ (xc,1] and H(1, x) = 1, H(f,x) must cross the diagonal from below when approaching the

intersection from the right. This implies that dH
df

(f,x)< 1 at the intersection. This together with

0<x, f < 1 and dH
df

(f,x)> 0 implies that df
dx
< 0.

Lemma 9. g(f,x) is continuous and monotonically increasing in x for x∈ [0,1].

Lemma 9. The fact that g(f,x) is continuous follows directly from the proof of Proposition

4. g(f,x) is monotonically increasing since

dg

dx
=−

∑
jk

pjkk(f(x)x+ 1−x)k−1

(
df

dx
x+ f(x)− 1

)
︸ ︷︷ ︸

≤0

≥ 0.

Let F (s,x) := xgR(xgC(s)). In order to prove Proposition 3 we first need to establish a couple of

facts about F (s,x) which we summarize in the following lemma. We will use the index µ∈ {R,C}
whenever results apply to both R and C networks.

Lemma 10. For s∈ (0,1]

1. F (s,x) is continuous in s,

2. F (s,x) is monotonically increasing in s,

3. F (s,x) is bounded from above: F (s,x)≤ x,

4. F (s,x) is concave in s,

5. lims→0F (s,x)→ 0,

6. lims→0
∂F (s,x)

∂s
→ 0.

Lemma 10. For this proof we invoke results from Lemmas 8 and 9. For s∈ (0,1]:

1. F (s,x) is continuous: gµ(s) is continuous as shown in Lemma 9. F (s,x) is a function of gµ(s)

and therefore also continuous in s.

2. F (s,x) is monotonically increasing: gµ(s) is monotonically increasing as shown in Lemma 9.

F (s,x) is therefore also monotonically increasing in s.

3. F (s,x) is bounded from above - F (s,x)< 1: Clearly gµ(s) is bounded from above since gµ(s)≤
1. Furthermore, assuming a positive shock size, i.e. x< 1, we have F (s,x) = xgR(xgC(s))< 1.

Also note that the above implies that F (s,x) has a maximum at s= 1 which scales with x,

i.e. as x is decreased the maximum of F (x, s) decreases by at least the same amount.

4. F (s,x) is concave in s:

∂2F

∂s2
(s,x) = x2

(
x
d2gR
ds2

(s)

(
dgC
ds

(s)

)2

+
dgR
ds

(s)
d2gC
ds2

(s)

)

Since
dgµ
ds

(s)> 0,
d2gµ
ds2

(s)< 0 (by Assumption 4.6) and x> 0 we must have ∂2F
∂s2

< 0, i.e. F (s,x)

concave.
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5. lims→0F (s,x)→ 0: Since for s < sc,µ we have fµ(s) = 1 and gµ(s) = 0, where sc,µ is the thresh-

old for network µ at which the giant out-component vanishes as given in Proposition 4. In

other words, there exists a critical sc,µ at which the giant out-component in one of the inter-

mediation networks vanishes (recall that we assume that λ <∞, hence there always exists

this critical sc,µ by Proposition 4).

6. lims→0
∂F
∂s

(s,x)→ 0:

lim
s→0

∂F

∂s
(s,x) = x2dgR

dv
(v)

dgC
ds

(s)→ 0.

Since for s < sc,µ we have fµ(s) = 1 and gµ(s) = 0. Hence for s < sc,µ we have
dgµ
ds

(s) = 0. In

other words, since there exists a critical sc,µ at which the giant component vanishes in one of

the intermediation networks, there is a region for values of s < sc,µ in which F (x, s) is flat.

These observations show that, under the assumptions made here, F (x, s) can be decomposed into

two regions: (i) for small values of s (s < sc,µ) F (x, s) vanishes (F (x, s) = 0) and is flat (∂F/∂s= 0).

(ii) for larger values of s (s > sc,µ) F (x, s) is strictly monotonically increasing and concave but

bounded from above (F (x, s)< 1).

Proposition 3 This proof invokes results from Lemma 10 and relies in particular on our obser-

vations of the shape of F (x, s) in the interval s∈ [0,1]. We illustrate the graphical intuition for this

proof in Figure 9 in Online Appendix D.

First note that s= 0 is a trivial solution to s= F (s,x) for all x since gµ(0) = 0. Furthermore as

shown in Lemma 10 there exists a region for sufficiently small s in which F (s,x) is constant and

equal to zero. As seen in Lemma 10, for all s > sc,µ the function F (s,x) is strictly increasing and

concave provided gµ(s) is concave. The fact that F (x, s) is constant and flat close to s= 0 implies

that in at least some of the interval s ∈ [0,1], F (x, s) must lie below the diagonal. If for s > sc,µ

the function F (x, s) increases sufficiently fast to cross the diagonal there will exist two solutions

in addition to the trivial solution (since for x < 1 F (x, s)< 1 and hence cannot remain above the

diagonal for the entire interval s∈ [0,1]).

Note that Assumption 4.5 ensures that in the absence of a shock there exists a mutual giant out-

component of positive size. Since we are investigating cascades following a small shock we are only

interested in the largest fixed point s∗ of the map sn = F (sn−1, x) with s0 = x. This fixed point will

be stable due to the concavity of F (s,x) and because at s∗ the slope of F (x, s) is ∂F/∂s(s∗, x)< 1.

Now consider how the largest fixed point s∗ changes when the initial shock 1 − x is increased.

Clearly, when x goes down, s∗ goes down as well. This is because for a smaller value of x the curve

F (s,x) will have a smaller maximum value. This pushes the entire segment of the curve of F (x, s)

for s > sc,µ downwards. Therefore F (s,x) will intersect the diagonal at a smaller value. When both

x and s∗ decrease further the curve F (s,x) will ultimately become tangent to the diagonal. This
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will correspond to some critical value xc. At this point the largest solution s∗ merges with the

second largest on the diagonal.

If x is decreased further (x< xc) both non trivial solutions vanish and only the trivial solution at

s= 0 remains. In summary, if there exists some fixed point of F (x, s), s∗, and a shock of a critical

size 1−xc such that F (x, s) is tangent to the diagonal (∂F
∂s

(s∗, xc) = 1), then there will be a region

below xc where only the trivial solution exists (s∗ = 0) and a region above xc where a non trivial

solution 0< s∗ < 1 exists.

Note that, since there exists some value sc,µ > 0 at which the derivative ∂F/∂s(s,x) vanishes,

F (x, s) must lie below the diagonal close to s= 0. Therefore, the non trivial solution must always

be greater than zero, i.e. s∗ > 0 for x≥ xc. Therefore

lim
ϵ→0

F (s∗, xc − ϵ) = 0 ̸= F (s∗, xc)> 0.

Hence F (s,x) is discontinuous in x at x= xc. From the above it also follows that, if there exists no

0< s∗ < 1 such that at some x= xc > 0, ∂F
∂s

(s∗, xc) = 1, then only the trivial solution can exist and

F (s∗, x) = 0 ∀ x< 1. In this case a minimal disturbance of the network leads always to a complete

collapse of the network.

Now let us turn to the Proposition 4b.

Proposition 4b Let’s write rc = rc(GR, ḠC) and xc = xc(GR,GC). Suppose we have 1−xc ≥ 1−rc
(xc ≤ rc). Note that by definition at rc, the size of the giant component in the repo network vanishes,

i.e. gR(rc) = 0. Also, F (s,xc) = xcgR(xcgC(s)) < rc since F (s,xc) < xc for s < 1 and xc ≤ rc by

assumption. However, at a fixed point we must have that F (s,xc) = s. Thus for any solution s,

we have that s < rc and hence xcgC(s)< rc. But we must have that gR(s) = 0 for all s < rc. This

implies that at the fixed point s∗ = 0. However this contradicts F (s∗, xc)> 0 which is required by

Proposition 3. This proves Proposition 4b by contradiction.
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FOR ONLINE PUBLICATION
B. Additional technical details

B.1. The continuum configuration model

Recall that (pjk,µ)µ∈M is the joint distribution of degrees in market µ, with pjk giving the fraction

of nodes with in-degree j and out-degree k. Consider a continuum of nodes N = [0,1]. Each node i

has a vector of degrees δi which assigns it in- and out-degrees in each layer µ, written δ−i,µ and δ+i,µ

respectively. The measure of nodes having in-degrees (jµ)µ∈M and out-degree (kµ)µ∈M is∏
µ∈M

pjµkµ,µ.

We construct a multilayer network G on the continuum [0,1] of nodes as follows, in the spirit of

the Bollobas configuration model. Focusing on a layer µ, let each node i with degree type δi have

δ+i,µ incoming half-edges, comprising a set H−
i , and δ+i,µ outgoing half-edges, comprising a set H+

i .

Let H− =
⋃

i∈N H
−
i be the set of incoming half-edges and H+

i =
⋃

i∈N H
+
i be the set of outgoing

half-edges. Construct a uniform independent random matching between all incoming half-edges and

all outgoing half-edges, independently in each layer—Duffie and Sun (2007) provide foundations

for such a random matching. This yields a random multilayer network G on N having the property

that the joint distribution of degrees in each market is pjk,µ.
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C. The structure of financial networks during crises

For a policy analyst conducting a macroprudential stress test of the type outlined in Section 3.1,

what is relevant is the structure of the networks of trading relationships during crisis times. Our

model of this network is a random network with a given degree distribution that can be flexibly

specified by the modeler. This section documents some empirical observations that explain why

this model was chosen.

The network of trading relationships is difficult to measure empirically. However, a natural

starting point is the network of observed exposures during the normal times. In Figure 6, we

plot the cumulative degree distribution of overnight interbank exposures aggregated over a reserve

maintenance period (RMP)34 among euro area banks. The first observation is that this network has

a different distribution than one would see in a core-periphery network of the same size.35 Rather

than having a sharp distinction in degree between core and periphery, the distribution in Figure 6

appears heavy-tailed.36 Figure 6 suggests that stylized core-periphery networks cannot capture the

rich structure of observed exposures: a model with a more flexible degree distribution is needed,

even for network structure during normal times, which is consistent with our modeling approach.

Our second observation, illustrated by Figure 7, is that this degree distribution thinned out

substantially during the height of the global financial crisis in September 2008. We plot the distri-

bution of changes in the number of neighbors a bank has from a given RMP relative to the RMP

immediately prior. We label RMPs by the month they start in (throughout our sample, this label

identifies an RMP uniquely). A negative mean indicates that connections are cut and the network

is thinned out, while a positive mean implies more connections are being created. The mean of the

34 To produce this plot, we used the data from Gabrieli and Georg (2014), who study the network of euro area

overnight interbank loans obtained from the Target2 payment system. A reserve maintenance period corresponds

roughly to a month and is the natural unit of aggregation as banks are required to hold minimum average reserves

over this period commensurate with their deposits. The overnight interbank market is the main mechanism how these

reserves are redistributed among banks.

35 Consider a core-periphery network with nC core nodes and nP peripheral nodes, each linked to one core node; we

would expect a bi-modal degree distribution with one peak around degree one (corresponding to the peripheral nodes)

and another around degree nC − 1+nP /nC (corresponding to the core nodes). With peripheral nodes connecting to

more core nodes, the distribution would have larger support, but there would still be a break in the degree distribution

corresponding to the structural difference between the core and periphery.

36 Note that, for confidentiality reasons, the CDF depicted must be censored at degree 50, but the figure is qualitatively

unchanged without the censoring.
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Figure 6 Cumulative degree distribution of overnight interbank loans in Europe from the Target2 payment system

in the reserve maintenance period starting in September 2008 compared with a stylized core-periphery

network of the same size.

change of a bank’s number of neighbors in July 2008 is 1.96, while in September 2008 it is −1.43

and in July it is −0.25.37 That the network continued thinning out is in line with the continuing

crisis in the euro area that turned into the euro area sovereign debt crisis in early 2010.

Our final observation is that even insofar as exposure networks pre-crisis are well-approximated

by simple benchmarks such as core-periphery structures (as discussed, e.g., in (Craig and Von Peter

2014, Li and Schürhoff 2019)), the shocks to network structure during a crisis can change the

situation considerably. Around the insolvency of the US investment bank Lehman Brothers in

September 2008, Gabrieli and Georg (2014) show that about 52% of the links in the euro area

overnight interbank market violated the stylized core-periphery structure and a large fraction of

links changed. The random network models we use in Section 3 are designed to be flexible enough

to capture important features of network structure that are consequences of this “thinning out.”

37 Since the Target2 payment system became operational in the last country of the euro area only in May 2008, we

do unfortunately not have data for any date before then.
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Figure 7 Box plot of the change of the number of a bank’s neighbors in the euro area overnight interbank network

aggregated on reserve maintenance period basis. Changes are computed from one reserve maintenance

period to the next. A negative change implies the a given bank has lost neighbors.

D. Additional Figures
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Figure 8 Graphical intuition for proof of Proposition 4. We are interested in fixed points f∗ = H(f∗, x) with

f∗ < 1. We plot H(f,x) for two choices of x. Note that the value of x determines the slope of H(f,x)

at f = 1. The dashed green line corresponds to the case when x is such that dH(1, x)/df > 1 while the

continuous red line corresponds to the case when x is such that dH(1, x)/df = 1. Due to the convexity of

H(f,x) in f , dH(1, x)/df ≤ 1 implies that there will be no fixed point apart from f∗ = 1 in the interval

[0,1]. Thus dH(1, xc)/df = 1 determines a critical value of x at which f∗ < 1 merges with f∗ = 1.
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Figure 9 Graphical intuition for proof of Proposition 3. We are interested in the greatest fixed point y∗ = F (y∗, x)

with y∗ > 0. We plot F (y,x) for two choices of x. Note that the value of x determines the slope of

F (y,x) at y∗. The dashed green line corresponds to the case when x is such that dF (y∗, x)/dy > 1 while

the continuous red line corresponds to the case when x is such that dF (y∗, x)/df = 1. As x is decreased

F (1, x) and y∗ decrease. At some critical xc the curve F (y,x) will become tangent to the diagonal. If

xc is decreased any further, y∗ > 0 disappears and only the trivial fixed point y∗ = 0 remains.
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E. Calculations for example random networks

E.1. Erdos-Rényi network

Let q denote the probability that a randomly chosen intermediary is connected to another inter-

mediary by an outgoing or incoming link. Here, due to the independence of in- and out-degrees

the joint degree distribution factorizes into pjk = pjpk with pj = pk and

pk =

(
n− 1

k

)
qk(1− q)n−k−1.

When we hold the average in- and out-degree λ= nq fixed and take the limit n→∞ the generating

function for the out-degree distribution of a random node becomes

G(z) = eλ(z−1),

Note that for the Erdős-Rényi network the generating function for the out-degree of a random node

is equal to the generating function of the out-degree of the terminal node reached by following a

random link (Newman 2002). Thus, we have G(z) = H(z). As shown in Appendix A.4, after an

exit shock removing a fraction 1−x of nodes, the generating functions become

Ĝ(z,x) = Ĥ(z,x) =G(1−x+ zx) =H(1−x+ zx) = eλx(z−1),

As before, we compute equilibrium liquidity as the size of the giant out-component of network R:

A∗(x) = s∗. In Figure 4 we solve for s∗ numerically.

E.2. Scale free networks

Now let’s consider the case where GC and GR are directed networks with the same power law

in- and out-degree distributions (also known as scale free networks). Networks with this degree

distribution can be formed for example through a preferential attachment process as outlined in

Barabási and Albert (1999). As for the Erdős-Rényi networks we assume that the in- and out-

degrees are independent, such that pjk = pjpk. We also assume that pj = pk =Cµk
−α for α ∈ (2,3]

and k > 1. The constant that normalizes the degree distribution is C = 1/(ζ(α)− 1), where ζ(·) is

the Riemann zeta function. Also define the generating functions with their usual meanings

G(z) =C
∑
k>1

k−αzk =C(Liα(z)− z),

where Lis(z) is the polylogarithmic function defined by:

Lis(z) =
∑
k=1

zk

ks
,
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where s is complex number and z is a complex number with |z|< 1, which is clearly valid here. In

the following we will only consider real s and z. We also have

H(z) =
1

λ

∑
j

pjj
∑
k

pkz
k =G(z).

As before we have that Ĝ(z,x) = G(1 − x+ zx) and Ĥ(z,x) = H(1 − x+ zx). We can make the

substitution w = 1− x+ zx, i.e. z = (w+ x− 1)/x. Then to find the extinction probability of the

branching process we must solve

(w+x− 1)/x=H(w) =C(Liα(w)−w)

Again we compute equilibrium liquidity as the size of the giant out-component of network R:

A∗(x) = s∗. In Figure 5 we solve for s∗ numerically.

F. Overlap between two networks

It is useful to write the equations (9) slightly differently. In particular let us introduce

s̃R = gR(fR, x−x(1− s̃C)),

fR =HR(fR, x−x(1− s̃C)),

s̃C = gC(fC , x−x(1− s̃R)),

fC =HC(fC , x−x(1− s̃R)),

where sR = xs̃R and sC = xs̃C . Clearly x− x(1 − s̃C) is simply the fraction of nodes remaining

after the initial shock 1 − x minus the number of nodes that are not in the giant component of

GC but remain in the network after the initial shock 1 − x. We can make a crude, but simple,

approximation to the effect of overlap as follows. Only intermediaries which do not lie outside the

giant component in GR can withdraw upon their withdrawal in GC . The fraction of nodes that are in

the giant component in GR but not in the giant component of GC is approximately (1− s̃C)(1−ω).

Thus we obtain
s̃R = gR(fR, x−x(1− s̃C)(1−ω)),

fR =HR(fR, x−x(1− s̃C)(1−ω)),

s̃C = gC(fC , x−x(1− s̃R)(1−ω)),

fC =HC(fC , x−x(1− s̃R)(1−ω)),

0

Note that this formulation reduces to the centralized market benchmark for ω = 1 and the usual

two network case for ω= 0.

Recall from section E that the generating functions for the Erdős-Rényi network are given by

Ĝ(z,x) = Ĥ(z,x) =G(1−x+ zx) =H(1−x+ zx) = eλx(z−1),
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Figure 10 Equilibrium activity as a function of the fraction of intermediaries 1 − x that withdraw from the

repo and collateral markets following an exit shock in an Erdős-Rényi network with different levels of

network overlap.

Then it can be shown that
s̃R = 1− e−λRx(1−s̃C)(1−ω)s̃R ,

s̃C = 1− e−λCx(1−s̃R)(1−ω)s̃C .

If we take λR = λC , due to the symmetry of the expressions above we must have s̃R = s̃C , hence

we can reduce the above to a single equation

s= 1− e−λx(1−s)(1−ω)s. (11)

We know that there exists a regime for ω for which we observe a continuous transition at the critical

exit shock (e.g. ω= 1) as well as a regime with a discontinuous transition (e.g. ω= 0). The critical

value of ω at which the transition switches from continuous to discontinuous is often referred to as

the tri-critical point. We can follow the standard procedure to determine the tri-critical point at
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which the transition becomes discontinuous, cf. Son et al. (2012). Let us first define the deviation

measure

h(s) = s− (1− e−λx(1−s)(1−ω)s).

Suppose we are in a regime of ω in which the transition is continuous. Close to the critical exogenous

shock we have ϵ= s≈ 0 and we can expand around h(0) to approximate h(ϵ), i.e.

h(ϵ) = h′(0)ϵ+
1

2
h′′(0)ϵ2 +

1

6
h′′′(0)ϵ2 +O(ϵ4).

Suppose for now that the first and second derivatives are non zero. At a solution of Eq. (11) we

must have h(ϵ) = 0. If we ignore higher order terms and solving for ϵ we obtain

ϵ≈ 2h′(0)

h′′(0)
,

At the critical point ϵ= 0. Thus, provided h′′(0) ̸= 0, at the critical point we must have h′(0) = 0.

It can be shown that dϵ/dx does not diverge at the critical point in this case. Now suppose that

h′′(0) = 0. When solving for ϵ we now need to include higher order terms. Thus

ϵ≈
√

6h′(0)

h′′′(0)
,

By applying the chain rule we find that dϵ/dx= ∂ϵ/∂h′(0)∂h′(0)/∂x+R, where R corresponds to

the remaining terms of the derivative. Note that ∂ϵ/∂h′(0)∝ 1/
√
h′(0). Thus, when h′(0) = h′′(0) =

0, the derivative dϵ/dx diverges and a discontinuous transition emerges. Solving for the value of

ω at which the first and second derivatives go to zero, we obtain that ωc = 2/3. Thus, for coupled

Erdős-Rényi networks there exists a discontinuous transition as long as approximately one third

of the links differ between the two networks.
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