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Abstract

We study learning in a setting where agents receive in-
dependent noisy signals about the true value of a vari-
able and then communicate in a network. They näıvely
update beliefs by repeatedly taking weighted averages of
neighbors’ opinions. We show that all opinions in a large
society converge to the truth if and only if the influence of
the most influential agent vanishes as the society grows.
We also identify obstructions to this, including prominent
groups, and provide structural conditions on the network
ensuring efficient learning. Whether agents converge to
the truth is unrelated to how quickly consensus is ap-
proached.

1. Introduction

Social networks are primary conduits of information and
opinions. In view of this, it is important to understand
how the evolution of beliefs and behaviors depends on net-
work structure and whether or not the resulting outcomes
are efficient. In this paper we examine one aspect of this
broad theme: for which social network structures will a
society of agents who communicate and update näıvely
come to aggregate decentralized information completely
and correctly?

Given the complex forms that social networks often
take, it can be difficult for the agents involved (or even
for a modeler with full knowledge of the network) to up-
date beliefs properly. For example, Choi, Gale and Kariv
[2] find that although subjects in simple three-person net-
works update fairly well in some circumstances, they do
not do so well in evaluating repeated observations and
judging indirect information whose origin is uncertain.
Given that social communication often involves repeated
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transfers of information among large numbers of individ-
uals in complex networks, fully rational learning becomes
infeasible.

Nonetheless, it is possible that agents using fairly sim-
ple updating rules will arrive at outcomes like those
achieved through fully rational learning. We discuss gen-
eral obstacles to this, including the existence of promi-
nent groups that receive a disproportionate share of at-
tention. We also identify social networks for which näıve
individuals converge to correct beliefs. These networks ex-
hibit properties of balance and large-scale cohesion. Thus,
whether näıve individuals can jointly learn the truth de-
pends crucially on subtle properties of network structure,
and we study the precise nature of this dependence.

2. The Model

2.1 Basic Communication

We begin by describing the DeGroot [3] model of belief
updating in a fixed, finite network before discussing large
societies. A finite set N = {1, 2, . . . , n} of agents or nodes
interact according to a social network. The interaction
patterns are captured through an n× n nonnegative ma-
trix T, where Tij > 0 indicates that i pays attention to j.
The matrix T may be asymmetric, and the interactions
can be one-sided, so that Tij > 0 while Tji = 0. We refer
to T as the interaction matrix. This matrix is stochastic,
so that its entries across each row are normalized to sum
to 1.

Agents update beliefs by repeatedly taking weighted
averages of their neighbors’ beliefs, with Tij being the
weight or trust that agent i places on the current belief
of agent j in forming his or her belief for the next period.
In particular, each agent has a belief p(t)

i ∈ R at time
t ∈ {0, 1, 2, . . .}. The vector of beliefs at time t is written
p(t). The updating rule is:

p(t) = Tp(t−1)

and so
p(t) = Ttp(0).

A standard result from the theory of Markov chains
states that if T is irreducible and aperiodic (the g.c.d. of
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all simple cycles in the directed graph induced by T is
1) then this process of belief updating will converge to
a steady state. For simplicity in this extended abstract,
we will assume that all matrices we discuss are strongly
connected and aperiodic, even though our results hold in
more general settings that do not assume strong connect-
edness.

2.2 Large Societies and Wisdom

In discussing convergence to true beliefs in large societies,
we will be taking a double limit. First, for any fixed
network, we ask what its beliefs converge to in the long
run. Next, we study limits of these long-run beliefs as the
networks grow; the second limit is taken across a sequence
of networks.

Thus, consider a sequence of networks captured by a
sequence of n-by-n interaction matrices: we say that a
society is a sequence (T(n))∞n=1 indexed by n, the number
of agents in each network. We will denote the (i, j) entry
of interaction matrix n by Tij(n), and, more generally,
all scalars, vectors, and matrices associated to network n
will be indicated by an argument n in parentheses.

Next, we specify initial beliefs. There is a true state
of nature µ ∈ [0, 1]. At time t = 0, agent i in network
n acquires an initial belief p(0)

i (n) ∈ [0, 1]. The belief is
distributed with mean µ and a variance of at least σ2 >

0, and the beliefs p(0)
1 (n), . . . , p(0)

n (n) are independent for
each n. No further assumptions are made about the joint
distribution of the variables p(0)

i (n) as n and i range over
their possible values.

Finally, we define the key concept of our study: wis-
dom. For any given n and realization of p(0)(n), the belief
of each agent i in network n approaches a limit which we
denote by p(∞)

i (n). Each of these limiting beliefs is a ran-
dom variable that depends on the initial beliefs. We say
the sequence of networks is wise when the limiting be-
liefs converge jointly in probability to the true state µ as
n→∞.

Definition 1 The sequence (T(n))∞n=1 is wise if,

plim
n→∞

max
i≤n
|p(∞)

i (n)− µ| = 0.

3 Characterizations of Wisdom

We begin with a straightforward characterization of wis-
dom that is the workhorse for much of our analysis. To
each interaction matrix T(n) corresponds a unique left
eigenvector s(n) with eigenvalue 1, normalized so that
its entries sum to 1. We call this the influence vec-
tor, and si(n) is called the influence of node i. This

eigenvector is related to measures of centrality and pres-
tige that have been developed in sociology [4, 1] and
also to the way that Google computes the importance
of websites [5]. The eigenvector property just asserts that
sj(n) =

∑n
i=1 Tij(n)si(n) for all j, so that the influence

of i is a weighted sum of the influences of various agents
j who pay attention to i, with the weight of sj(n) being
the trust of j for i. This is a very natural property for
a measure of influence to have and entails that influen-
tial people are those who are trusted by other influential
people. Without loss of generality, assume agents in each
network are numbered so that s1(n) is the largest entry
in s(n).

In our setting, it follows from standard Markov chain
results that, for every i,

p
(∞)
i (n) =

n∑
j=1

sj(n)p(0)
j (n).

This immediately implies the following characterization
of wisdom. The proof follows the standard technique for
proving weak laws of large numbers using the Chebyshev
inequality.

Proposition 1 The sequence (T(n))∞n=1 is wise if and
only if s1(n)→ 0 as n→∞.

The result has a very simple intuition: for the idiosyn-
cratic errors to wash out and for the limiting beliefs –
which are weighted averages of initial beliefs – to con-
verge to the truth, nobody’s idiosyncratic error should be
getting positive weight in the large-society limit.

This characterization is, however, rather abstract in
that it applies to influence vectors and not directly to
the structure of the social network. It is interesting to
see how wisdom is determined by the geometry of the
network. Which structures prevent wisdom, and which
ones ensure it?

In one simple special case we can give a complete struc-
tural characterization in terms of quite familiar quantities
– the degrees of various agents.

Proposition 2 Assume all links are bilateral and that
each agent weights all his neighbors equally. In this case,
the sequence (T(n))∞n=1 is wise if and only if the maxi-
mum degree in network n divided by the sum of degrees in
network n converges to 0 as n→∞.

To state a more general result, we consider an obstacle
to wisdom in arbitrary networks: namely, the existence of
prominent groups which receive a disproportionate share
of attention.

To introduce this concept, we need some definitions
and notation. Define

TB,C =
∑
i∈B
j∈C

Tij
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Figure 1: The large arrows illustrate the concept of the
weight of one group on another.

which is the weight that the group B places on the group
C (see Figure 1). We say that a set of agents B is promi-
nent in t steps relative to T if (Tt)i,B > 0 for each i /∈ B.
Call πB(T; t) := mini/∈B(Tt)i,B the t-step prominence of
B relative to T. Next, we define a family to be a se-
quence of sets (Bn) such that Bn ⊂ {1, . . . , n} for each
n. With these notions in hand, we can define a uniformly
prominent family.

Definition 2 The family (Bn) is uniformly prominent
relative to (T(n))∞n=1 if there exists a constant α > 0
such that for each n there is a t so that the group Bn is
prominent in t steps relative to T(n) with πBn

(T(n); t) ≥
α.

We also define a notion of finiteness for families: a
family is finite if it stops growing eventually, i.e. if there
is a q such that supn |Bn| ≤ q.

We can now state a general structural characterization
of wisdom.

Proposition 3 The sequence (T(n)) is wise if and only
if there does not exist a finite, uniformly prominent family
relative to it.

While this result – especially the direction that says
finite, uniformly prominent families destroy wisdom – is
useful, it still leaves something to be desired. In partic-
ular, it requires considering possibly large powers of the
interaction matrices, which takes us far from basic intu-
itions about how the network looks. We thus formulate
sufficient conditions for wisdom that work with the basic
network and not its powers. The first one is as follows.

Property 1 (Balance) There exists a sequence j(n)→
∞ such that if |Bn| ≤ j(n) then

sup
n

TBc
n,Bn

(n)
TBn,Bc

n
(n)

<∞.

The balance condition says that no family below a cer-
tain size limit captured by j(n) can be getting infinitely
more weight from the remaining agents than it gives to
the remaining agents. The sequence j(n) can grow very
slowly, which makes the condition reasonably weak.

In addition to imbalances of trust, one also has to worry
about large-scale asymmetries of a different sort, which
can be viewed as small groups focusing their attention
too narrowly. The next condition deals with this.

Property 2 (Minimal Out-Dispersion) There is a
q ∈ N and r > 0 such that if Bn is finite, |Bn| ≥ q,
and |Cn|/n→ 1, then TBn,Cn

(n) > r for all large enough
n.

The minimal out-dispersion condition requires that any
large enough finite family must give at least some minimal
weight to any family which makes up almost all of society.
Having stated these two conditions, we can give our final
result, which states that the conditions are sufficient for
wisdom.

Proposition 4 If (T(n))∞n=1 is a sequence of convergent
stochastic matrices satisfying balance and minimal out-
dispersion, then it is wise.

Finally, we can consider the relationship between the
speed of learning and its accuracy. Simple examples show
that, in general, these two quantities are not necessar-
ily related. For each possible specification of the speed
of learning and its accuracy, there exists a society which
manifests that combination.
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