
ONLINE APPENDIX:
ADDITIONAL PROOFS, DISCUSSION AND EXTENSIONS FOR

TARGETING INTERVENTIONS IN NETWORKS

Throughout the online appendix, we refer often to sections, results, and equations in the
main text and its appendix using the numbering established there. The numbers of sections,
results, and equations in this online appendix are all prefixed by OA to distinguish them.

A note on notation. Throughout this appendix, when i appears as the index of summation
without further specification, the summation runs over the set N of nodes. When ` appears
as the index of summation, the summation runs of the set ` = 1, . . . , n.

OA1. Additional Proofs

Proof of Proposition 3. Using expression (8), we can write the dependence of E [W (b;G)] on
intervention By as follows:

E [W (b;G)] = w
∑
`

α`

({
E[b̂`] + y

`

}2

+ Var[b`]

)
.

Choosing y to maximize this is identical to the problem analyzed in the deterministic setting
in the proof of Theorem 1. Thus, defining x` = y

`
/b`, with b` = E[B̂`], it satisfies the same

conditions at the optimum as those derived in Theorem 1. �

Proof of Proposition 4. Given Assumption 5, without loss of generality we can normalize
b̄ = 0. Using expression (8) and normalization, we obtain that if the optimal solution is B∗
the expected welfare obtained is

E [W (b∗;G)] = w
∑
`

α`Var(b∗`).

Note that the random variable B∗ can be written as UTB∗, and so the variance–covariance
matrix of the random variable B∗ is ΣB∗ = UTΣB∗U , where recall that ΣB∗ is the variance–
covariance matrix of the random variable B∗.

We consider the case of w > 0 and β > 0; the proof of the other cases is analogous and
therefore omitted. The expected welfare is a weighted sum of the variances of the principal
components, Var(b∗`) = Var(u`(G) · b∗), and the weight α` on the variance of principal
component ` of G is an increasing function of its eigenvalue λ`, because β > 0.

Suppose that the claim in Proposition is violated, that is, there exists a `, `′ such that
` < `′ and Var(b∗`) < Var(b∗`′). We construct an alternative intervention that has the same
cost and does strictly better. Take the permutation matrix (and therefore an orthogonal
matrix) P such that Pkk = 1 for all k 6∈ {`, `′} and P``′ = P`′` = 1. Define B∗∗ = OB∗
with O = UPUT. Clearly, O is orthogonal, as U and P are both orthogonal. Hence, by
Assumption 5, K(B∗) = K(B∗∗). Furthermore, the matrix

ΣB∗∗ = PΣB∗P
T
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and so Var(b∗∗k ) = Var(b∗k) for all k 6∈ {`, `′} and Var(b∗∗` ) = Var(b∗`′) > Var(b∗∗`′ ) = Var(b∗`).
Since α` > α`′ intervention B∗∗ does strictly better than B∗, a contradiction to our initial
hypothesis that B∗ was optimal. �
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OA2. Discussion

We discuss the relation of principal components of the matrix of interactions with other
related networks statistics (Session OA2.1). We then provide a different economic exam-
ple, which complements those in our main text, inspired by beauty context games (Session
OA2.2).

OA2.1. Principal components and other network measures. First principal compo-
nent and eigenvector centrality: For ease of exposition, let the network be connected, that
is, let G be irreducible. By the Perron–Frobenius Theorem, u1(G) is entry-wise positive;
indeed, this vector is the Perron vector of the matrix, also known as the vector of indi-
viduals’ eigenvector centralities. Thus, our results of Section 4 imply that, under strategic
complementarities, interventions that aim to maximize the aggregate utility should change
individuals’ incentives in proportion to their eigenvector centralities.

It is worth comparing this result with results that highlight the importance of Bonacich
centrality. Under strategic complements, equilibrium actions are proportional to the individ-
uals’ Bonacich centralities in the network (Ballester et al., 2006).1 Within the Ballester et al.
(2006) framework, it can easily be verified that if the objective of the planner is linear in
the sum of actions, then under a quadratic cost function the planner will target individuals
in proportion to their Bonacich centralities (see also Demange (2017)). Bonacich centrality
converges to eigenvector centrality as the spectral radius of βG tends to 1; otherwise the
two vectors can be quite different (see, for example, Calvó-Armengol et al. (2015) or Golub
and Lever (2010)).

The substantive point is that the objective of our planner when solving the interven-
tion problem (IT) is to maximize the aggregate equilibrium utility, not the sum of actions,
and that explains the difference in the targeting strategy. Indeed, our planner’s objective
(under Property A) can be written as follows (introducing a different constant factor for
convenience): ∑

i

ui ∝
1

n

∑
i

a2i = ā2 + σ2
a,

where σ2
a is the variance of the action profile and a is the mean action. Thus, our planner

cares about the sum of actions and also their diversity, simply as a mathematical consequence
of her objective. This explains the reason why her policies differ from those that would be
in effect if just the mean action were the focus. To reiterate this point, we finally note that
if we consider problem (IT) but we assume that the cost of intervention is linear, that is,

K(b, b̂) =
∑

i |bi − b̂i|, then the optimal intervention will target only one individual (see
the discussion in Online Appendix Section OA3.3); note that the targeted individual is not
necessarily the individual with the highest Bonacich centrality.
Last principal component: We have shown that in games with strategic substitutes, for
large budgets interventions that aim to maximize the aggregate utility target individuals
in proportion to the eigenvector of G associated to the smallest eigenvalue of G, the last
principal component.

There is a connection between this result and the work of Bramoullé et al. (2014). Bramoullé
et al. (2014) study the set of equilibria of a network game with linear best replies and strategic

1For a different economic context in which eigenvector centrality reflects equilibrium outcomes, see also
Elliott and Golub (2018).
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substitutes. They observe that such a game is a potential game, and they derive the potential
function explicitly. From this, they can deduce that the smallest eigenvalue of G is crucial
for whether the equilibrium is unique, and it is also useful for analyzing the stability of a
particular equilibrium.2 The basic intuition is that the magnitude of the smallest eigenvalue
determines how small changes in individuals’ actions propagate, via strategic substitutes, in
the network. When these amplifications are strong, multiple equilibria can emerge. Relat-
edly, when these amplifications are strong around an equilibrium, that equilibrium will be
unstable.

Our study of the strategic substitutes case is driven by different questions, and delivers
different sorts of characterizations. We assume that there is a stable equilibrium which
is unique at least locally, and then we characterize optimal interventions in terms of the
eigenvectors of G. In general, all the eigenvectors – not just the one associated to the
smallest eigenvalue – can matter. Interventions will focus more on the eigenvectors with
smaller eigenvalues. When the budget is sufficiently large, the intervention will (in the
setting of Section 4) focus on only the smallest-eigenvalue eigenvector. As discussed in
Section 4, the network determinants of whether targeting is simple can be quite subtle. To
the best of our knowledge, these considerations are all new in the study of network games.

Nevertheless, at an intuitive level there are important points of contact between our intu-
itions and those of Bramoullé et al. (2014). In our context, as discussed earlier, our planner
likes to move the incentives of adjacent individuals in opposite directions. The eigenvector
associated to the smallest eigenvalue emerges as the one identifying the best way to do this
at a given cost, and the eigenvalue itself measures how intensely the strategic effects am-
plify. This “amplification” property involves forces similar to those that make the smallest
eigenvalue important to stability and uniqueness in Bramoullé et al. (2014).
Spectral approaches to variance control: Acemoglu et al. (2016) give a general analysis of
which network statistics matter for volatility of network equilibria. Baqaee and Farhi (2017)
develop a rich macroeconomic analysis relating network measures to aggregate volatility.
Though both papers note the importance of eigenvector centrality in (their analogues of)
the case of strategic complements, their main focus is on how the curvature of best responses
changes the volatility of an aggregate outcome, and which “second order” (curvature-related)
network statistics are important. We use the principal components of the network to under-
stand which first-order shocks are most amplified, and how this depends on the nature of
strategic interactions.

OA2.2. Beauty contest with local interactions. This example is inspired by Morris and
Shin (2002) and Angeletos and Pavan (2007). Individuals trade off the returns from effort
against the costs, as in the first example, but also care about coordinating with others. These
considerations are captured in the following payoff:

Ui(a,G) = ai

(
b̃i + β̃

∑
j

gijaj

)
− 1

2
a2i −

γ

2

∑
j

gij[aj − ai]2,

where we assume that β̃ > 0 and γ > 0 and that
∑

j gij = 1 for all i, so the total interac-
tion is the same for each individual. This formulation also relates to the theory of teams
and organizational economics (see, for example, Dessein et al. (2016), Marschak and Radner

2For stability of equilibrium, what is relevant is the magnitude of the smallest eigenvalue of an appropriately
defined subgraph of G.
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(1972), and Calvó-Armengol et al. (2015)). We may interpret individuals as managers in
different divisions within an organization. Each manager selects the action that maximizes
the output of the division, given by the first term, but the manager also cares about coor-
dinating with other divisions’ actions.3 This is a game of strategic complements; moreover,
an increase in j’s action has a positive effect on individual i’s utility if and only if aj < ai.
It can be verified that the first-order condition for individual i is given by

ai =
b̃i

1 + γ
+
b̃i + γ

1 + γ

∑
gijaj.

By defining β = β̃+γ
1+γ

and b = 1
1+γ

b̃, we obtain a best-response structure exactly as in

condition (2). Moreover, the aggregate equilibrium utility is W (b, g) = 1
2

(a∗)T a∗. Hence,
this game satisfies Property A.

3A similar analysis can be adapted to a standard (local) beauty contest game in which Ui(a,G) = −(ai −
b̃i)

2 − γ
∑

j gij [aj − ai]2. Here, we focus on a modification of the standard beauty contest game that makes
the mapping to our formulation easier to present.
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OA3. Extensions

We now extend our basic model to study settings where (a) Property A is not satisfied
(Session OA3.1), (b) the matrix G is non-symmetric (Session OA3.2), (c) the exact quadratic
cost specification does not hold (Session OA3.3), and (d) the interventions occur via monetary
incentives for activity (Session OA3.4).

OA3.1. General non-strategic externalities. Section 4 characterizes optimal interven-
tions for network games that satisfy Property A. We now relax this assumption. Recall that
player i’s utility for action profile a is

Ui(a,G) = Ûi(a,G) + Pi(a−i,G, b),

where Ûi(a,G) = ai(bi +
∑

j gijaj)−
1
2
a2i .

At an equilibrium a∗, it can be checked that
∑

i Ûi(a
∗,G) ∝ (a∗)T a∗. Therefore, a

sufficient condition for Property A to be satisfied is that
∑

i Pi(a
∗
−i,G, b) is also proportional

to (a∗)T a∗. Examples 1 and 2, as well as the example presented in Section OA2.2, satisfy
this property. However, as the next example shows, there are natural environments in which
it is violated.

Example OA1 (Social interaction and peer effects). Individual decisions on smoking and
alcohol consumption are susceptible to peer effects (see Jackson et al. (2017) for references
to the extensive literature on this subject). For example, an increase in smoking among an
adolescent’s friends increases her incentives to smoke and, at the same time, has negative
effects on her welfare. These considerations are reflected in the following payoff function:

Ui(a,G) = Ûi(a,G)− γ
∑
j 6=i

aj,

where β > 0 and γ is positive and sufficienctly large. It can be checked that the aggregate
equilibrium welfare is:

W (b,G) =
1

2
(a∗)T a∗ − nγ

∑
i

a∗i , (OA-1)

with a∗ given by expression (3).4

To extend the analysis beyond Property A, we allow the non-strategic externality term
Pi(a−i,G, b) to take a form that allows for flexible externalities within the linear–quadratic
family:5

Pi(a−i,G) = m1

∑
j

gijaj +m2

∑
j

gija
2
j +m3

∑
j 6=i

aj +m4

(∑
j 6=i

aj

)2

+m5

∑
j 6=i

a2j .

We also make the following assumption on the matrix G:

Assumption OA1. The total interaction is constant across individuals, that is,
∑

j gij = 1
for all i ∈ N .

4In this specification the last (externality) term is a global term. We can easily accommodate local negative
externalities by replacing that term with

∑
j gijaj .

5We can also accommodate externalities that depend directly on the bi, but we omit this for brevity.
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Using equation (3) and Assumption OA1, we can rewrite the expression for the aggregate
equilibrium utility as follows:

W (b,G) = w1 (a∗)T a∗ +
w2

n

(∑
i

a∗i

)2

+
w3√
n

∑
i

a∗i ,

where w1 = 1 +m2 +m5 + (n− 1)m4, w2 = nm5(n− 2), and w3 =
√
n[m1 + (n− 1)m3].

Observe that Property A clearly holds when w2 = w3 = 0. On the other hand, if (say)
w1 = w2 = 0, then the planner’s objective is to maximize the sum of the equilibrium actions,
which is a fairly different type of objective. A characterization of the optimal intervention
when the planner’s objective is to maximize the sum of the equilibrium actions can be found
in Corollary OA1 below. Under Assumption OA1, the sum of the equilibrium actions is
proportional to the sum of the standalone marginal returns. Because u1 is proportional to
the all-ones vector 1, this sum in turn is equal to b1.

Together, these facts allow us to extend our earlier analysis to the case of general w2 and
w3. First, we can still express the objective function simply in terms of the singular value
decomposition; the only difference is that now b1 will enter both in a quadratic term and in
a linear term. In view of this, we first solve the problem (exactly analogously to the previous
solution) for a given value of b1, and then we optimize over b1.

We maintain Assumption 1 and Assumption 2. Recall that player i’s utility for action
profile a is

Ui(a,G) = Ûi(a,G) + Pi(a−i,G, b)

where Ûi(a,G) = ai(bi+
∑

j gijaj)−
1
2
a2i and Pi(a−i,G, b) is a non-strategic externality term

that takes the following form:

Pi(a−i,G) = m1

∑
j

gijaj +m2

∑
j

gija
2
j +m3

∑
j 6=i

aj +m4

(∑
j 6=i

aj

)2

+m5

∑
j 6=i

a2j .

Here we have taken local and global externality terms given by second-order polynomials
in actions. (We could also accommodate externalities that depend directly on the bi in the
same sort of way, as will become clear in the proof, but we omit this for brevity.)

The implication of Assumption OA1 for our analysis is summarized next.

Lemma OA1. Assumption OA1 implies that:

1. for any a ∈ Rn,
∑

i

∑
j gijaj =

∑
i ai and

∑
i

∑
j gija

2
j =

∑
i a

2
i

2. λ1(G) = 1 and u1i (G) =
√
n for all i

3.
∑

i a
∗
i = 1

1−β
∑
bi =

√
n

1−β b1 =
√
nα1b1, where a∗ is equilibrium action profile.6

The proof of Lemma OA1 is immediate. Using part 1 of Lemma OA1, and that individuals
play an equilibrium (actions satisfy expression (3)), we obtain:

W (b,G) = w1 (a∗)T a∗ +
w2

n

(∑
i

a∗i

)2

+
w3√
n

∑
i

a∗i ,

with:

w1 = 1 +m2 +m5 + (n− 1)m4

w2 = nm5(n− 2)

6The last equality follows because α1 = 1/(1− βλ1)2, and assumption OA1 implies that λ1 = 1.
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w3 =
√
n[m1 + (n− 1)m3].

Using the decomposition G = UΛUT, together with part 2 and part 3 of Lemma OA1,
we obtain:

W (b,G) = w1a
∗Ta∗ + w2α1b

2
1 + w3

√
α1b1.

The intervention problem reads

max
b

w1a
∗Ta∗ + w2α1b

2
1 + w3

√
α1b1

subject to a∗` =
√
α`b`∑

`

(b` − b̂`)2 ≤ C.

Using the expression for equilibrium actions, we obtain:

max
b

w1

∑
`=1

α`b
2
` + w2α1b

2
1 + w3

√
α1b1

subject to
∑
`

(b` − b̂`)2 ≤ C.

Recalling the definition x` =
b`−b̂`
b̂`

for every `, we finally rewrite the problem as:

max
x

w1

∑
`=1

α`b̂
2

`(1 + x`)
2 + w2α1b̂

2

1(1 + x1)
2 + w3

√
α1b̂1(1 + x1)

subject to
∑
`

b̂
2

`x
2
` ≤ C.

Theorem OA1 characterizes optimal interventions for two cases: (i) w1 ≥ 0 and (ii)

w1 < 0 and
∑

`=2 b̂
2

` > C. The extension of the analysis for the remaining case w1 < 0 and∑
`=2 b̂

2

` < C is explained in Remark OA1, which is presented after the proof of Theorem
OA1. Taken together, Theorem OA1, and Remark OA1 following it, constitute our extension
of Theorem 1 to games that do not satisfy Property A.

Theorem OA1. Suppose Assumptions 1, 2 and OA1 hold. Suppose that either: (i) w1 ≥ 0

or that (ii) w1 < 0 and
∑

`=2 b̂
2

` > C. The optimal intervention is characterized as follows:

1.

x∗1 =
α1

µ− (w1 + w2)α1

[
w1 + w2 +

w3

2
√
α1b̂1

]
,

and, for all ` ≥ 2,

x∗` =
w1α`

µ− w1α`
.

The shadow price of the planner’s budget, µ > (w1 + w2)α1, is uniquely determined
as the solution of:∑
`=2

b̂
2

`

(
w1α`

µ− w1α`

)2

+ b̂
2

1

(
α1

µ− (w1 + w2)α1

)2
[
w1 + w2 +

w3

2
√
α1b̂1

]2
= C

2. a. For all ` 6= 1, x∗` > 0 if and only if w1 > 0;
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b. x∗1 > 0 if and only if w1 + w2 + w3

2
√
α1b̂1

> 0. 2b. If the game has strategic

complements, β > 0, then |x∗2| > |x∗3| > · · · > |x∗n|. If the game has strategic
substitutes, β < 0, then |x∗2| < |x∗3| < · · · < |x∗n|.

3. Suppose w1 6= 0. In the limit as C → 0, µ→∞ and:

x∗`
x∗`′

→ α`
α`′

for all `, `′ 6= 1

x∗1
x∗`
→ α1

α`

[
w1 + w2 +

w3

2
√
α1b̂1

]
for all ` 6= 1

4. Suppose the game has strategic complements, β > 0. In the limit as C → ∞,
µ→ max{w1α2, (w1 + w2)α1}, and

a. If w1α2 > (w1 + w2)α1 then

x∗1 →
α1

w1α2 − (w1 + w2)α1

[
w1 + w2 +

w3

2b̂1
√
α1

]
,

|x∗2| → ∞,

|x∗` | →
α`

α2 − α`
for all ` > 2.

b. If w1α2 < (w1 + w2)α1 then

|x∗1| → ∞

x∗` →
w1α`

(w1 + w2)α1 − w1α`
for all ` ≥ 2.

5. Suppose the game has strategic substitutes, β < 0. In the limit as C → ∞, µ →
max{w1αn, (w1 + w2)α1}. Hence:

a. If w1αn > (w1 + w2)α1 then:

x∗1 →
α1

w1αn − (w1 + w2)α1

[
w1 + w2 +

w3

2b̂1
√
α1

]
,

|x∗` | →
α`

αn − α`
for all ` ∈ {2, . . . , n− 1},

|x∗n| → ∞.

b. If w1αn < (w1 + w2)α1 then

|x∗1| → ∞

x∗` →
w1α`

(w1 + w2)α1 − w1α`
for all ` ≥ 2.

Before the proof, we briefly explain the sense in which this extends Theorem 1 and as-
sociated results in the basic model. The formula for x∗` in part 1 is a direct generalization
of equation (5), with the shadow price characterized by an equation analogous to (6). The
monotonicity relations on x∗` in part 2 correspond to Corollary 1. The small-C analysis of
part 3 corresponds to Proposition 1. The large-C analysis in parts 4 and 5 corresponds to
the limits studied in Section 4.2.
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Proof of Theorem OA1. Part 1. For a given x ∈ Rn, define

K(x1) = (w1 + w2)α1b̂
2

1(1 + x1)
2 + w3

√
α1b̂1(1 + x1)

C(x1) = C − b̂
2

1x
2
1.

The maximization problem can be rewritten as:

max
x

w1

∑
`=2

α`b̂
2

`(1 + x`)
2 +K(x1)

subject to
∑
`=2

b̂
2

`x
2
` ≤ C(x1)

We solve this problem in two steps.
First Step. We fix x1 so that C(x1) ≥ 0; that is, x1 ∈ [−C/b̂1, C/b̂1]. We then solve

max
x−1

w1

∑
`=2

α`b̂
2

`(1 + x`)
2

subject to
∑
`=2

b̂
2

`x
2
` ≤ C(x1)

In the case in which w1 = 0 we skip this first step. If w1 6= 0, then we argue in a way exactly
analogous to the proof of Theorem 1 that for all ` 6= 1,

x∗` =
w1α`

µ− w1α`

where, for all ` 6= 1, µ ≥ w1α` and it solves∑
`=2

b̂
2

`

(
w1α`

µ− w1α`

)2

= C(x1).

Note that, for all ` ≥ 2, x∗` > 0 if w1 > 0 and x∗` < 0 if w1 < 0.
Note also that if w1 < 0 the constraint binds: the bliss point (x∗` = −1 for all ` 6= 1)

cannot be achieved because C <
∑n

`=2 b̂
2

` .
Second Step. Substituting into the objective function the expression for x∗` , for all ` ≥ 2,

we obtain:

max
x1

W = w1

∑
`=2

α`b̂
2

`

(
µ

µ− w1α`

)2

+K(x1)

subject to
∑
`=2

b̂
2

`

(
w1α`

µ− w1α`

)2

= C(x1)

x1 ∈

[
−C
b̂1
,
C

b̂1

]
The following lemma is instrumental to the solution of this problem. It characterizes µ,

which is implicitly a function of x1.

Lemma OA2. From the budget constraint in the above problem it follows that

1. limx1→−
√
C/b̂1

µ = limx1→
√
C/b̂1

µ =∞
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2.

dµ

dx1
=

b̂
2

1x1∑
`=2

w2
1 b̂

2
1α

2
`

(µ−w1α`)3

3. dµ
dx1

> 0 if x1 > 0 and dµ
dx1

< 0 if x1 < 0;

4. limx1→−
√
C/b̂1

dµ
dx1

= −∞ and limx1→
√
C/b̂1

dµ
dx1

=∞.

Proof of Lemma OA2. The proof of part 1 of Lemma OA2 follows directly by inspection
of the budget constraint. Expression 2 in part 2 of Lemma OA2 is derived by implicit
differentiation of the budget constraint. Part 3 and part 4 of Lemma OA2 follow by inspection
of the expression in part 2, and the fact that µ > w1α`. This concludes the proof of Lemma
OA2. �

Lemma OA2 implies that µ as a function of x1 ∈
[
−C/b̂1, Cb̂1

]
is U-shaped; the slope is

−∞ at x1 = −C/b̂1 and +∞ at x1 = C/b̂1; and it reaches a minimum at x1 = 0.
For w1 6= 0, taking the derivative of the objective function W in expression (OA-2) with

respect to x1, we obtain:

dW

dx1
= −2µ

∑
`=2

w2
1 b̂

2

1α
2
`

(µ− w1α`)3
dµ

dx1
+ 2(w1 + w2)α1b̂

2

1(1 + x1) + w3

√
α1b̂1.

Plugging in expression for dµ
dx1

in part 2 of Lemma OA2 we obtain that:

dW

dx1
= −2µb̂

2

1x1 + 2(w1 + w2)α1b̂
2

1(1 + x1) + w3

√
α1b̂1.

Part 1 of Lemma OA2 implies that dW
dx1
→ ∞ when x1 → −

√
C/b̂1, whereas dW

dx1
→ −∞

when x1 →
√
C/b̂1. Hence, the optimal x1 must be interior, which implies that dW

dx1
= 0 or,

equivalently:

x∗1 =
α1

µ− (w1 + w2)α1

[
w1 + w2 +

w3

2
√
α1b̂1

]
.

Substituting x∗1, in the budget constraint∑
`=2

b̂
2

`

(
w1α`

µ− w1α`

)2

= C(x∗1),

we obtain that the Lagrange multiplier µ must solve:

∑
`=2

b̂
2

`

(
w1α`

µ− w1α`

)2

+ b̂
2

1

(
α1

µ− (w1 + w2)α1

)2
[
w1 + w2 +

w3

2
√
α1b̂1

]2
= C.

The conclusion for w1 = 0 are obtained by taking the limits as w1 → 0 of the expression x∗1
and the expression determining µ. This concludes the proof of part 1 of Theorem OA1.
Part 2. We have already proved that, for all ` ≥ 2, x∗` > 0 if and only if w1 > 0. We now
claim that x∗1 > 0 if and only if w1 +w2 + w3

2b̂1
√
α1
> 0. Suppose, toward a contradiction, that
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x∗1 < 0. Suppose, toward a contradiction, that x∗1 < 0. By inspection of the maximization
problem

max
x

w1

∑
`=2

α`b̂
2

`(1 + x`)
2 +K(x1)

subject to
∑
`=2

b̂
2

`x
2
` ≤ C(x1)

note that if w1 +w2 + w3

2b̂1
√
α1
> 0 and x∗1 < 0, then, by flipping the sign of x∗1, K(x1) increases

and the constraint is unaltered; this is a contradiction to our initial assumption that x∗1 was
optimal.

We have just established that x∗1 > 0. Now, by (OA3.1) above, x∗1 > 0 if and only if
w1 + w2 + w3

2b̂1
√
α1
> 0. And since

x∗1 =
α1

µ− (w1 + w2)α1

[
w1 + w2 +

w3

2
√
α1b̂1

]
it follows that µ > α1(w1 + w2). Finally, if the game has strategic complements then
α2 > · · · > αn and so |x∗2| > |x∗3| > · · · > |x∗n|, and if the game has strategic substitutes then
α2 < · · · < αn and so |x∗2| < |x∗3| < · · · < |x∗n|.
Part 3. This follows by using the characterization in part 1 and by noticing that if C → 0
then µ→∞.
Part 4 and Part 5. Both parts follow by using the characterization together with the
following fact, which we will now establish.

lim
C→∞

µ = max{w1 max{α2, αn}, (w1 + w2)α1}.

To show this, recall from above that we have the following equation for the Lagrange
multiplier:∑

`=2

b̂
2

`

(
w1α`

µ− w1α`

)2

+ b̂
2

1

(
α1

µ− (w1 + w2)α1

)2
[
w1 + w2 +

w3

2
√
α1b̂1

]2
= C

If C tends to ∞ it must be that either the first denominator (µ − w1α`) or the second
denominator (µ− (w1 +w2)α1) tends to zero. Concerning the first one, this is true if either
w1α2 or w1αn (depending on which one is positive) approaches µ. The second denominator
tends to 0 if (w1 + w2)α1 tends to µ. Both denominators are positive by definition of the
Lagrange multiplier, so it will be the greater of w1 max{α2, αn} and (w1 +w2)α1 which tends
to µ. This concludes the proof of Theorem OA1. �

A special case of Theorem OA1 is one where the planner wants to maximize the sum of
equilibrium actions. This occurs when w1 = w2 = 0. In this case we obtain

Corollary OA1. Suppose Assumption 1, 2 and OA1 hold. Suppose that w1 = w2 = 0
and w3 > 0, i.e., the planner wants to maximize the sum of equilibrium actions. Then the
optimal intervention is b∗ = b̂ + u1

√
C.

Remark OA1. Suppose w1 < 0 and
∑

`=2 b
2
` < C, in contrast to what was assumed in

the theorem. If x1 is sufficiently small, the solution in Step 1 in the proof of Theorem OA1
entails x` = −1 for all ` ≥ 2. That is, fixing x1, the bliss point can be achieved with the
remaining budget after the cost of implementing x1, namely C(x1), is paid. Thus, when we
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move to Step 2 and optimize over x1, we need to take into account that, for small values
of x1, Step 1 yields a corner solution. Hence, the analysis of how the network multiplier
changes when x1 changes will need to be adapted accordingly.

Example OA1, continued. Social interaction and peer effects
We conclude this section by applying Theorem OA1 to Example OA1 from Online Ap-

pendix Section OA3.1. In this example w1 = 1, w2 = 0 and w3 = −γ
√
n(n− 1).

Corollary OA2. The optimal intervention in Example OA1 is characterized by

x∗1 =
α1

µ− α1

[
1− γ

√
n(n− 1)

2
√
α1b̂1

]
and, for all ` ≥ 2:

x∗` =
α`

µ− α`
where the Lagrange multiplier µ solves∑

`=2

b̂
2

`

(
α`

µ− α`

)2

+ b̂
2

1

(
α1

µ− α1

)2
[

1− γ
√
n(n− 1)

2
√
α1b̂1

]2
= C.

Corollary OA3. Consider the optimal intervention in Example OA1. It has the following
properties.

1. x∗2 > · · · > x∗n > 0; x∗1 > 0 if and only γ <
2
√
α1b̂1√

n(n−1)
2. If C → 0

x∗`
x∗`′

→ α`
α`′

, for all `, `′ 6= 1

x∗1
x∗`
→ α1

α`

[
1− γ

√
n(n− 1)

2
√
α1b̂1

]
, for all ` 6= 1

3. If C →∞ then |x∗1| → ∞ and x∗` →
α`

(α1−α`)
for all ` ≥ 2.

OA3.2. Beyond symmetric and non-negative G. In this subsection we relax the as-
sumption that G is symmetric. Recall that equilibrium actions are determined by:

a∗ = [I − βG]−1b.

When G is not symmetric, we employ the singular value decomposition (SVD) of the matrix
M = I − βG. This allows us to obtain an orthogonal decomposition of an intervention
useful for examining welfare, analogous to the diagonalization. An SVD of M is defined to
be a tuple (U ,S,V ) satisfying:

M = USV T, (OA-2)

where:

(1) U is an orthogonal n× n matrix whose columns are eigenvectors of MMT;
(2) V is an orthogonal n× n matrix whose columns are eigenvectors of MTM ;
(3) S is an n × n matrix with all off-diagonal entries equal to zero and nonnegative

diagonal entries Sll = sl, which are called singular values of M . As a convention, we
order the singular values so that s` > s`+1.
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It is a standard fact that an SVD exists.7 For expositions of the SVD, see Golub and Van Loan
(1996) and Horn and Johnson (2012). The `th left singular vector of M corresponds to the
`th principal component of M . When G is symmetric, the SVD of M = I − βG can be
taken to have U = V , and the SVD basis is one in which G is diagonal.

Let a = V Ta and b = UTb; then the equilibrium condition implies that:

a∗` =
1

s`
b2` ,

and therefore the objective function is:

W (b,G) = w (a∗)T a∗ = wa∗Ta∗.

It is now apparent that the analysis of the optimal intervention can be carried out in the
same way as in Section 4. Theorem 1 applies, with the only difference that now α` = 1/s2` .
We can also extend Proposition 1 and Proposition 2. As the budget tends to 0, r∗`/r

∗
`′ tends

to α`/α`′ ; on the other hand, when C is very large, the optimal intervention is proportional
to the first principal component of M , and a simple intervention that focuses on the first
principal component performs (nearly) as well as the optimal intervention. When G is
symmetric, the nature of strategic interactions (determined by β) pins down the principal
component that most amplifies an intervention. If G is non-symmetric, the singular values
sl of M are not equal to 1 − βλl, where λl are the eigenvalues of G; the singular vectors
of M are not the eigenvectors of G; and the left and right singular vectors need not be the
same.

OA3.3. More general costs of intervention. In Section 4 we solved the optimal interven-
tion problem under a specific cost function. This section discusses some natural properties
on a cost function. We then show that our analysis of the optimal intervention extends to
the general class of cost functions defined by these properties, as long as the budget is small.

We begin by developing properties that a reasonable cost function (b, b̂) 7→ K(b; b̂) must
satisfy.

Assumption OA2.

(1) Translation-invariance: For any z ∈ Rn, we have K(b+z; b̂+ ẑ) = K(b; b̂), that is.,

there is a function κ : Rn → R such that K(b; b̂) = κ(b− b̂).
(2) Symmetry: For any permutation σ of {1, . . . , n}, it is true that κ(yσ(1), yσ(2), . . . , yσ(n)) =

κ(y1, y2, . . . , yn).
(3) Nonnegativity: κ is nonnegative, and κ(0) = 0.

(4) Local separability: ∂2κ(y)
∂yi∂yj

= 0 evaluated at 0.

(5) Well-behaved second derivative at 0: κ is twice differentiable with ∂2κ
∂y2i

(0) > 0 for all

i.

Translational invariance says that there is no dependence on the starting point. Symmetry
across players implies that names don’t matter for costs. Nonnegativity implies that the
planner cannot extract money from the system: κ(0) = 0 is the definition of the status

quo b̂: it does not cost anything to enact b̂. Local separability across individuals requires
that there are no spillovers in the costs of interventions. This is reasonable, as it ensures

7The decomposition is uniquely determined up to a permutation that (i) reorders the singular values of M
and correspondingly reorders the columns of U and V , and (ii) flips the sign of any column of U and V .
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that the complementarities we study come from the benefits side and not from the costs of
interventions. Finally, the twice-differentiability of the function is a technical assumption to
facilitate the analysis, while the positive value of the second derivative at 0 rules out cost
functions such as κ(y) =

∑
i y

4
i in which the increase in marginal costs at 0 is too slow.

Consider a cost function that satisfies Assumption OA2: κ(y) =
∑

i κ̃(yi), where κ̃(y) =
y2+cy3ey+c′y4, with c and c′ being arbitrary constants. Our main result is that the structure
of interventions identified in Section 3.1 carries over to such cost functions as long as the
budget is small.

Proposition OA1. Consider the intervention problem (IT) with the modification that the
cost function satisfies Assumption OA2. Suppose Assumptions 1 and 2 hold and the network

game satisfies Property A. At the optimal intervention, if C → 0 we have
r∗`
r∗
`′
→ α`

α`′
.

Proof of Proposition OA1. First, we state and prove a lemma.

Lemma OA3. Under the conditions of Assumption OA2, on any compact set the function
C−1κ(C1/2z) converges uniformly to k‖z‖2, as C ↓ 0, where k > 0 is some constant. We call
the limit G.

Proof. Consider the Taylor expansion of κ around 0 (κ is defined by part (1) of the as-
sumption). We will now study its properties under parts (2) to (5) of Assumption OA2.
(5) ensures that the Taylor expansion exists. Local separability (4) says that there are no
terms of the form yiyj. Non-negativity (3) (κ is nonnegative and κ(0) = 0) implies that
all first-order terms are zero. Also, (5) says that terms of the form y2i must have positive
coefficients, and symmetry (2) says that their coefficients must all be the same. �

Write y := b − b̂. Let ∆(y) denote the change in welfare from the status quo. Fix all
parameters of the problem, and recall the main optimization problem:

max
b

∆(y) (IT(C))

s.t. κ(y) ≤ C

We maintain, but do not explicitly write, that welfare is evaluated at a∗(y), where a∗ =

[I − βG]−1(b̂ + y).
Let y(C) be the solution of problem IT(C), which is unique for small enough C. Then we

claim that, as C ↓ 0, we have
r∗`
r∗`′
→ α`

α`′
,

where the similarity ratios are defined at the optimum y(C).
We will prove the result by studying an equivalent problem using Berge’s Theorem of the

Maximum. Let y̌ = C−1/2y. We will now define a re-scaled version of the problem, ǏT(C).

max
b

C−1∆(C1/2y̌) (ǏT(C))

s.t. C−1κ(C1/2y̌) ≤ 1.

This is clearly equivalent to the original problem. Let y̌∗(C) be the (possibly set-valued)
solution for C.

The problem ǏT(C) is not yet defined at C = 0, but we now define it there. Let the
objective at C = 0 be the limit of C−1∆(C1/2y̌) as C ↓ 0, which we call F . Let the
constraint be G(y̌) ≤ 1, where G is from Lemma OA3.
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Let us restrict ǏT(C) to a compact set K such that the constraint set {y : C−1κ(C1/2y̌) ≤
1} is contained in K for all small enough C. Now we claim that the conditions of Berge’s
Theorem of the Maximum are satisfied: The constraint correspondence is continuous at
C = 0 because C−1κ(C1/2y̌) converges uniformly to G, while the objective function is jointly
continuous in its two arguments.

The Theorem of the Maximum therefore implies that the maximized value is continuous
at C = 0. Because the convergence of the objective is actually uniform on K by the Lemma,
this is possible if and only if y̌ approaches the solution of the problem

max
b

F (y̌)

s.t. ‖y̌‖2 ≤ 1.

By the same argument, the same point is the limit of the solutions to

max
b

C−1∆(C1/2y̌)

s.t. ‖y̌‖2 ≤ 1.

By Proposition 1, in that limit this satisfies

r∗`
r∗`′
→ α`

α`′
.

�

We next impose an additional restriction on the structure of the costs of intervention and
we show that this new restriction together with Assumption OA2 fully characterizes the cost
functions that we used in our main analysis.

Assumption OA3. There is a function f : R+ → R+ so that κ(sy) = f(s)κ(y).

Proposition OA2. Consider a cost function that satisfies Assumptions OA2 and OA3.
There is a function f : R+ → R+ such that

κ(y) = f(‖y‖).

Proposition OA2 implies that the cost of intervention y is the same as the cost of an
intervention obtained as an orthogonal transformation of y; that is κ(y) = κ(Oy) with O be
an orthogonal matrix. This allows to rewrite the intervention problem using the orthogonal
decomposition of welfare and costs that we employ in Section 4, and all the results developed
there extend to this more general environment.

We conclude by taking up the implication of linear costs of intervention. The main result
is that with a linear cost function, that is, K(b, b̂) =

∑
i |bi − b̂i|, the optimal intervention

will target a single individual. For ease of exposition, we will restrict attention to Example
1. The analysis can be easily extended to general network games.

We consider the following intervention problem:

max
b

(a∗)T a∗ (IT-Linear Cost)

s.t. a∗ = [I − βG]−1b,

K(b; b̂) =
∑
i∈N

|bi − b̂i| ≤ C,
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Proposition OA3. The solution to problem IT-Linear Cost has the property that there
exists i∗ such that b∗i 6= b̂i∗ and b∗i = b̂i for al i 6= i∗.

Proof of Proposition OA3. Define W (b) = a(b)Ta(b). Let F be the set of feasible b, those

satisfying the budget constraint K(b; b̂) ≤ C. Suppose the conclusion does not hold and let
b∗ be the optimum, with W ∗ = W (b∗). Then, because by hypothesis the optimum is not at
an extreme point, F contains a line segment L such that b∗ is in the interior of L.8

Now restrict attention to a plane P containing this L and the origin. Note that L is
contained in a convex set

E = {b : W (b) ≤ W ∗}.
The point b∗ is contained in the interior of L; thus b∗ is in the interior of E. On the other
hand, b∗ must be on the (elliptical) boundary of E because U is strictly increasing in each
component (by irreducibility of the network) and continuous. This is a contradiction. �

We now characterize the optimal target for the case of strategic complements, i.e., β > 0.
Remark OA2 explains how to extend the analysis for the case of strategic substitutes.

In the case of strategic complements, it is clear that the planner uses all the budget C to
increase the standalone marginal benefit of i∗, i.e., b∗i = b̂i + C; reducing someone’s effort

can never help. Thus, the planner changes the status quo b̂ into b = b̂+C1i∗ where 1i∗ is a
vector of 0 except for entry i∗ that takes value 1. Let a(1i) be the Nash equilibrium when
all individuals have bj = 0 and bi = 1, i.e., a(1i) = [I − βG]−11i. It is easy to verify that
the solution to problem IT-Linear Cost is:

i∗ = argmax
i

{
a(b̂ + C1i)

Ta(b̂ + C1i)− a(b̂)Ta(b̂)
}
.

This is equivalent to

i∗ = argmax
i

{
C‖a(1i)‖

[
2‖a(b̂)‖ρ(a(1i),a(b̂)) + C‖a(1i)‖

]}
. (OA-3)

where recall that ρ(a(1i),a(b̂)) is the cosine similarity between vectors a(1i) and a(b̂). There
are two characteristics of a player that determines whether the player is a good target.

The first characteristic is ‖a(1i)‖. This is the square root of the aggregate equilibrium
utility in the game with b = 1i, i.e., the squared root of a(1i)

Ta(1i). So, a player with a high
‖a(1i)‖ is a player who induces a large welfare in the game in which he is the only player with
positive standalone marginal benefit. We call this the welfare centrality of an individual. It is
convenient to express the welfare centrality of individual i in terms of principal components
of G. Note that

‖a(1i)‖ = ‖a(1i)‖ =

√∑
`

α`(u`i)
2.

Recall that under strategic complement α1 > α2 > .. > αn and so an individual with a high
welfare centrality is one that is highly represented in the main principal components of the
network.

The second factor is ρ(a(1i),a(b̂)). This measures the vector similarity between (i) the
equilibrium action profile in the game with b = 1i; and (ii) the status quo equilibrium action

profile. A player with a large ρ(a(1i),a(b̂)) is a player that, in the game in which he is the

8Formally, for some z > 0 there is a linear map ϕ : [−z, z]→ F such that ϕ(0) = b∗.
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only player with positive standalone marginal benefit, leads a distribution of effort similar
to the distribution of effort in the status quo.
Small C. Suppose C ≈ 0. Then the optimal target is selected based on the first term of
expression (OA-3); that is:

i∗ = argmax
i
‖a(1i)‖ρ(a(1i),a(b̂))

For small budgets, the optimal intervention focuses on the player who has a large welfare
centrality and that, at the same time, leads to a distribution of effort not too different from
the status quo equilibrium effort.
Large C: For C sufficiently large, the last term of expression (OA-3) dominates and therefore
the player that is targeted is the player with the highest welfare centrality.

Remark OA2 (Extension to the case of strategic substitutes). In the case of strategic

substitutes, we know for the targeted player i∗, b∗i∗ = b̂i ± C, but we cannot say, a priori,
which (positive or negative), and indeed it is easy to provide examples that both can happen.
Under this qualification, the analysis developed for the case of strategic complements extends

OA3.4. Intervention through monetary incentives. In the basic model presented in
Section 2, an intervention alters incentives for individual action through a direct change
in marginal benefits/marginal costs. The convexity in the cost of changing these marginal
benefits plays a key role in the analysis. In this section we provide a demonstration of how
our approach can be applied beyond this cost setting. We do this by using our methods to
solve the problem of offering monetary incentives to individuals for choosing between two
actions.

Let us reinterpret a node i as a population; thusN = {1, 2, . . . , n} is the set of populations.
Within population i, there is a continuum of individuals distributed uniformly in I = [0, τ ].
Each individual in population i chooses whether to take action 1 or to take action 0. A
strategy of an individual in population i is a function qi : [0, τ ] → [0, 1] that describes the
probability that an individual of type τi ∈ [0, τ ] chooses action 1. Without loss of generality,
we focus on equilibria in which all the players within a population have the same strategy.

The payoff to an individual who chooses action 0 is normalized to 0. If individual τi
takes action 1, then he incurs a cost τi and gets a benefit that depends on his population’s
standalone marginal benefit of action 1, bi, and the number of other individuals he meets
who have also taken action 1. We assume that the interaction between populations takes the
form of random matching, with the following specification: An individual τi in population
i meets someone from population j with probability gij, and, within population j, τi meets
an individual selected uniformly at random. Suppose τi meets type τj, and let qj be the
strategy of individuals in population j. Then individual τi’s payoff for the interaction with
the random partner τj is

β̃qj(τj) + bi − τi.

In this expression, β̃qj(τj) represents the payoffs from interacting with peers that have also
taken action 1.

First, we show that the conditions for an equilibrium are isomorphic to those of the games
we studied in Section 3.1. It is immediate to see that the best reply of each individual in



ONLINE APPENDIX 19

population i is a cutoff strategy: there exists a cutoff ai ∈ I so that q(τi) = 1 for all τi ≤ ai
and q(τi) = 0 otherwise. The equilibrium condition for these cutoffs is that, for all i ∈ N ,

β̃
∑
j

gijP [τj ≤ a∗j ] + bi − a∗i = 0 ⇐⇒ ai = bi +
β̃

τ

∑
j

gija
∗
j .

Denoting by β = β̃/τ , the equilibrium threshold profile a∗ solves

[I − βG]a∗ = b.

The equilibrium expected payoff to group i is:

Ui(a
∗, b) =

∫ a∗i

0

(
β
∑
j

gija
∗
j + bi − τi

)
dτi

=

∫ a∗i

0

(a∗i − τi) dτi =
1

2
a∗2i ,

where the second equality follows by using the best response of each population. So aggregate
equilibrium utility is

W (b,G) =
1

2
(a∗)T a∗.

Suppose the planner, before the players choose their action, commits to the a subsidy
scheme. The subsidy scheme depends on realized actions, which are taken after the scheme
is announced. More precisely, the planner selects a vector y ∈ Rn and offers the following
scheme:
Subsidizing action 1. If yi > 0 then the planner gives a subsidy of s1i (τi) = τi− [ai(y)−yi]
to all population i’s types τi ∈ [ai(y)− yi, ai(y)] who take action 1.
Subsidizing action 0. If yi < 0 then the planner gives a subsidy of s0i (τi) = [ai(y)+|yi|]−τi
to all τi ∈ [ai(y), ai(y) + |yi|] who do not adopt the new technology (take action 0).

We make three observations. First, under intervention y the profile of thresholds a(y) is
a Nash equilibrium. Furthermore, the planner does not waste resources in the sense that
she uses the minimum amount of resources to implement a(y). To see this note that, by
construction, the planner provides monetary payments to take action 1 or to take action 0
only to types who need such transfers to satisfy their incentive compatibility constraint. The
monetary payments make these incentive compatible constrains just bind. Finally, let 1yi>0

be an indicator function that takes value 1 if yi > 0 and 0 otherwise, then note that the cost
of intervention y is

K(y) =
1

2

∑
i

1yi>0

∫ ai(y)

ai(y)−yi
s1i (τi)dτi +

∑
i

(1− 1yi>0)

∫ ai(y)+|yi|

ai(y)

s0i (τi)dτi

=
1

2

∑
i

y2i

We then consider a planner who intervenes in the system. The planner has complete
information about the type of each individual in each population and can subsidize types to
take action 1 or to take action 0, in a perfectly targeted manner. In doing this, the planner
effectively shifts the bi of some individuals in some populations. The cheapest individuals
to influence are those who are close to being indifferent between the two actions, so that
they do not need to be paid very much to change their behavior. Indeed, the payment
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to an individual is proportional to his distance x from the marginal type in equilibrium:
Integrating across all the individuals whose actions are changed gives

∫ yi
0
x dx, a cost that

is quadratic in the magnitude of the change. The intervention problem turns out to be
mathematically equivalent to (IT), and so all our results apply.

We can now define the intervention problem of the planner as follows. Starting from the
status quo b̂, the planner chooses intervention y to maximize aggregate equilibrium utility
under the constraint that individuals play according to equilibrium and that the cost of the
intervention cannot exceed C. Formally,

max
y∈Rn

1

2
aTa (IT-P)

s.t. [I − βG]a = b̂ + y,

K(y) =
1

2

∑
i

y2i ≤ C,

Intervention problem (IT-P) is equivalent to the intervention problem (IT) defined in
Section 2.

Note that the specific payoff functions we have taken here make the problem isomorphic
to the setting of Example 1, but by suitably modifying the payoffs, we could capture more
general externalities, along the lines of Online Appendix Section OA3.1.

We focus throughout on maximizing aggregate utility, but we note that the results have
applications to other kinds of objectives, such as implementing Pareto improvements. In
some cases, interventions will make everyone better off without modification, when positive
externalities are strong enough to overcome any negative welfare impacts. However, even
when this is not the case, the planner may be able to achieve Pareto improvements. For
example, consider a planner who is able to make lump sum transfers – e.g., award or take
away discretionary compensation – in addition to any targeted incentives or contingent
payments. In such cases, if an improvement in aggregate utility is possible, then the planner
can use such transfers to compensate individuals (for instance, those harmed by negative
externalities), and achieve a Pareto improvement. In the setting discussed in this subsection,
combining lump-sum and action-contingent transfers would then implement a range of Pareto
improvements. Even beyond the monetary-incentives setting under consideration here, lump
sum transfers may be available to the planner in addition to whatever incentive-targeting
scheme is being used, and in such a setting our comments here would apply also.
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Bramoullé, Y., R. Kranton, and M. d’Amours (2014): “Strategic Interaction and
Networks,” The American Economic Review, 104, 898–930.
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