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1. Introduction

Social ties convey information through observations of others’ decisions as well as through
conversations and the sharing of opinions. The resulting information flows play a role in a
range of phenomena, including job search (Montgomery 1991), financial planning (Duflo and
Saez 2003), product choice (Trusov et al. 2009), and voting (Beck et al. 2002). Understanding
how individuals use information from their social environments, and the aggregate conse-
quences of this learning, is therefore important in many contexts. Is dispersed information
aggregated efficiently? Whose opinions or experiences are particularly influential? Can we
understand when choices will be diverse, when people will choose to conform, and how the
networks in which individuals communicate shape these outcomes?

This chapter surveys several approaches to these questions. We begin with a discussion
of sequential social learning models in which each agent makes one decision; these models
have admitted a rich analysis within a canonical Bayesian paradigm. We next discuss the
DeGroot model of repeated linear updating. This theory employs a simple heuristic learning
rule, delivering a fairly complete characterization of learning dynamics as a function of net-
work structure. Finally, we review work that studies repeated Bayesian (or quasi-Bayesian)
updating in general networks.

.................................................................................................
2. The Sequential Social Learning Model

An important early branch of the social learning literature arose to explain widespread
conformity within groups, referred to as herd behavior. Banerjee (1992) and Bikhchandani
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2 2 The Sequential Social Learning Model

et al. (1992) independently proposed models in which players each take a single action in
sequence. Before making a choice, each player observes all previous actions and a private
signal. Though individual payoffs are independent of other players’ actions, others’ choices
provide information about their signals, and therefore about what action is best. This
information constitutes an externality. Oftentimes, individuals acting later will optimally
ignore their private signals and copy the crowd instead. If this happens, the choices of
these players cease to reveal new information, and the population can herd on a suboptimal
action. Variations on this insight have been used to explain phenomena ranging from fads
and fashions to stock bubbles, and there is a rich literature on extensions and applications.1

In this section we cover more recent efforts, adapting the classical herding models to a
network structure that encodes partial observation of the history. The distinguishing feature
in this line of work is the sequential structure, and we collectively refer to these models as the
sequential social learning model (SSLM). While Bayesian learning is often difficult to analyze
in a network, sequential models have proved particularly tractable. Since each player makes
only one choice, there is no scope for strategic interactions, and researchers can study the
information externality in isolation from other concerns.

Two key principles provide intuition for long-run learning outcomes in the SSLM: the
improvement principle and the large-sample principle. The improvement principle notes
that a player always has the option to copy one of her neighbors, so the payoff from im-
itating provides a lower bound on her expected utility. Since the player additionally has
a private signal, she might be able to improve upon imitation. One family of learning re-
sults characterizes how well the population learns through this mechanism. The intuition of
the improvement principle is generally robust to features of the network, but the extent of
learning depends heavily on the private signals because continued improvement on imitation
requires the possibility of a strong signal. If players observe many actions, we can addi-
tionally employ the large-sample principle: If observations are at least partly independent,
then a large sample collectively conveys much information, even if each signal is individually
weak. In these networks, the exact distribution of private signals matters less, and learning
is far more robust.

2.1 The SSLM with Homogeneous Preferences

Our first pass at the SSLM assumes that players differ only in their initial information,
not in their preferences. Our formulation includes as special cases the classical models of
Banerjee (1992), Bikhchandani et al. (1992), and Smith and Sørensen (2000), which assume
that all players observe the entire history. However, a decision maker’s information set is
typically far less complete. Authors have taken different approaches to represent limited
observation of other players’ choices. One approach, adopted by Smith and Sørensen (2008),
is for players to take anonymous random samples from the past. We focus more explicitly
on the network of connections between players; players know the identities of those they

1See Chamley (2004) for an overview. Bose et al. (2008) and Ifrach et al. (2013) offer recent contributions.
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observe, and we consider arbitrary sampling processes. Our framework encompasses recent
work by Celen and Kariv (2004), Acemoglu et al. (2011), Arieli and Mueller-Frank (2014),
and Lobel and Sadler (2015). We can also include the model of Eyster and Rabin (2011) if
we relax the assumption that players’ signals are identically distributed.

2.1.1 Information and Strategies

Each player n ∈ N = {1, 2, 3, . . .} makes a binary choice of action xn ∈ {0, 1} in sequence.
The state of the world is θ ∈ {0, 1}, and players share a common prior q0 = P(θ = 1). Players
prefer to choose the action that matches the state: We assume a common utility function
u(x, θ) with

u(1, 1) > u(0, 1) and u(0, 0) > u(1, 0).

Player n observes a signal sn taking values in an arbitrary metric space S, and the signals
{sn}n∈N are independent and identically distributed conditional on the underlying state θ.
We use Fθ to denote the signal distribution conditional on the state. We assume F0 is not
almost everywhere equal to F1, so some signal realizations provide information.

For concreteness, consider some examples of signal structures. We could have binary
signals, with each sn taking values in S = {0, 1} and where

P(sn = 0 | θ = 0) = P(sn = 1 | θ = 1) = g >
1

2
.

The realization sn = 0 provides evidence in favor of θ = 0, while sn = 1 provides evidence
in favor of θ = 1. This is the signal structure studied by Banerjee (1992) and Bikhchandani
et al. (1992). We could also consider real-valued signals with F0 and F1 being probability
measures on R. For instance, suppose F0 and F1 are both supported on S = [0, 1], where
F0 has density 2 − 2s and F1 has density 2s. In this case, lower signal realizations provide
stronger evidence in favor of θ = 0: the signal s ∈ [0, 1] induces the likelihood ratio s

1−s .
In addition to the signal sn, player n observes the choices of those in her neighborhood

B(n) ⊆ {1, 2, . . . , n− 1}. That is, player n observes the value xm for each m ∈ B(n). This
neighborhood is a subset of players who have already acted before player n, and the sequence
of neighborhoods {B(n)}n∈N constitutes the observational network. Each neighborhood is
randomly drawn according to a distribution, and we use Q to denote the joint probability
distribution of the sequence of neighborhoods. We assume the distribution Q, which we call
the network, is common knowledge among the players.

The following are examples of networks:

• For each n ∈ N, B(n) = {1, 2, . . . , n− 1} with probability 1. This is the complete net-
work of Banerjee (1992), Bikhchandani et al. (1992), and Smith and Sørensen (2000),
in which each player observe all of her predecessors.

• For each n ∈ N, B(n) = {n− 1} with probability 1. This is the network of Celen and
Kariv (2004) in which each player observes only her immediate predecessor.
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Figure 1: A realized network. Player 5 observes players 2 and 3, but is uncertain about other
decisions and links.

• For each n ∈ N, B(n) contains one element drawn uniformly at random from {1, 2, . . . , n−
1}, and all these draws are independent. This example of observing a random prede-
cessor demonstrates how neighborhood realizations can be stochastic.

• With equal probability, B(2) = {1} or B(2) = ∅. If B(2) = ∅, then B(n) = ∅ for all
n; otherwise B(n) = {n− 1} for all n. Here, every agent observes only her immediate
predecessor or every agent observes nobody. So neighborhood realizations are again
random and, in contrast to the previous example, correlated.

The information player n observes is then In = {sn, xm, m ∈ B(n)}: her private signal
and the actions of all the predecessors in her realized neighborhood. This is a natural
generalization of the early sequential learning literature, which implicitly assumed a complete
network.

We often reference player n’s private belief pn = P(θ = 1 | sn) separately from player
n’s social belief qn = P (θ = 1 |xm, m ∈ B(n)), and we use Gθ to denote the distribution
function of pn conditional on the state. A strategy σn for player n maps each possible
realization of her information In to an action xn ∈ {0, 1}. A strategy profile σ ≡ {σn}n∈N
induces a probability distribution Pσ over the sequence of actions. The profile σ is a perfect
Bayesian equilibrium if each player maximizes her expected utility, given the strategies of
the other players:

Eσ
[
u(σn, θ)

∣∣ In] ≥ Eσ
[
u(σ′n, θ)

∣∣ In]
for any strategy σ′n. Since each player acts once in sequence, an inductive argument estab-
lishes the existence of an equilibrium, though in general this is non-unique since some players
may be indifferent between the two actions.
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2.1.2 Long-Run Learning Metrics

Our study of equilibrium behavior centers on asymptotic outcomes. In particular, we
consider two metrics—diffusion and aggregation—based on players’ expected utility as the
index n approaches infinity. Aggregation occurs if players’ utility approaches what they
would obtain with perfect information:

lim
n→∞

Eσ [u (xn, θ)] = q0u(1, 1) + (1− q0)u(0, 0).

This represents the best asymptotic outcome we can hope to achieve: For later players, it is
as though the private information of those that came before them is aggregated into a single,
arbitrarily precise signal.

The definition of diffusion depends on the signal distribution, and the support of private
beliefs in particular. The support of the private beliefs is the region [β, β], where

β = inf{r ∈ [0, 1] |P(p1 ≤ r) > 0} and β = sup{r ∈ [0, 1] |P(p1 ≤ r) < 1}.

It can be shown that there is a unique binary signal s̃ ∈ {0, 1}, a random variable such that

P(θ = 1 | s̃ = 0) = β and P(θ = 1 | s̃ = 1) = β.

We shall call s̃ the expert signal. Diffusion occurs if we have

lim inf
n→∞

Eσ [u (xn, θ)] ≥ E [u(s̃, θ)] ≡ u∗.

Intuitively, we have diffusion if players perform as though they were guaranteed to receive
one of the strongest possible signals.

In any particular network Q, diffusion or aggregation might occur or not, depending on
the signal structure or the equilibrium. To focus our attention on the network’s role, we say
that a network diffuses or aggregates information only if this occurs for any signal structure
and any equilibrium.

Definition 1. We say that a network Q aggregates (diffuses) information if aggregation
(diffusion) occurs for every signal distribution and every equilibrium strategy profile.

Note that aggregation is generally a stronger criterion than diffusion; if 1 − β = β = 1,
the two metrics coincide. In this case, we say that private beliefs are unbounded, whereas
private beliefs are bounded if β > 0 and β < 1. Much work on the SSLM studies condi-
tions under which aggregation occurs. In their seminal paper, Smith and Sørensen (2000)
demonstrate that aggregation occurs in a complete network—a network in which all players
observe the entire history—if and only if private beliefs are unbounded. This means there
are informative signal structures for which the complete network fails to aggregate infor-
mation, so the complete network does not aggregate according to Definition 1. Acemoglu
et al. (2011) find this characterization holds much more generally when the neighborhoods
{B(n)}n∈N are mutually independent. Our metrics provide an alternative perspective that
emphasizes the network’s role in social learning. Often, when aggregation turns on whether
beliefs are bounded or unbounded, the network diffuses information according to Definition
1, but it does not aggregate information.
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2.1.3 Necessary Conditions for Learning

Connectedness is the most basic requirement for information to spread in a network. In
the SSLM, this corresponds to each player having at least indirect access to a large number
of signals. If there exists a chain of players m1,m2, . . . ,mk such that mi ∈ B(mi−1) for each
i ≥ 2 and m1 ∈ B(n), we say that mk is in player n’s personal subnetwork B̂(n). A necessary
condition for a network to aggregate or diffuse information is that the size of B̂(n) should
grow without bound as n becomes large.

Definition 2. The network Q features expanding subnetworks if for any integer K, we
have

lim
n→∞

P
(
|B̂(n)| < K

)
= 0.

Proposition 1. If Q diffuses information, then Q features expanding subnetworks.

To see why this condition is necessary, suppose |B̂(n)| < K for some player n. We can
bound this player’s expected utility by what she could attain with access to K independent
signals. Since this need not reach the level u∗, we cannot guarantee diffusion with infinitely
many such players.2

With a basic necessary condition for diffusion in hand, we organize further analysis of
the SSLM according to our two key principles. It will become clear that each learning metric
corresponds to a particular learning principle: diffusion to the improvement principle and
aggregation to the large-sample principle. Though we focus on utility-based metrics, we
comment first on behavioral outcomes and belief evolution.

2.2 Herding and Cascades

Historically, the SSLM literature focuses on long-run patterns of behavior and belief
dynamics: The central phenomena are herding and informational cascades. Herding means
that all players conform in their behavior after some time, while an informational cascade
occurs if all players ignore their private signals after some time. Formally, herding occurs if
there is a random variable x supported on {0, 1} such that the sequence of actions {xn}n∈N
converges almost surely to x. Defining a cascade requires additional notation. For some
thresholds α and α, player n optimally ignores her signal sn whenever qn ∈ C ≡ [0, α]∪ [α, 1].
We call C the cascade set of beliefs, and if qn ∈ C we say that player n cascades. An
informational cascade occurs if, with probability 1, all players with sufficiently high indices
cascade. In a complete network, a cascade implies herding. If the social beliefs {qn}n∈N ever
reach the cascade set, no new information is revealed, and qn remains constant thereafter.

Though herding and informational cascades are clearly related, Smith and Sørensen
(2000) make clear these are distinct notions.3 Players can herd even while it remains possible

2See Lobel and Sadler (2015, Theorem 1) for more detail.
3Herrera and Hörner (2012) give a precise characterization of when cascades occur.
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for some signal realization to change their behavior, because, with some positive probability,
such signals may never occur. Indeed, if all players observe the entire history, herd behavior
is guaranteed. This is because the sequence of social beliefs qn is a martingale, and the mar-
tingale convergence theorem implies that it converges almost surely. At the same time, the
“overturning principle” of Smith and Sørensen (2000) says that whenever a sufficiently late-
moving player takes a different action from her predecessors, the social belief must change
substantially. These facts combined show that herding must occur, whether or not there is
a cascade, and whether or not aggregation occurs. Now, when is there a cascade? If private
beliefs are unbounded, then clearly there is never a cascade, because signals can be arbitrar-
ily strong. However, Smith and Sorensen note that the martingale {qn} must converge to a
random variable supported on the cascade set, and then it is said that a limit cascade occurs.
In this limiting sense, both herding and cascades always emerge in the complete network,
regardless of the signal structure.4

In a general network, we need not find such regular patterns of long-run behavior or
belief evolution. In a version of the SSLM with B(n) = {n − 1} for all n, Celen and Kariv
(2004) demonstrate that, even though herd-like behavior appears for long stretches, true
herds or cascades may be absent. Lobel and Sadler (2015) show that social beliefs along a
subsequence of players could converge almost surely to a random variable that puts positive
probability strictly outside the cascade set. If these beliefs converge to a point outside the
cascade set, actions along the subsequence will follow an i.i.d. sequence of random variables.
Nevertheless, networks that diffuse information display outcomes that are closely related to
informational cascades. In a network that diffuses information, players’ ex ante utility is at
least as high as if they were in a cascade, even if social beliefs do not converge to the cascade
set.

2.3 The Improvement Principle

We now return to welfare in the SSLM, focusing first on the improvement principle and
information diffusion.

2.3.1 Two Lemmas on the Improvement Principle

There are two basic steps in any application of the improvement principle: choosing whom
to imitate and determining if improvement is possible. We express the selection component
through neighbor choice functions.5 A neighbor choice function γn : 2{1,...,n} → N for player n

4Herding also occurs under alternative sampling rules. For instance, Banerjee and Fudenberg (2005)
study a sequential decision model in a continuum of players, in which each decision-maker samples several
predecessors uniformly at random; in their model, herding is a robust outcome.

5The concept of a neighbor choice function is implicit in the work of Acemoglu et al. (2011), which builds
improvements on the neighbor with the highest index. The formalization used here was introduced by Lobel
and Sadler (2015).
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selects a neighbor from any realization of B(n). We require that γn(S) ∈ S if S is nonempty;
otherwise, we take γn(S) = 0. In what follows, we use γn to refer to both this function and its
(random) value. Given our original network Q and a sequence of neighbor choice functions
{γn}n∈N, we implicitly define a new random network Qγ. In the network Qγ, we include only
those links in Q that are selected by the neighbor choice functions. In any realization of this
network, each player has at most one neighbor.

We say that an improvement principle holds if, for some sequence of neighbor choice
functions, the following heuristic procedure leads to diffusion. Each player n discards all
observations of neighbors’ decisions except the observation of player γn’s decision. Player n
then chooses an action to maximize expected utility given this single observation and her
private signal. Proving that an improvement principle holds entails showing that player n
can earn strictly higher utility than her chosen neighbor m whenever Eσ[u(xm, θ)] < u∗.

Lemma 1 (Improvement Principle). Suppose there exists a sequence of neighbor choice
functions {γn}n∈N and a continuous, increasing function Z such that:

(a) The network Qγ features expanding subnetworks.

(b) For all u < u∗, we have Z(u) > u.

(c) For any ε > 0, there exists Nε such that for any n ≥ Nε, with probability at least 1− ε,

Eσ [u(xn, θ) | γn] > Z (Eσ [u(xγn , θ)])− ε. (1)

Then the network Q diffuses information.

This result extends Lemma 4 of Lobel and Sadler (2014), and its proof is essentially
identical. Condition (c) expresses the key intuition: For all neighbors except some that γn
selects with negligible probability, player n can make an improvement. To apply Lemma 1,
we must construct a suitable improvement function Z.

Lemma 2. There exists a continuous, increasing function Z, with Z(u) > u for all u < u∗,
such that

Eσ [u(xn, θ) | γn = m] > Z (Eσ [u(xm, θ) | γn = m]) . (2)

Proof Sketch: We describe a heuristic procedure that a player could follow to obtain the
desired improvement; since the players are Bayesian, the actual improvement is at least as
high. Suppose player n copies the action of m unless she receives a signal inducing a private
belief pn that is very close to an extreme point β or β. In the latter case, player n chooses
the action the signal suggests. Conditional on following her signal, it is as though player n
receives very nearly the expert signal s̃, so her expected utility is an average of her neighbor
m’s utility and something arbitrarily close to u∗. Thus, improvements can accumulate up to
the level u∗ in the long run.

This argument highlights the significance of the expert signal and why we cannot count
on further improvements. Improving on imitation requires following at least the extreme
values of the signal, and the expert signal represents an upper bound on what a player can
obtain when following an extreme signal.
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2.3.2 Sufficient Conditions for Diffusion

There is one more step to connect Lemmas 1 and 2 into a general result, namely bounding
the difference between Eσ[u(xm, θ)] and Eσ[u(xm, θ) | γn = m]. Player n can imitate player
m only if player m is contained in B(n). Therefore, player n’s expected utility conditional
on imitating player m is not the same as player m’s expected utility: Imitation earns m’s
expected utility conditional on n choosing to imitate player m—that is, conditional on γn =
m. If Eσ[u(xm, θ)] and Eσ[u(xm, θ) | γn = m] are approximately equal for large n, then
Lemmas 1 and 2 immediately imply information diffusion.

Proposition 2 (Diffusion). Suppose there exists a sequence of neighbor choice functions
{γn}n∈N such that Qγ features expanding subnetworks, and for any ε > 0, there exists Nε

such that for any n ≥ Nε, with probability at least 1− ε,

Eσ [u(xγn , θ) | γn] > Eσ [u(xγn , θ)]− ε.

Then diffusion occurs.

A number of conditions on the network can ensure that

Eσ [u(xm, θ) | γn = m] = Eσ [u(xm, θ)] ,

and any of these immediately implies information diffusion.

Corollary 1. The network Q diffuses information if any of the following conditions holds:

(a) The neighborhoods {B(n)}n∈N are mutually independent, and Q features expanding
subnetworks.

(b) There exists a sequence of neighbor choice functions {γn}n∈N such that Qγ is deter-
ministic and features expanding subnetworks.

(c) There exists a sequence of neighbor choice functions {γn}n∈N such that Qγ features
expanding subnetworks and the random vector {B(i)}mi=1 is independent of the event
γn = m for all n > m.

Proposition 2 unifies and extends earlier results from Acemoglu et al. (2011) and Lobel
and Sadler (2015), applying broadly whenever we can bound the difference

Eσ [u(xm, θ) | γn = m]− Eσ [u(xm, θ)]

using properties of the network.6 Though the improvement principle is generally robust to
features of the network Q, we can construct examples, using highly correlated neighborhoods,
in which information fails to diffuse. Lobel and Sadler (2015) highlight through several ex-
amples that asymmetric information about the overall network can disrupt the improvement
principle even if connectivity is not an issue.

6Lobel and Sadler (2015) define a measure of network distortion to bound this difference. Assuming
that {B(n)}n∈N are conditionally independent given the state of an underlying Markov chain with finitely
many states, they further generalize part (a) of the corollary by applying an improvement principle to the
minimum utility across all states of the Markov chain.
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2.3.3 Failure to Aggregate

Although the improvement principle can ensure only information diffusion, it is worth
asking whether we can do better and aggregate information in many of these networks,
particularly if players have multiple neighbors. This question is incompletely answered at
present, but results in the literature suggest that aggregation generally fails unless some
players have large neighborhoods.

Proposition 3 (Failure to Aggregate). The random network Q fails to aggregate information
if Q satisfies any of the following conditions:

(a) B(n) = {1, 2, . . . , n− 1} for all n.

(b) |B(n)| ≤ 1 for all n.

(c) |B(n)| ≤M for all n and some constant M , the neighborhoods {B(n)}n∈N are mutually
independent, and

lim
n→∞

max
m∈B(n)

m =∞ almost surely.

This result is Theorem 3 of Acemoglu et al. (2011). The complete network—and any
network in which players have at most one neighbor—will fail to aggregate information.
Recall that this means there is some signal structure for which, with positive probability,
late movers’ actions do not approach optimality given all of society’s information. In this
case, aggregation fails for any signal structure leading to bounded private beliefs. Part (c)
says that, in general, aggregation fails if there is a bound on neighborhood size and players’
observations are independent. We cannot dispense with the condition of independence,
because we can construct example networks, with correlated neighborhoods and |B(n)| ≤ 2
for all n, that aggregate information. The degree to which we can relax independence is an
open question, and a more detailed understanding of the boundary between diffusion and
aggregation would constitute a valuable contribution to this literature.

2.4 The Large-Sample Principle

Part (a) of Proposition 3 already demonstrates that large samples alone are insufficient
to ensure aggregation, and indeed classical papers (Banerjee 1992; Bikhchandani et al. 1992;
Smith and Sørensen 2000) that study sequential learning in a complete network focus on this
failure and associated behavioral patterns. To aggregate information from a large sample,
infinitely many observations must contain at least some new information, which means that
infinitely many players must respond to their private signals. However, if all players observe
a large sample, social information will overwhelm the private signals. In some sense the
complete network is a knife-edge case in which the large-sample principle fails because no
one is forced to rely on a private signal. If we disrupt some of the connections in the
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network, creating a subsequence of “sacrifical lambs” with no social information, this group
can provide enough information for the rest of the network to learn the true state.

Proposition 4 (Aggregation). Suppose there exists a sequence of players {mi}i∈N such that
{B(mi)}i∈N are mutually independent,∑

i∈N

P (B(mi) = ∅) =∞,

and
lim
n→∞

P (mi ∈ B(n)) = 1

for each i. Then the network Q aggregates information.

Proposition 4 follows from standard martingale convergence arguments, examples of
which are found in several papers on social learning.7 The sequence of players {mi}i∈N
provides enough information to fully reveal the state asymptotically, and all players observe
those in this sequence with probability approaching 1. The sequence may consist of an ar-
bitrarily small portion of the network, highlighting an important discontinuity in learning
outcomes when we compare a complete network with an almost-complete network.

The basic insight of this proposition generalizes in several directions. Depending on
the signal distribution, the sacrificial lambs could have nonempty neighborhoods as long as
some signal realizations still dominate the available social information. We also need not
have everyone in the network observe the sacrificial lambs: As long as some players observe
the large sample and aggregate information, others can learn through imitation. Theorem 4
in Acemoglu et al. (2011) explores both possibilities, giving a more general result. However,
the bounds of applicability for the large-sample principle are imprecisely known. Given
an infinite set of players following their private signals, there are potentially many ways a
network can collect, aggregate, and disperse this information. The literature is still missing
a general characterization of networks that aggregate information.

2.5 The SSLM with Heterogeneous Preferences

The improvement principle and the large-sample principle respond differently when we
introduce preference heterogeneity. On an intuitive level, the improvement principle should
suffer because imitation no longer guarantees the same payoff that a neighbor obtains. If
a neighbor’s preferences are sufficiently different, copying could result in a relatively lower
payoff; long-run learning requires not only improvement but also compensation for this gap.
However, heterogeneity also raises the prospect that more players will choose to follow private
information, which suggests that the large-sample principle has more room to operate as long
as neighborhoods are sufficiently large.

7See for instance, Goeree et al. (2006), Acemoglu et al. (2011), and Lobel and Sadler (2014).
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We extend the model of the previous section to allow preferences with common and
private components.8 Each player n privately observes a type tn ∈ (0, 1), and a player of
type t will earn utility

u(x, θ, t) =

{
1− θ + t if x = 0

θ + 1− t if x = 1.

A player’s type t neatly parameterizes her trade off between error in state 0 and error in
state 1. Action 1 is chosen only if the player believes that θ = 1 with probability at least t.
Hence, to choose action 1, players with high types require more convincing information.

2.5.1 No Improvement Principle

Using an example, we illustrate how heterogeneous preferences disrupt the improvement
principle. Suppose the signal structure is such that G0(r) = 2r − r2 and G1(r) = r2, and
consider the network topology Q in which each agent observes her immediate predecessor
with probability 1. Suppose player 1 has type t1 = 1

5
, and all other players n have type

tn = 1−tn−1 with probability 1. Even though the network satisfies our connectivity condition,
information diffusion fails.

An inductive argument will show that all players with odd indices err in state 0 with
probability at least 1

4
, and likewise players with even indices err in state 1 with probability

at least 1
4
. For the first player, observe that G0

(
1
5

)
= 9

25
< 3

4
, so the base case holds. Now

suppose the claim holds for all players of index less than n, and n is odd. The social belief
qn is minimized if xn−1 = 0, taking the value

Pσ(xn−1 = 0 | θ = 1)

Pσ(xn−1 = 0 | θ = 1) + Pσ(xn−1 = 0 | θ = 0)
≥

1

4
1

4
+ 1

=
1

5
.

It follows that player n will choose action 1 whenever pn >
1
2
. We obtain the bound

Pσ(xn = 1 | θ = 0) ≥ 1−G0

(
1

2

)
=

1

4
.

An analogous calculation proves the inductive step for players with even indices. Hence, all
players err with probability bounded away from 0, and since private beliefs are unbounded,
diffusion fails.

In the example, each player has a single neighbor whose preferences are substantially
different from her own. The difference in preferences means that the choice of this neighbor
provides less useful information. Suppose a player and her neighbor are diners choosing
between an Italian and a Japanese restaurant. If the neighbor prefers Japanese food, then

8Smith and Sørensen (2000) consider a case in which players may have completely opposed preferences,
leading to an outcome they call “confounded learning.”



Learning in Social Networks 13

observing this neighbor choose the Japanese restaurant is a weak signal of quality, but if
the neighbor chooses the Italian restaurant, the choice provides strong information. If our
player prefers Italian food, she would benefit more if the signal qualities were reversed.

Lobel and Sadler (2014) offer more general results on this model. If types are i.i.d.
random variables and there is a uniform bound on neighborhood size, we can always find
a type distribution with support (0, 1) such that diffusion fails. Whether an improvement
principle holds depends on the relative frequency of strong signals versus strong preferences.
For an improvement principle to hold, the signal distribution must have a thicker tail than
the type distribution, meaning that strong signals should be far more common than strong
preferences.

2.5.2 Robust Aggregation

Preference heterogeneity has a very different impact on the large-sample principle. If
players have large neighborhoods, then we can eliminate the need for sacrificial lambs be-
cause, with rich enough support in the type distribution, there is always a chance that
preferences roughly balance against available social information, making the private signal
relevant to a player’s decision. Goeree et al. (2006) first noted this effect in a complete
network, but the argument can apply much more broadly. Analogous to Proposition 4 of
the previous section, we have the following result.9

Proposition 5. Suppose preference types are i.i.d. with full support on (0, 1), and there
exists a sequence of players {mi}i∈N such that

lim
n→∞

P (mi ∈ B(n)) = 1

for each i. Then information aggregates.

2.6 Remarks

Asymptotic outcomes of sequential observational learning are now well understood, but
important challenges remain. A significant gap in our knowledge concerns short-run dynam-
ics and rates of learning in these models. Lobel et al. (2009) study learning rates in special
cases with |B(n)| = 1 for each player n, linking the rate of learning to the tail of the private
belief distribution. However, a more general characterization of learning rates and short-run
outcomes is absent outside of particular examples. The complexity of Bayesian updating in
a network makes this difficult, but even limited results would offer a valuable contribution
to the literature.

9Note that players need not know precisely who is responding to a private signal. Knowing that some
players have a positive probability of following a private signal is enough to statistically identify the state.
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There is also little consideration in this literature of where information comes from.
Mueller-Frank and Pai (2014) and Ali (2014) are exceptions. Each studies a version of
the SSLM with a complete network in which players, rather than being endowed with a
signal, must pay a cost to learn about the payoffs of the available actions. If these costs
are arbitrarily low for some players, then the players learn the true state asymptotically;
essentially, we can trade an assumption of strong exogenous signals for an assumption of
sufficiently low costs to acquire strong signals.

Another challenge arises from the strong assumptions in the SSLM. Bayesian rationality
demands much from players in these models, raising questions about how realistic such a
representation of behavior is. Even in the sequential framework, general networks necessitate
extremely complex reasoning. Though this is certainly cause for concern, the proofs of
our results suggest these models can still provide a useful benchmark. Analysis centers on
relatively simple heuristics, and we show that Bayesian players must perform at least as well.
Selecting a neighbor to imitate and following the most popular choice among a large group
are intuitive procedures that do not require perfect rationality to succeed. Thus, implicit
in these results about Bayesian agents is a broader class of results on a whole range of
heuristics. The absence of repeated decisions or strategic interactions in the SSLM is a more
fundamental limitation, which forces a departure from this framework to address certain
questions.

.................................................................................................

3. Repeated Linear Updating (DeGroot) Models

The sequential social learning models that we discussed in the previous section are so
tractable because each agent makes only one decision, even though different agents make
their decisions at different times. Models of this sort provide many insights, but they also
constrain influence to flow in only one direction. In contrast, many of the most fundamental
substantive questions about social learning are inherently about the dynamics of individual
opinions and choices in a world where individuals make many decisions and can repeatedly
influence one another. For example: Can network structure explain lasting disagreements in
a segregated society, in which members of two groups repeatedly observe each other’s views
but persist in holding different opinions? When everyone’s initial opinion can influence
everyone else, whose opinions end up being particularly influential?

One fruitful approach to these questions, which we focus on in this section, models the
dynamics of repeated updating without giving up tractability by having equations of motion
that are linear in agents’ estimates and stationary over time.
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3.1 Framework

3.1.1 The Basic DeGroot Model

The basic idea behind DeGroot repeated linear updating models is that agents start out
with some initial estimates, and then all agents update those estimates simultaneously at
discrete times t = 1, 2, 3, . . . Someone’s estimate in a given period is obtained by taking a
weighted average of some others’ estimates. More formally, let X be a convex subset of a
vector space,10 and let N = {1, 2, . . . , n} be a set of agents. The estimate or opinion of agent
i at time t is written xi(t), and the updating rule for estimates is

xi(t) =
∑
j

Wijxj(t− 1) (3)

for all positive integers t; the initial values xi(0) are exogenous. Here W is an n-by-n matrix
with nonnegative entries, with the property that every row sums to 1: for each i, we have∑

jWij = 1. A typical entry, Wij, is called the weight agent i places on agent j. One
interpretation is that W represents a social network: each agent has immediate access, not
to everyone’s estimates, but only to those of a subset of agents. Those agents are the only
j’s for which Wij is positive, and the weights represent how an agent averages the opinions
she can observe. The simplest case is that she places equal weight on the previous opinion of
everyone she observes, so that Wij = 1/di whenever Wij is nonzero, where di is the number
of agents whose estimates i can observe.

W =

 0.6 0.1 0.3
0.5 0 0.5
1.0 0 0



(a)

1

2 3

0.30.1

0.6

0.5

0.5 1.0

(b)

Figure 2: A weight matrix (a) and the corresponding weighted directed graph (b).

We can also go in the opposite direction, from an updating matrix to a network. Given
any W, we can view it as a graph with N as the set of nodes. There is a directed link, or
arrow, from i to j if i places nonzero weight on j according to W; we label that arrow by

10The simplest example is X = R, and for simplicity, we will sketch many proofs only for this special case.
But one of the virtues of DeGroot’s formulation of this process is that we can also think of X as consisting,
for example, of a set of probability distributions.
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1

7

3

2

65

W13

W32

W62

W56

W75

W71

Figure 3: The sequences s = (7, 1, 3, 2) and s′ = (7, 5, 6, 2) are both paths of length 3 from
agent i = 7 to agent j = 2, and are therefore both members of the set N4

72. If these are the
only such paths, (W3)ij = w(W, s) + w(W, s′) = W71W13W32 +W75W56W62.

the corresponding weight Wij. (See Figure 2 for an example.) Thus, abusing terminology
slightly, we sometimes identify a matrix with the corresponding network (weighted directed
graph) and speak of a link in W from i to j.

3.1.2 Variations

Some variations on this basic model immediately come to mind. In (3), we can allow
time-dependent weights, resulting in an updating rule x(t) = W(t)x(t−1) (see, for example,
(Chatterjee and Seneta 1977)). The weights can also be stochastic, with a distribution that
is either fixed or changing over time—a case we will discuss in detail later. Another variation
permits each agent to hold some persistent “original” or “private” estimate yi ∈ X, on which
she always puts some weight, resulting in the updating rule of Friedkin and Johnsen (1999):

xi(t) = αi
∑
j

Wijxj(t− 1) + (1− αi)yi.

Finally, there are related models with a discrete set of possible opinions, sometimes called
“voter” models (see Mossel and Tamuz 2014 for details).

3.1.3 Matrix Powers and the Connection with Markov Chains

We can write the updating rule (3) in matrix notation as x(t) = Wx(t − 1), where
x(t) = (xi(t))i∈N ∈ Xn is a vector stacking everyone’s time-t estimates. Iterating this shows
that

x(t) = Wtx(0). (4)

Thus, the evolution of the estimate vector x(t) essentially reduces to the dynamics of the
matrix powers Wt. Recall that each row of W sums to 1, and that the entries of this matrix
are nonnegative. In other words, W is a row-stochastic (or Markov) matrix. The iterates Wt

of Markov matrices have been extensively studied, because they capture the t-step transition
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probabilities of a Markov chain in which the probability of a transition from i to j is Wij.
(For introductions, see Seneta 2006 and Meyer 2000, Chapter 8.) Indeed, readers who know
Markov chains can quickly absorb the main facts we present about the DeGroot model by
reducing them to familiar facts about Markov chains.

There are two useful ways to think of the entry (Wt)ij in addition to its definition as an

entry of a matrix power. First, equation (4) shows that (Wt)ij = ∂xi(t)
∂xj(0)

; in words, (Wt)ij is

the derivative of i’s time-t estimate with respect to j’s initial estimate. In this sense, (Wt)ij
measures how much j influences i in t steps. The second way of thinking of Wt is as a
sum over of various paths of indirect influence. Let N t+1

ij be the set of all sequences of t+ 1
agents (i.e., elements of N) starting at i and ending at j. Any such sequence s is called a
walk of t steps from i to j. We can associate this sequence with a product of t elements
of W: the weights in the network W we meet as we walk from i to j along the sequence
s. For example, the sequence s = (7, 1, 3, 2) in the set N4

72 corresponds to the product
w(W, s) := W71W13W32, which we call the weight of s in W. We can prove inductively that

(Wt)ij =
∑

s∈Nt+1
ij

w(W, s). (5)

In other words, (Wt)ij adds up all the weights of t-step ((t+ 1)-agent) sequences that take
us from i to j. These sequences are the conduits of j’s influence on i in t steps of updating: i
pays attention to somebody, who pays attention to somebody, . . . , who pays attention to j.
Each such sequence contributes to j’s influence on i according to its weight in W. A simple
example of how all this looks in a concrete case is depicted in Figure 3.

A theme of the rest of this section is to study the powers of W—when they converge to
a limit, how fast, what this limit looks like—to derive substantive conclusions about social
learning.

3.1.4 Foundations

In contrast to the sequential learning literature, the mechanics of DeGroot models came
first and efforts at microeconomic foundations came later. Here we present two economic
rationales for DeGroot-type rules. We defer a discussion of the history—and of some other
rationales for the DeGroot model—to Section 3.5.1.

Persuasion Bias

To our knowledge, DeMarzo et al. (2003) were the first to discuss in detail how the
DeGroot updating rule might arise in a quasi-Bayesian way from an imperfect optimization
within a standard microeconomic model. (However, see Lehrer and Wagner 1981, who give
some axiomatic foundations for iterated weighted averaging schemes.) Suppose agent i starts
out with a private signal µ+ εi, where µ is a normally distributed state that the agents are
trying to estimate, and the εi are mean-zero, normally distributed errors that are independent
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of the state and of each other. Consider a case in which the prior distribution the agents hold
about µ is diffuse, so that they have very imprecise prior information—indeed, consider an
(improper) prior over µ that is uniform over the real line. Then the posterior expectations
of µ conditional on the private signals alone are xi(0) = µ + εi. Now suppose that before
forming a time-t estimate, each agent observes the previous estimates, xj(t − 1), of some
subset of the others. Then Bayesian updating at t = 1 corresponds to (3) with suitable
weights (Gelman et al. 2013, Sections 2.5 and 3.5; DeGroot 2005, Section 9.9): An agent
optimally pools others’ estimates with her own past estimate by taking a linear combination
of all those estimates, with coefficients accounting for the different precisions of different
agents’ information.

In future periods, there is still something left to learn: If an agent is not connected
to everyone, then her contacts’ revised estimates convey information about what is known
elsewhere in the network. It turns out that linear averaging is also the Bayesian updating rule
in future periods, but the optimal weights change over time.11 DeMarzo et al. (2003) motivate
the DeGroot process with unchanging weights as a behavioral heuristic: It is complicated to
revise the weights optimally, so agents stick with the weights of the first period. DeMarzo
et al. (2003) also suggest that this captures a persuasion bias or echo chamber effect, much
studied by social psychologists, in which people tend to be unduly swayed by things they
hear repeatedly.

Myopic Best-Reply Dynamics

Another microfoundation imagines agents learning to play a game. Suppose agents take
actions xi ∈ X and have payoffs making reaction functions linear in the actions of the
others. For instance, suppose W is a matrix each of whose rows sums to 1; Wii = 0; X is a
normed space, and agents have the payoffs

ui(x1, x2, . . . , xn) = −
∑
j 6=i

Wij‖xi − xj‖2.

Then agent i’s best response to a profile x−i = (xj)j 6=i is
∑

jWijxj. This is a simple
coordination game: It is costly to make a choice (e.g., of a technology or a language) that
differs from that of one’s neighbors. Any action profile in which all agents take the same
action is a Nash equilibrium of such a game. What equilibrium will be reached, and how
long will it take? One approach to answering these questions is to consider myopic best-
reply dynamics: In each period, players select best responses to last-period actions. This
is a simple way for them to incorporate information from their surroundings and attempt
to coordinate with their neighbors (i.e., to learn how to play the game). Such a rule gives
rise to exactly the dynamics of the basic DeGroot model, described by (3); see Golub and

11For instance, if i heard j’s initial information and j is not connected to anyone except i, then there is no
reason for i to put any weight on j in the future. More generally, Bayesian agents adjust the weights they
place on others in order to optimally incorporate new information, while trying not to overweight the old.
See Mossel and Tamuz (2010) for details.
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Jackson (2012).12

Other Foundations and a Critique

The microfoundations discussed for DeGroot updating are not fully satisfying. There
is a lot of myopia and limited cognition—not to mention quite particular functional form
assumptions—inherent in both the persuasion bias and the best-response foundations.
Whether actual people behave as if these assumptions hold is an important empirical question
about which the evidence is only beginning to come in (Corazzini et al. 2012; Chandrasekhar
et al. 2015).

The DeGroot model is a continuing focus of study, despite these important caveats,
because it allows us to understand the evolution of beliefs rather completely—both via
intuitions and via formal results—as a function of the underlying network. A reason for this
tractability is the connection with matrix powers and Markov chains described in Section
3.1.3, and the rest of this section explores some of what that connection opens up. Looking
beyond this analysis, the hope is that it provides a useful benchmark for the study of other
processes of repeated learning in networks.

3.2 The Long-Run Limit: Consensus Estimates and Network

Centrality

Let us start with the basic DeGroot model of Section 3.1.1 with a fixed matrix W
of updating weights. There are three basic questions concerning the long-run behavior of
individuals’ beliefs that we answer in this section:

(i) Does each individual’s estimate settle down to a long-run limit? That is, does limt→∞ xi(t)
exist for every i?

(ii) When there is convergence, are the limiting estimates the same across agents? In other
words, is there consensus in the long run for all possible vectors of initial estimates?13

(iii) When there is a consensus in the long run, what is this consensus? How does it depend
on the matrix W and the initial estimates?

It is question (iii) that offers the richest connection between outcomes and network structure;
the answers to the first two questions set the stage for characterizing that connection.

12In some ways it is more appealing to think of each node i as a continuum of players, who all make the
same observations and move simultaneously. What is observable about a node is the average action of its
members. In this case, there is no need for the restriction Wii = 0, because individuals can care about
coordinating with those in their own node. Also, the assumption of myopic actions is more reasonable when
each agent is negligible; see Section 4.1.

13Berger (1981) discusses a necessary and sufficient condition for a weighting matrix to generate consensus
for a single x(0); this condition is in terms of both W and x(0). Our discussion here characterizes the W
under which consensus is reached for all x(0), and thus this condition depends only on W.
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3.2.1 The Strongly Connected Case: Convergence to a Consensus

We first answer the prior questions in an important special case—that of strongly con-
nected networks; the general case reduces to this one. The network W is strongly connected
(or the matrix is irreducible) if any agent i has a directed path in the network W to any
agent j.14 Equivalently, it is impossible to partition the agents into two nonempty sets so
that at least one of the sets has no directed link to the other in W.

In strongly connected networks, the answer to (i) and (ii) is affirmative once we rule out
a “small” set of network structures. To give an idea of the sort of sufficient condition we
need, suppose some agent k has a positive self-weight, so that Wkk > 0. We can prove via
(5) in Section 3.1.3 that strong connectedness of the network and this positive self-weight
assumption imply that, for some q, we have (Wq)ij > 0 for every i and j. Any strongly
connected matrix W having this property is called primitive (Seneta 2006, Definition 1.1).15

It is a standard fact that W is primitive if and only if limt→∞ xi(t) exists for each i and the
value of the limit is independent of i.16

3.2.2 The Strongly Connected Case: Influence on the Consensus

Answering (iii) highlights the most interesting connection between the DeGroot updating
process and the structure of the network in which agents communicate (i.e., W): that limiting
consensus estimates are a linear combination of various agents’ initial estimates, weighted
by those agents’ network centralities.

Heuristically, from (4) we can write the following equation for the (constant) vector of
limiting estimates: x(∞) = W∞x(0). We can make this rigorous: There is a limit W∞ of
the sequence (Wt)t that satisfies this equation for any x(0). Moreover, since we have already
seen that, for any starting estimates, all agents converge to some consensus, it follows that
all rows of W∞ must be equal to the same row vector, which we will call πT. Thus, a typical
entry of x(∞) is equal to

x(∞) =
∑
i

πixi(0). (6)

In words, the consensus estimate is a linear combination of initial estimates, and the coeffi-
cients πi do not depend on the initial estimates x(0), but only on the network. The coefficient

14Recall the interpretation of W as a network from Section 3.1.1. For basic definitions of graph-theoretic
notions, see Jackson (2010) or other textbooks that discuss directed graphs.

15The general necessary and sufficient condition for primitivity of a strongly connected W is aperiodicity:
The greatest common divisor of all cycles (walks that return to their starting point) is 1.

16To show that primitivity implies convergence, first note that since agents form their estimates by taking
convex combinations, the sequences maxi xi(t) and mini xi(t) are each monotone in t. Thus the maximum
and minimum must converge to the same point as long as the distance between them gets arbitrarily small.
Let Wmin > 0 be the minimum of the entries in Wq. As the two most extreme agents put weight at least
Wmin on each other in q steps of updating, the difference between the maximum and minimum entries in x
decreases by at least a factor of 1 −Wmin < 1 every q steps. For more discussion, as well as a proof of the
converse, see statements 8.3.10 and 8.3.16 in Meyer (2000).
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πi measures how much i’s initial estimate affects the consensus.
We explore in some detail how these influence coefficients πi relate to the underlying

network W. The vector π satisfies the following equation17 with λ = 1:

πTW = λπT. (7)

Indeed, πT is the unique nonnegative, nonzero vector that sums to 1 and satisfies this
equation (for any value of λ). Such a vector is called a left-hand eigenvector centrality of
W, and its entries are called agents’ (left-hand) eigenvector centralities. A typical row of
the system of equations (7), with λ = 1, reads πi =

∑
jWjiπj. In words, i’s influence is a

weighted sum of the influences of those who put weight on i, with πj weighted by how much
weight j puts on i.

In short, one of the nicest features of the DeGroot model is that we can express the
influence of each agent’s initial estimate on the final consensus in terms of agents’ centralities
according to a natural and much-studied measure.18 Recalling the connection with Markov
chains, we also observe that π is the unique stationary distribution of the Markov chain
described by W.

We now summarize our findings on both convergence and the form of the limit.

Proposition 6. The following hold for all values of x(0) if W is strongly connected and
primitive:

(i) Each xi(t) converges to a limit as t→∞.

(ii) They all converge to the same limit.

(iii) This limit is equal to
∑

i πixi(0), where πi is i’s left-hand eigenvector centrality in W.

See DeGroot (1974) or Statement 8.3.10 in Meyer (2000) for a formal proof. There
is a case in which influence can be calculated very explicitly—that of reversible weights :
Suppose we are given some connected weighted graph G in the form of a symmetric adjacency
matrix—which may describe, say, how much time various pairs spend interacting bilaterally.
Assume Wij = Gij/

∑
iGij, so that the influence of j on i is equal to the share of i’s time

that is spent with j. In that case, one can check that πi =
∑

jWij/
∑

j,kWjk.
19 In other

words, an agent’s centrality is proportional to the amount of her interaction as a fraction of
the total interaction in the network.20

17That it should satisfy this equation is intuitive if we believe (at least heuristically) that W∞W = W∞,
and then recall that a typical row of W∞ is πT.

18Eigenvector centrality is defined rather abstractly, as a vector π that satisfies (7), possibly with a
proportionality constant. See Bonacich (1987) and Jackson (2010, Chapter 2) for some classic motivations
for this kind of definition. A lot is known about the structure of such π. For some insight on how agents’
centralities relate to simple properties of the network (and also an application of network centrality ideas to
macroeconomics), see Acemoglu et al. (2012). For the general comparative statics of π in W, see Schweitzer
(1968) and Conlisk (1985).

19One can calculate directly that πTW = πT holds, and then use the fact that a strongly connected W
can have only one eigenvector (up to scale) corresponding to the eigenvalue 1.

20The reason for the name reversible weights is that, in Markov chain language, this corresponds to the
case of W being a reversible chain. See Levin et al. (2009, Section 9.1).
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MM

MM'

Figure 4: An illustration of a network that is not strongly connected. Here M and M ′ are
closed communicating classes (inside the class, one can follow a directed path from any node
to any other), and the remaining nodes are in no closed communicating class.

3.2.3 Beyond Strong Connectedness

If a network is not strongly connected, we can reduce the study of its steady state to the
study of convergence to consensus in suitable strongly connected subgraphs. In particular,
we can view any directed graph as a disjoint union of strongly connected subgraphs that have
no links exiting them (called closed communicating classes) and some remaining nodes. (See
Figure 4 for an example.) A closed communicating class, by definition, cannot be influenced
by anything that goes on outside of it, so the analysis of how its agents’ estimates converge
reduces to what we have studied above, restricted to that class.

Moreover, we can see that, for any i and large enough q, the weight (Wq)ij is positive
only if j is in a closed communicating class.21 Thus, the estimates of agents outside all the
closed communicating classes are eventually convex combinations of the consensus beliefs of
the agents in various closed communicating classes. The details of how this works are given
in Meyer (2000, p. 698) and Golub and Jackson (2010, Theorem 2).

From this it follows that if there are two or more closed communicating classes, long-run
consensus (the issue contemplated by question (ii)) no longer obtains. If there is only one
closed communicating class and W restricted to that class is primitive, consensus does ob-
tain. Convergence of estimates within individual closed communicating classes to consensus
requires only primitivity when W is restricted to those classes.

An important take-away is that ignoring anyone outside itself—being a closed commu-
nicating class—gives a group a lot of power under the DeGroot model. Such a group can
certainly sustain its own views in the sense that its long-run consensus depends only on its
own initial opinions. Moreover, if that group receives attention from outside, it also gains a
decisive influence on the more malleable agents in its society. On the one hand, this feature

21In view of the discussion of Markov chains in Section 3.1.3, this corresponds to the statement that if
a Markov chain starts outside the closed communicating classes and proceeds with transition probabilities
given by W, eventually it will be found, with arbitrarily high probability, inside some closed communicating
class. Proving this is a good exercise.
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highlights a quirk of the DeGroot model: Very small differences in updating weights (e.g.,
whether an inward-looking group gets a tiny amount of attention or no attention from the
outside world) can make a huge—indeed, a discontinuous—difference in the model’s asymp-
totic predictions.22 On the other hand, this feature cleanly captures the fact that stubborn,
inward-looking groups have a particularly durable internal inertia and, as long as they are
not totally ignored by those outside them, substantial external influence. This observation
seems consistent with some observations of political and academic persuasion (DeMarzo et al.
2003).

3.2.4 The Large-Population Limit: When is Consensus Correct?

Let us assume networks are strongly connected and primitive (so that there is consensus),
and consider again the setting introduced in the discussion of persuasion bias (Section 3.1.4).
There is a true state µ, and we assume agents start out with noisy estimates of it and are
interested in learning its true value. (Normality is not important for this application.) Are
large societies of DeGroot updaters able to aggregate information so well that the consensus
becomes concentrated tightly around the truth? More formally, take an infinite sequence
of networks (W(n))∞n=1, with W(n) having n agents making up a set N (n). Suppose initial

estimates x
(n)
i (0) in network n are noisy estimates of the true state of the world, according to

the stochastic specification given in the discussion of persuasion bias in Section 3.1.4, and let
x(n)(∞)—now a random variable—be the consensus reached in network n. Can we say that
the x(n)(∞) converge in probability to µ as n grows? If we can, then in a certain asymptotic
sense the agents are as good at learning as someone who had access to everyone’s initial
information and aggregated it optimally.

Let us assume that the variances of the noise terms εi are bounded both above and below.
Then we have the following result.

Proposition 7 (Golub and Jackson 2010). Under the model just described with random

initial beliefs, the x(n)(∞) converge in probability to µ if and only if limn→∞maxi π
(n)
i = 0.

To prove the “if” direction, we use the expression for the limit consensus estimate given
by (6) to say that Var[x(n)(∞) − µ] =

∑
i(π

(n)
i )2 Var[εi]. This converges to 0 if and only

if limn→∞maxi π
(n)
i = 0 (here we are using our assumption about the variances of the εi);

then, using Chebyshev’s inequality, we conclude that x(n)(∞) converges in probability to its
mean, µ. The converse uses the same variance calculation, and is left as an easy exercise.

To summarize the key point, large societies achieve asymptotically exact estimates of the
truth if and only if the influence of the most influential agent decays to 0 as society grows
large. Without this, the idiosyncratic noise in someone’s initial belief plays a nontrivial role
in everyone’s asymptotic belief, and asymptotic correctness is not achieved.

To make the condition for failure of good aggregation more concrete, we give a corollary.

22This is perhaps a reason to focus more on predictions of the DeGroot model for large but fixed values of
t—which are nicely continuous in W–than on the literal t = ∞ predictions, whose behavior is analytically
cleaner but in many ways more peculiar.
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Corollary 2. Suppose we can find an m and ε > 0 so that, for each n, there is a group
L(n) ⊆ N (n) of m or fewer “opinion leaders,” with each individual i ∈ N (n) \L(n) giving some

leader ` ∈ L(n) at least ε weight (W
(n)
i` ≥ ε). Then individuals’ estimates do not converge in

probability to µ.

The proof works by manipulating (7) to show that limn→∞maxi π
(n)
i = 0 does not hold,

and then using Proposition 7. Thus, societies with a small group that influences everyone
cannot achieve asymptotic correctness of beliefs. These issues are explored in more detail in
Golub and Jackson (2010).

3.3 Speed of Convergence to the Long-Run Limit: Segregation and

Polarization

When estimates converge to a consensus (or to some other steady state we can charac-
terize), it is important to know how fast this happens. For practical purposes, consensus is
often irrelevant unless it is reached reasonably quickly. If it takes thousands of “rounds” of
updating to reach a consensus, the model’s limit predictions are unlikely to be useful. To say
it another way, even if a network satisfies conditions (e.g., strong connectedness) that ensure
convergence in the long run, we may still empirically observe disagreement. In this case, it
is the medium-run (as opposed to t =∞) behavior of the system that is practically relevant,
and we would like to theoretically understand how network structure relates to medium-run
disagreement. Some obvious questions arise:

(i) How long does it take for differences in estimates to become “small”?

(ii) What do agents’ estimates look like as they are converging to consensus?

(iii) What network properties correspond to fast or slow convergence?

As a preliminary, note that how fast consensus is reached depends on both the network
and the starting estimates x(0). In the trivial case where the initial estimates are all identical,
consensus is reached instantly, regardless of the network. In the general case, a full analysis
of the time it takes estimates to converge would deal with the dependence of this outcome
on W and on x(0) jointly. We focus on understanding how properties of the network affect
convergence time, and for that reason we will often think about worst-case convergence time:
roughly, how many rounds of updating it takes for differences of opinion to be guaranteed
to be “small” for any x(0) we might start with.

3.3.1 A Spectral Decomposition of the Updating Matrix

We saw earlier, in Section 3.1.3, that powers of W are important. We now build on that
with a convenient decomposition. For simplicity, we restrict attention to strongly connected,
primitive updating matrices W, as in Section 3.2.1.
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Lemma 3. For generic23 W, we may write

Wt =
n∑
`=1

λt`P`, (8)

where the following properties are satisfied:

(a) The numbers λ1 = 1, λ2, λ3, . . . , λn are the n distinct eigenvalues of W, ordered from
greatest to least according to modulus.

(b) The matrix P` is a projection operator corresponding to the nontrivial, one-dimensional
eigenspace of λ`.

(c) P1 = W∞ and P1x(0) = x(∞);

(d) P`1 = 0 for all ` > 1, where 1 is the vector of all 1’s.

The import of (c) is that we have encountered P1 before, in Section 3.2.1. It is equal to
W∞ and corresponds to the eigenvalue λ1 = 1 (which, as (a) states, is always an eigenvalue
of any row-stochastic matrix W). All other eigenvalues are strictly smaller. In other words,
the leading term of (8) corresponds to the steady state we studied in Section 3.2.1, and the
other terms are deviations from that asymptotic steady-state weighting matrix.

3.3.2 Speed of Convergence to Consensus

How fast the steady-state summand P1 comes to dominate depends mainly on |λ2|, the
magnitude of the second-largest eigenvalue of W. When this number is not too large (say,
|λ2| = 0.6), all the terms after the first term in (8) become negligible as soon as t is at
all large (e.g., t ≥ 10). Thus, the quantity 1 − |λ2|, called the absolute spectral gap, is
an important measure of this system’s tendency to equilibrate (Levin et al. 2009, Section
12.2). Systems with a small spectral gap (large second eigenvalue) exhibit very slow decay
of the nonstationary part in the worst case. The following is a simple formal version of this
statement:

Proposition 8. Consider the DeGroot updating process given by (3). For generic W,

1

2
|λ2|t − (n− 2)|λ3|t ≤ sup

x(0)∈[0,1]n
‖x(t)− x(∞)‖∞ ≤ (n− 1)|λ2|t.

23In this lemma, drawing a W from some measure absolutely continuous with respect to Lebesgue measure
buys us a lot: for instance, the luxury of not having to deal with repeated eigenvalues, which—as will
become apparent—would require substantial extra bookkeeping. This is mostly a convenience for exposition;
Proposition 8, for example, holds with only minor adjustments without assuming any genericity (see Debreu
and Herstein 1953, Theorem V and Meyer 2000, Section 7.9 for a flavor of the arguments). However, some
of the results in DeMarzo et al. (2003) that we will discuss do break down under highly symmetric network
structures. It is a good exercise to replicate the ensuing discussion, replacing uses of this lemma with
the corresponding facts about the Jordan canonical form, to see what survives and what requires major
adjustment.
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Here ‖ · ‖∞ is the supremum norm, so that ‖x(t)−x(∞)‖∞ is the largest deviation from
consensus experienced by any agent. The proof of Proposition 8 is a good exercise in matrix
analysis.24 The result provides a succinct answer to question (i): |λ2|t is a precise estimate
of how much deviation from consensus this network permits at time t. This basic insight
has been applied in a variety of ways; for example, in an elaboration of the DeGroot model,
Acemoglu et al. (2010) use it to characterize the long-run influence of “forceful” agents (who
sway others much more than they themselves are swayed).

We will now explore the λ2 term of (8) in more detail, to better understand both its
magnitude and its structure in terms of the underlying network.

3.3.3 One-Dimensionality of Deviations from Consensus: A Left–Right
Spectrum

Just as the ` = 1 term in (8) describes the steady-state component to which estimates
are converging, the ` = 2 term of (8) describes the dominant term in the deviation from
consensus (i.e., in what is left over after we subtract the steady-state component). This
` = 2 term can be seen as corresponding to a metastable or medium-run state in which most
disagreement is gone but a critical persistent part remains.25

In view of this, let us now dig deeper into the structure of P2. Since it is an operator
that projects onto a one-dimensional space, we may write P2 = σρT, where ρT is a left-hand
eigenvector of W corresponding to eigenvalue λ2 and σ is a right-hand eigenvector of W
corresponding to eigenvalue λ2.

26

As a consequence, once t is large enough that |λ3|t is small relative to |λ2|t, the difference
x(t) − x(∞) is essentially λt2σ(ρTx(0)). Thus, if λ2 is a positive real number, individual
i’s deviation from consensus is proportional to σi, irrespective of x(0).27 DeMarzo et al.
(2003) note a striking interpretation of this: Across many different issues, the ordering of
agents’ medium-run views is determined by a single, network-based number—a position σi
on a left-right spectrum. For example, if estimates are real numbers (so X = R), then
agents’ deviations from consensus on a given issue are either ordered the same as σi or in
the opposite order (depending on whether ρTx(0) is positive or negative). More generally,
ρTx(0) ∈ X determines the “axis” of disagreement if initial estimates are given by x(0). If
X = R, this is a scalar, but in general ρTx(0) is a vector; in the medium run, all deviations
from consensus are proportional to it.

24The key equation is x(t) − x(∞) =
∑n

`=2 λ
t
`P`x(0), which follows from (8) and Lemma 3. The upper

bound follows by applying the triangle inequality to this equation. The lower bound is obtained by using
the same equation for a suitable choice of x(0) ∈ [0, 1]n: Take a nonzero vector z ∈ span(P2), and assume
(by scaling it) that its largest entry is equal to exactly 1/2; let x(0) = 1

21 + z, and use Lemma 3 along with
standard norm inequalities.

25We are in this regime after enough time has passed for the ` ≥ 3 terms in (8) to die away, but not the
` = 2 term.

26See Meyer (2000, statements 7.2.9 and 7.2.12) for details. Since P21 = 0 by Lemma 3(d), we know that
ρT1 = 0 (i.e., that the entries in ρ add up to 0).

27A correction of DeMarzo et al. (2003) that is due to Taubinsky (2011).
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3.3.4 How Does the Deviation from Consensus Depend on Network
Structure?

The decomposition presented in Section 3.3.1 opens the door to many neat mathematical
results. It yields a rich set of statistics we can use to think about polarization and deviation
from consensus, and we can compute these statistics efficiently. On the other hand, what
we have seen so far leaves something to be desired. We would like more concrete, hands-on
insights about how the “visible,” geometric structure of the social graph relates to the persis-
tence of disagreement. Fortunately, there is a large field of applied mathematics, particularly
probability theory, devoted to studying this.28 The basic take-away is that what makes net-
works slow to converge is being segregated. There are many different ways to capture this.
We mention two of them informally, and refer the reader to relevant studies for the technical
details.

The bottleneck ratio, Cheeger constant, or conductance is defined as

Φ?(W) = min
M⊆N
π(M)≤ 1

2

∑
i∈M,j /∈M πiWij∑

i∈M πi
.

The bottleneck ratio is small if there is some group (having at most half the influence in
society) that pays a small amount of attention outside itself, relative to its influence. The
attention or weight summed in the numerator is weighted by influence. The situation where
the bottleneck ratio is small corresponds to the existence of a bottleneck. In the case of
reversible communication (recall the end of Section 3.2.2), the second-largest eigenvalue of
W can be bounded on both sides in terms of this bottleneck ratio (Levin et al. 2009, Theorem
13.14). That, in turn, yields bounds on the decay of disagreement (recall Proposition 8). For
a sophisticated use of these sorts of bounds in a paper on the DeGroot model, see Acemoglu
et al. (2009).

Another approach is to think of segregation probabilistically. Imagine, for example, that
there are two groups of equal size (say, boys and girls). Friendships happen within a group
with probability ps and between groups with probability pd. Given these probabilities, friend-
ships are independent across pairs. The matrix W is then formed based on the friendship
graph as described at the end of Section 3.2.2. In that case, it turns out that we can char-
acterize the rate of convergence quite precisely. In particular, λ2 converges in probability
to ps

pd
− 1 as the random network grows large. By Proposition 8, we can convert this into

a bound on the worst-case disagreement at any particular time. This gives a clean way
of saying that in a simple model of social segregation, it is segregation—and not network
density, or anything else—that makes all the difference for the speed of convergence (Golub
and Jackson 2012; Chung and Radcliffe 2011).

One more fact worth noting: The metastable structure of disagreement discussed in Sec-
tion 3.3.3 is related to network structure. For example, in the two-group random graph just

28In probability theory and statistics, this question comes up in seeking to characterize the mixing time,
a measure of how quickly Markov chains equilibrate and reach their stationary distributions—which is
important in Markov Chain Monte Carlo statistical methods. See Levin et al. (2009) for details.
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discussed, agents within each group converge to something resembling an internal consensus
(with essentially all agents in one group being on the same side of the eventual consen-
sus). Then we can approximate the situation with just two nodes (corresponding to the two
groups) communicating bilaterally until the whole network reaches a consensus. For more
on this, see Golub and Jackson (2012).

The connection between the iteration of Markov matrices and the structure of the corre-
sponding network has spawned a huge body of literature, surveyed in book-length treatments.
For more, see Levin et al. (2009), Montenegro and Tetali (2006), and Aldous and Fill (2002).

3.4 Time-Varying Updating Matrices

The most restrictive and unrealistic feature of the DeGroot model as we have presented
it is that updating weights remain fixed over time and are deterministic. Relaxing this
assumption is a major concern of the literature on this model, especially in statistics and
engineering, going back to Chatterjee and Seneta (1977).

It turns out that it is fairly easy to extend the DeGroot model to a richer one, the
stochastic DeGroot model, in which the weights agents use are stochastic. For this section,
we will assume that X is a compact, convex subset of a normed vector space. Suppose that
x(t) = W(t)x(t−1) and the matrices W(t) are independent and identically distributed ran-
dom variables. Now the x(t) are also random variables, but they can be analyzed using what
we already know. Indeed, define x(t) = E[x(t)] and W = E[W(t)]. Because expectation
commutes with matrix multiplication for independent matrix-valued random variables, we
have

x(t) = E[x(t)] = E[W(t)W(t− 1) · · ·W(1)x(0)] = W
t
x(0). (9)

In words, the expectation of the DeGroot process follows the law of motion of a nonrandom
DeGroot process with updating matrix W. Thus, we know immediately that if the process
x(t) does not converge to a consensus vector x(∞) for all profiles of initial estimates, then
neither can x(t) converge in probability to any random vector of consensus beliefs.29 Re-
markably, the converse also holds: If the x(t) converge to a consensus x(∞) for all profiles of
initial estimates, then all agents’ estimates in the random updating process converge almost
surely to some (random) consensus.30 There is even a neat condition characterizing when

29That is, the random beliefs cannot converge to a consensus even in the weakest sense of convergence for
random variables. This fact relies on the equivalence between L1 convergence and convergence in probability
for random variables taking values in a compact set.

30 We will give the flavor of a direct argument, assuming W is strongly connected. The essential idea is to
focus on the expectation of the difference between the maximum and minimum estimates in x(t). Since W
is primitive (recall from Section 3.2.1 that this is equivalent to x(t) converging), a stochastic version of the
argument we gave for convergence in Section 3.2.1 shows that this expected difference decreases over time
to 0. Since the difference is a bounded random variable, it must also converge to 0 almost surely (see, for
example, Acemoglu et al. 2010, Theorem 1). This is easy to extend to the case in which W is not strongly
connected because the assumed condition on W means it can have only one closed communicating class
(recall Section 3.2.3).
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x(t) converges to a consensus vector for all starting beliefs: that all eigenvalues of W except
λ1 (which is equal to 1) are less than 1 in modulus. To summarize:

Proposition 9. The following are equivalent:

(i) All eigenvalues of W except λ1 (which is equal to 1) are less than 1 in modulus.

(ii) The process described by (9) converges to a consensus limit for all values of x(0).

(iii) For any value of x(0), the random variables x(t) in the stochastic DeGroot model
converge almost surely to a (random) consensus x(∞).

For detailed discussions of all this, see Tahbaz-Salehi and Jadbabaie (2008). Using (9)
and parallelling Section 3.2.2, we can say that E[xi(∞)] =

∑
i πixi(0), where πT is the left-

hand eigenvector of W corresponding to the eigenvalue 1 (i.e., an influence vector). This
gives us some information about the consensus.

To analyze the medium-run behavior of the random process, one can build on the anal-
ysis of Section 3.3, moving between expectations and realized random estimates in a way
analogous to the above treatment of the long run.

Independent and identically distributed updating matrices are the simplest way to relax
the assumption of constant weights, but there are many other directions that have been
explored. DeMarzo et al. (2003) study a version of the DeGroot model in which the weights
agents place on themselves change over time, while the relative weights placed on others
remain the same. Chatterjee and Seneta (1977) explore some basic issues of convergence in
a model where weights are changing over time. As we note in the next section, there are
elaborations of the model in which the weights actually depend on others’ opinions.

3.5 Remarks

3.5.1 Some History and Related Literatures

To our knowledge, the social psychologist John French (1956) was the first to discuss
a special case of the DeGroot model—one with each agent placing equal weights on her
contacts—as a way to think about the evolution of opinions over time. He motivated his
early formulation using ideas from physics, particularly the balance of “forces” of influence.
French’s ideas were developed by Harary (1959), who recognized that French’s process was
related to the mathematics of Markov chains. Harary generalized French’s results on con-
vergence by using the theory of directed graphs, but continued working with a model in
which all agents place equal weights on their contacts. DeGroot (1974) appears to have been
the first to write a fully general version of the process, with arbitrary weights, as a model
of opinion updating, and to point out the connection between consensus opinions and the
stationary distribution of a corresponding Markov chain (recall Section 3.2.2).
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There are a variety of other names for the DeGroot model, corresponding to expositions
in other literatures. In philosophy, it is often called the Lehrer–Wagner model, for Lehrer and
Wagner (1981) worked on a related model around the same time as DeGroot. They focused
on justifying the influence coefficients (recall Section 3.2.2) as a normatively reasonable
scheme for aggregating views in a network of peers. As we have mentioned, Friedkin and
Johnsen (1999), motivated by sociological theories of disagreement, studied versions of this
model in which each agent persistently weights an “initial” or otherwise fixed opinion.

A recent literature studies versions of the DeGroot model in which opinions that are
too far from one’s own are weighted little or not at all (Hegselmann and Krause 2002;
Lorenz 2007). In engineering and control theory, there is a large literature on “gossip”
algorithms, which use DeGroot-type rules as a means of pooling information or synchronizing
behavior across devices (see Shah 2009 for a survey). This literature extends and generalizes
many aspects of the classic models presented above. For example, Moreau (2005) considers
nonlinear updating rules, and gives generalizations of the conditions for consensus discussed
above.

3.5.2 A Review and a Look Ahead

In some ways, the DeGroot model is an intuitive and reasonable heuristic—as we’ve seen
formally in sections 3.1.4 and 3.2.4—but we do not have a tight characterization of when
it is, in some sense, the “right” or “best” feasible heuristic.31 Our empirical knowledge
is also incomplete: The literature has only begun to explore how well the DeGroot rule
fits the behavior of real people. Both of these issues present obvious avenues for further
study, theoretical and empirical. In this section we have tried to demonstrate the DeGroot
model’s great tractability and its capacity to produce social learning dynamics with a rich
but manageable structure. Because of these features, the DeGroot model has become an
important benchmark with which to compare other learning dynamics, and a starting point
for more sophisticated imperfectly rational models. For an example of the latter, see Section
4.2.

.................................................................................................

4. Repeated Bayesian Updating

Like the DeGroot model studied in Section 3, the models we are about to present have
agents revising actions and beliefs repeatedly. But they are different from the DeGroot model
in seeking, like the sequential models of Section 2, to accommodate potential coarseness of
communication (e.g., observations of a binary choice) and more rational learning rules. While

31Carroll (2015) is an inspiring example of how nonstandard modeling of agents’ optimization problems
can rationalize linear rules in quite a different (incentive theory) setting.
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the dynamics become more complicated, some of the main substantive conclusions—such as
convergence to a common opinion or action—survive.

We adopt a standard notation across each model in this section. Time is discrete, the
possible states of the world are θ ∈ Θ, and each player n chooses an action xn(t) in period
t. We represent the network as a directed graph G = (V,E), where the set of vertices V is
either finite or countably infinite, and we write B(n) = {m : nm ∈ E} for player n’s set of
neighbors.

4.1 Myopic Updating

One popular approach to modeling repeated updating of beliefs assumes that players
ignore future effects of their decisions. Players myopically choose the best action today
based on current beliefs without regard for any effects on other players or future information
availability. Beliefs are still rational given the information players observe, so we can think
of these models as an approximation to fully rational behavior with heavy discounting.
Alternatively, we can think of each node in a network as corresponding to a continuum of
identically informed agents, with only the average action of the continuum being observed
by others. In this case, individuals cannot affect anyone’s observation or decision, and again
agents simply take the best action given their beliefs.

4.1.1 Continuous Actions: Revealing Beliefs

Geanakoplos and Polemarchakis (1982) and Parikh and Krasucki (1990) introduced the
first models of this type. In every period, each player takes an action xn(t) ∈ [0, 1] that
perfectly reveals her belief at the beginning of that period about the probability of some event
E. Players have a common prior and are endowed with different information about the state.
A central insight (subsequently developed further in work by Mueller-Frank 2013; 2014) is
that each player’s beliefs allow her neighbors to infer what that player could have seen last
period, and therefore narrow down the set of states. When this process stops, it is common
knowledge between any pair of neighbors what their beliefs are. By an extension of Aumann’s
(1976) reasoning on the impossibility of agreeing to disagree, it cannot be common knowledge
that these beliefs are different, so consensus is reached in any connected network. Moreover,
when there are only finitely many states in Θ, a player’s belief can change at most finitely
many times, so the opinions converge in finite time. In the Gaussian environment of Section
3.1.4, in which agents receive normal signals about a normally distributed state, similar
reasoning works. There, finiteness of the state space is replaced by finite dimensionality of
the unknowns (see Theorem 3 of DeMarzo et al. 2003 and Mossel and Tamuz 2010).

We can even say something about the correctness of the consensus in each of the settings
just discussed. When there are finitely many states, it takes nongeneric priors for different
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knowledge to lead to the same posterior probability of any event. Therefore, it holds gener-
ically that agents’ beliefs perfectly reveal their knowledge, and all information is perfectly
aggregated as soon as consensus is reached (Mueller-Frank 2014). For somewhat different
reasons, perfect aggregation also holds in the Gaussian environment just discussed. There,
agents end up holding the beliefs that would be held by someone who observed all the pri-
vate information initially dispersed in society. (This is another aspect of a result mentioned
above, Theorem 3 of DeMarzo et al. 2003).

4.1.2 Discrete Actions

The conclusions of the previous section depend on a very strong assumption about belief
revelation, but we can obtain conformity with far coarser communication protocols. For the
rest of Section 4, we assume that xn(t) ∈ {0, 1}.32 Two observations allow us to characterize
long-run behavior in this family of models. First, an imitation principle holds: Any player
asymptotically earns at least as high a payoff as any neighbor because imitation is an available
strategy. Second, beliefs evolve according to a martingale, so each individual’s belief must
converge almost surely to a (random) limit. Together, these observations imply that long-run
behavioral conformity is a robust outcome in any connected network. Barring indifference,
all players converge on the same action in finite time. An important question is then whether
the limiting action is optimal.

Bala and Goyal (1998) provide a seminal contribution to this literature, studying a model
of social experimentation in arbitrary networks.33 Let Y denote an arbitrary space of out-
comes. Conditional on the state θ, each action x ∈ {0, 1} is associated with a distribution
Fx,θ over outcomes. Players share a common utility function u : {0, 1} × Y → R; if player n
chooses action xn(t) in period t, she earns expected utility∫

u(xn(t), y)dFxn(t),θ(y).

In every period, a player has beliefs about the underlying state and chooses an action to
maximize current-period expected utility.

Each player n observes the outcome of her action in each period as well as the actions
and outcomes of all players m ∈ B(n). Given these observations, player n updates her beliefs
about the underlying state and carries these into the next period. This updating is imperfect
in that players use information only from neighbors’ realized outcomes in Y ; they do not
infer additional information from the actions neighbors choose. A player learns the true
payoff distribution for any action that a neighbor takes infinitely often, which immediately
implies an imitation principle, and players will eventually converge on the same action. In

32Many of the models we discuss can accommodate more general action spaces, but the binary case captures
the key insights in each.

33Within the literature on learning in games, there are antecedents considering agents who can observe
their neighbors in particular networks; see Ellison and Fudenberg (1993) for an example with agents arranged
on a line using a simple rule of thumb based on popularity weighting.
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general, players can converge on a suboptimal action, but in large networks, relatively mild
conditions will ensure they learn the optimal one.

One sufficient condition is having enough diversity in initial beliefs. Any player with a
prior close to the truth will choose the optimal action for several periods, generating infor-
mation that can persuade others to adopt this action. If some players have priors arbitrarily
close to the truth, this guarantees that the optimal action is played for arbitrarily many
periods by a single player, and this implies convergence to the optimal action throughout
the network.

A condition relating more closely to the network structure is that infinitely many players
have locally independent neighborhoods. Two neighborhoods B(m) and B(n) are locally
independent if they are disjoint; this means that players m and n have independent in-
formation. As long as the distribution of initial beliefs is such that each player has some
positive probability of selecting the optimal action in the first period, then infinitely many
players with locally independent neighborhoods will sample the optimal action. Some of
these players will obtain positive results and continue using the optimal action, gathering
more information and ensuring that all players eventually learn the best action.

The key intuition behind both conditions is to make sure that some player samples the
optimal action infinitely often. This guarantees that someone will obtain positive results,
and this knowledge will spread to the rest of the network via the imitation principle. The
second condition highlights the importance of independent information sources. If a small
group is observed by everyone,34 then all players receive highly correlated information, and
this can cause convergence to a suboptimal action, even in an infinite network.

Gale and Kariv (2003) respond more directly to the limitations of the SSLM we dis-
cussed earlier. The authors study a similar model of observational learning in which players
each receive a single informative signal at the beginning of the game, but they eliminate
the sequential structure: Each player in the game makes a separate decision in each period.
Strategic interactions still pose technical challenges, so they assume that in each period,
players choose the myopically optimal action given their current beliefs. Given this behav-
ior, belief updating based on observed neighbors’ choices is fully rational. In this context, the
imitation principle is directly analogous to the improvement principle in the SSLM: Players
can guarantee the same expected utility as a neighbor through imitation, and they may
improve based on their other information. Similar results have been established by studying
the improvement principle in more general settings. Rosenberg, Solan, and Vielle (2009)
relax the assumption that agents observe all their neighbors every period, allowing intermit-
tent observation. Mueller-Frank (2013) generalizes beyond the case of decision rules that
maximize expected utility, considering arbitrary choice correspondences; he also permits the
decision rules not to be common knowledge.

Results on the optimality of eventual outcomes in the observational learning model are
less complete but follow a similar intuition to those of Bala and Goyal (1998). Examples
suggest that behavior converges quickly in a dense network, limiting the available information
and making suboptimal long-run behavior more likely. In a sparse network, learning takes

34Bala and Goyal (1998) refer to this group as the “Royal Family.”



34 4 Repeated Bayesian Updating

longer but leads to better asymptotic outcomes.

4.2 Local Heuristics

An alternative way to simplify repeated updating supposes that players heuristically
incorporate information from their neighbors. Jadbabaie et al. (2012) offer a canonical
example of this approach that is closely related to the DeGroot model studied in the previous
section. Players have priors over a finite set of possible states, and they attempt to learn the
true state over time. At the beginning of each discrete period, a player observes an exogenous
private signal and the current beliefs of her neighbors. Signals are i.i.d. across time, but
they may correlate across players within a single period. A player incorporates her signal
into her beliefs via Bayesian updating, and subsequently the player takes a weighted average
of this posterior with her neighbors’ beliefs to obtain the prior for the following period. The
weights are given in a stochastic matrix W that is fixed over time.

Suppose the state space is Θ = {0, 1}, so we can represent the belief of player n at time
t as a number pn(t) = P(θ = 1). On receiving the signal sn(t), player n updates her belief to

p′n(t) ≡ P (θ = 1 | sn(t)) =
P(sn(t) | θ = 1)pn(t)

P(sn(t) | θ = 1)pn(t) + P(sn(t) | θ = 0) (1− pn(t))
.

Players assign weights to each other according to a stochastic matrix W that is fixed over
time. We say m is a neighbor of n if Wnm > 0, and let G denote the corresponding graph.
The player combines her updated belief with the reported beliefs of her neighbors to arrive
at

pn(t+ 1) = Wnnp
′
n(t) +

∑
m

Wnmpm(t).

This leads to belief dynamics similar to the DeGroot model, and in fact we may view the
DeGroot model as a special case in which signals are always uninformative.

If some signals are informative, then this model leads to the most robust learning out-
comes of any we have considered. If Gnn = 1 for each n, and G is strongly connected, then
beliefs converge almost surely to the truth. This occurs regardless of correlations between
players’ signals and regardless of how influential any player is in the network. Crucial to this
finding is the continual flow of new information. As long as someone in the network receives
new information in each period, this will spread throughout the network. Jadbabaie et al.
(2013) provide an extended study of how the distribution of information across individuals
interacts with network structure to determine the speed of learning.

4.3 Rational Expectations

Recently, Mossel et al. (2015) offer a significant contribution to this literature, studying a
model of repeated observational learning in a network with fully rational expectations. The
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state space is Θ = {0, 1}, and each player n receives a single informative signal sn before
the first period. Player n observes the choices of each m ∈ B(n) in every period; let hn(t)
denote the history player n observes by the beginning of period t. Player n earns utility in
each period equal to the probability that her action matches the state in that period:

u(xn(t), hn(t), sn) = P(θ = xn(t) |hn(t), sn).

The information structure is essentially identical to the model of Gale and Kariv (2003), but
a crucial difference is that players discount future payoffs at a rate λ ∈ (0, 1), and they play
a perfect Bayesian equilibrium.

The authors characterize a general class of networks in which players learn the true state
almost surely. We say the graph G is L-locally-connected if an edge from n to m implies the
existence of a path from m to n with length at most L. If an infinite graph is L-locally-
connected and there is a bound d on the number of neighbors any player observes, then all
players converge on the optimal action almost surely. The proof builds on familiar imitation
and martingale convergence arguments, but it also requires several technical innovations. We
can interpret the bounded-degree and L-local-connectedness conditions as a way of ensuring
that no one player is too influential. In this sense, the intuition here is similar to earlier
models with myopic players.

.................................................................................................
5. Final Remarks

Research on learning in social networks enjoys a diversity of approaches, providing a
rich set of answers to our motivating questions. Long-run consensus is a central finding
throughout this literature, occurring for a wide range of information structures and decision
rules in large classes of networks. Typically, the main assumption needed is an appropriately
defined notion of connectedness.

The consistency of this finding may cause some discomfort because we often observe
disagreement empirically, even about matters of fact. Explaining such disagreement is an
important task for this literature going forward. Of course, we can get disagreement in these
models by assuming that networks are disconnected or that agents’ preferences are opposed,
but such assumptions are not always appropriate. The DeGroot model, with the detailed
predictions it makes about a metastable state with one-dimensional deviations from the
consensus, comes closest to providing an account of disagreement in terms of network prop-
erties. A theory explaining long-run disagreement, especially one with rational foundations
and appropriate sensitivity to network structure, would constitute a valuable contribution.

A central theme throughout this literature is that influential individuals have a negative
impact on long-run learning, and the different models offer complementary insights as they
elaborate on this point. The tractability of sequential models allows us to separate the
improvement principle and the large-sample principle as distinct learning mechanisms. This
distinction provides intuition for the extent of learning in different networks and a nuanced
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understanding of how preference heterogeneity impacts learning. DeGroot models deliver a
precise grasp of individuals’ influence, as well as global learning rates, allowing more detailed
comparisons between networks. The significance of strategic interactions for the correctness
of eventual consensus is still poorly understood, presenting an important direction for future
work.
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Golub, B. and M. O. Jackson (2010). “Näıve learning in social networks and the wisdom of
crowds.” American Economic Journal: Microeconomics 2, 112–149.

Golub, B. and M. O. Jackson (2012). “How homophily affects the speed of learning and
best-response dynamics.” The Quarterly Journal of Economics 127, 1287–1338.

Harary, F. (1959). “A criterion for unanimity in French’s theory of social power.” In Studies
in Social Power, edited by D. Cartwright, Ann Arbor: Institute for Social Research, 168–
182.

Hegselmann, R. and U. Krause (2002). “Opinion dynamics and bounded confidence models,
analysis, and simulation.” Journal of Artificial Societies and Social Simulation 5, 1–24.

Herrera, H. and J. Hörner (2012). “A necessary and sufficient condition for information
cascades.” Working paper.

Ifrach, B., C. Maglaras, and M. Scarsini (2013). “Bayesian social learning from consumer
reviews.” Working Paper.



40 REFERENCES

Jackson, M. O. (2010). Social and Economic Networks. Princeton, NJ: Princeton University
Press.

Jadbabaie, A., P. Molavi, A. Sandroni, and A. Tahbaz-Salehi (2012). “Non-Bayesian social
learning.” Games and Economic Behavior 76, 210–225.

Jadbabaie, A., P. Molavi, and A. Tahbaz-Salehi (2013). “Information heterogeneity and the
speed of learning in social networks.” Working paper.

Lehrer, K. and C. Wagner (1981). Rational Consensus in Science and Society. Dordrecht-
Boston: Reidel Publishing Company.

Levin, D. A., Y. Peres, and E. L. Wilmer (2009). Markov Chains and Mixing Times. Provi-
dence, RI: American Mathematical Society. With a chapter on coupling from the past by
James G. Propp and David B. Wilson.

Lobel, I., D. Acemoglu, M. Dahleh, and A. Ozdaglar (2009). “Rate of convergence of learning
in social networks.” Proceedings of the American Control Conference .

Lobel, I. and E. Sadler (2014). “Preferences, homophily, and social learning.” Forthcoming
in Operations Research.

Lobel, I. and E. Sadler (2015). “Information diffusion in networks through social learning.”
Theoretical Economics 10, 807–851.

Lorenz, J. (2007). “Continuous opinion dynamics under bounded confidence: A survey.”
International Journal of Modern Physics C 18, 1819–1838.

Meyer, C. D. (2000). Matrix Analysis and Applied Linear Algebra. Philadelphia: SIAM.

Montenegro, R. R. and P. Tetali (2006). Mathematical Aspects of Mixing Times in Markov
Chains. Foundations and Trends in Theoretical Computer Science Series, Boston, MA:
Now Publishers.

Montgomery, J. D. (1991). “Social networks and labor-market outcomes: Toward an eco-
nomic analysis.” The American Economic Review 81, 1407–1418.

Moreau, L. (2005). “Stability of multiagent systems with time-dependent communication
links.” IEEE Transactions on Automatic Control 50, 169–182.

Mossel, E., A. Sly, and O. Tamuz (2015). “Strategic learning and the topology of social
networks.” Econometrica 83, 1755–1794.

Mossel, E. and O. Tamuz (2010). “Efficient Bayesian learning in social networks with Gaus-
sian estimators.” Available at arXiv http://arxiv.org/abs/1002.0747.

Mossel, E. and O. Tamuz (2014). “Opinion exchange dynamics.” Available at arXiv
http://arxiv.org/abs/1401.4770.



REFERENCES 41

Mueller-Frank, M. (2013). “A general framework for rational learning in social networks.”
Theoretical Economics 8, 1–40.

Mueller-Frank, M. (2014). “Does one Bayesian make a difference?” Journal of Economic
Theory 154, 423–452.

Mueller-Frank, M. and M. Pai (2014). “Social learning with costly search.” American Eco-
nomic Journal : Microeconomics forthcoming.

Parikh, R. and P. Krasucki (1990). “Communication, consensus, and knowledge.” Journal
of Economic Theory 52, 178–189.

Rosenberg, D., E. Solan, and N. Vieille (2009). “Informational externalities and emergence
of consensus.” Games and Economic Behavior 66, 979–994.

Schweitzer, P. J. (1968). “Perturbation Theory and Finite Markov Chains.” Journal of Ap-
plied Probability 5, 401–413.

Seneta, E. (2006). Non-negative Matrices and Markov Chains. Springer Series in Statistics,
New York: Springer.

Shah, D. (2009). “Network gossip algorithms.” In IEEE International Conference on Acous-
tics, Speech and Signal Processing, 2009. ICASSP 2009., 3673–3676.

Smith, L. and P. Sørensen (2000). “Pathological outcomes of observational learning.” Econo-
metrica 68, 371–398.

Smith, L. and P. Sørensen (2008). “Rational social learning with random sampling.” Working
paper.

Tahbaz-Salehi, A. and A. Jadbabaie (2008). “A necessary and sufficient condition for con-
sensus over random networks.” IEEE Transactions on Automatic Control 53, 791–795.

Taubinsky, D. (2011). “Network architecture and the left-right spectrum.” The B.E. Journal
of Theoretical Economics 11, 1–25.

Trusov, M., R. E. Bucklin, and K. Pauwels (2009). “Effects of word-of-mouth versus tradi-
tional marketing: Findings from an Internet social networking site.” Journal of Marketing
73, 90–102.


	LEARNING IN SOCIAL NETWORKS
	Introduction
	The Sequential Social Learning Model
	The SSLM with Homogeneous Preferences
	Herding and Cascades
	The Improvement Principle
	The Large-Sample Principle
	The SSLM with Heterogeneous Preferences
	Remarks

	Repeated Linear Updating (DeGroot) Models
	Framework
	The Long-Run Limit: Consensus Estimates and Network Centrality
	Speed of Convergence to the Long-Run Limit: Segregation and Polarization
	Time-Varying Updating Matrices
	Remarks

	Repeated Bayesian Updating
	Myopic Updating
	Local Heuristics
	Rational Expectations

	Final Remarks


