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Question

Simultaneous move, n agents. Agent i chooses investment ai to maximize

Wi (ai , a−i ; bi ) = ai · R(bi , a−i )−
1

2
a2
i

where

R(bi , a−i ) = bi︸︷︷︸
basic/standalone
marginal return

+ β︸︷︷︸
β > 0 strat. comp.
β < 0 strat. subst.

∑
j

network︷︸︸︷
gij aj

Agents choose how much to invest. Incentives to invest, and payoffs,
depend both on own parameter (e.g., productivity) and neighbors’
behavior ⇒ strategic interactions.

Targeted interventions modify, at a cost, incentives of some. Goal: max.
(e.g.) utilitarian welfare. Question: Whom to target and in what
proportions?
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Contribution

A. Study optimal targeting under strategic complements or substitutes,
positive or negative externalities, various objective functions.

Dependence on (i) network structure, on (ii) nature of strategic
interaction, (iii) intervention size, etc.

B. Look at game in a different basis, where strategic amplification has a
simple structure: “principal component approach.”

C. Optimal targeting can be expressed simply in this new basis:
interventions with highest leverage in a given setting are proportional
to certain principal components of the matrix of interaction.
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Targeting problem

Wi (ai , a−i ; bi ) = ai ·
[
bi + β ∑

j

gijaj

]
− 1

2
a2
i

choose ∆b to maximize ∑
i

Wi (a
∗;b) s.t. a∗ being a Nash equilibrium,

b = b̂+ ∆b
and K (∆b) ≤ C ,

where K (∆b) = ‖∆b‖2

Assumption of unique equilibrium: r(βg ) < 1.
Assumption on g : symmetric and nonnegative

(simplifies exposition a lot, but not essential).
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g =

Eigenvalue decomposition︷ ︸︸ ︷
...

...
u1 . . . un

...
...


︸ ︷︷ ︸
U : eigenvectors

λ1
. . .

λn


︸ ︷︷ ︸

Λ: eigenvalues


. . . (u1)

T . . .
...

. . . (un)T . . .


︸ ︷︷ ︸

UT : eigenvectors

U (orthonormal) eigenvectors or principal components.
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Targeting theorem for large budgets

If C is large enough and . . .

1. . . . β > 0, then (∆b)∗ ≈ cu1.

If the budget is large and there are strategic complements, then
target in proportion to the first eigenvector.

2. . . . β < 0, then (∆b)∗ ≈ cun.

If the budget is large and there are strategic substitutes, target
according to the last eigenvector.
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Beyond large budgets

I When budget is not large, optimal intervention has a positive
projection onto all principal components, not just the extremes.

I But order of principal components still characterizes the planner’s
(endogenous) emphasis on various components:

I Components with high eigenvalues are more important in problems
with strategic complements.

I Components with low eigenvalues are more important in problems
with strategic substitutes.
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Cosine Similarity

Definition:

I Cosine similarity of vectors z , y 6= 0 is ρ(z , y ) = z ·y
‖z‖‖y‖ .

I Cosine of the angle between the two vectors in the plane that y and
z define.

I When ρ(z , y ) = 1, vector z is a positive scaling of y . When
ρ(z , y ) = 0, vectors z and y are orthogonal.

Theorem 1: Characterization of Optimal Interventions
At the optimal intervention, the similarity between (∆b)∗ and principal
component u`(g ) satisfies the following proportionality:

ρ((∆b)∗,u`) ∝ ρ(b̂,u`) · r` (1)

where r` depends only on βλ` and the magnitude of the intervention
(through shadow cost of the budget constraint).
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Monotonicity

Theorem 1: Characterization of Optimal Interventions
At the optimal intervention, the similarity between y ∗ and principal
component u`(g ) satisfies the following proportionality:

ρ((∆b)∗,u`) ∝ ρ(b̂,u`) · r` (2)

where r` depends only on βλ` and the shadow cost of the budget
constraint (through shadow cost of the budget constraint).

Corollary 1: Monotonicity. At the optimal intervention

1. If the game exhibits strategic complements the optimal intervention
focuses more on the “higher” principal components,
r1 > r2 > · · · > rn > 0

2. If the game exhibits strategic substitutes the optimal intervention
focuses more on the “lower” principal components,
0 < r1 < r2 < · · · < rn
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Corollaries: Small and large budgets.

Small budget. At the optimal intervention

lim
C→0

r`
r`′

=
α`
α`′

where α` = (1− βλ`)
−2

Large budget. (Strategic complements) If C

‖b̂‖2 > Bound(ε) , then:

1. optimal intervention is (nearly) simple: cosine similarity to u1 is
nearly 1 (at least

√
1− ε).

2. simple intervention is nearly optimal.

The bound becomes easier to satisfy as the gap between the extreme and
next eigenvalue (top or bottom spectral gap) grows.
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Large and small spectral gap (top)

Large budget. (Strategic complements) If C

‖b̂‖2 > [bound], then:

1. optimal intervention is (nearly) simple;

2. simple intervention is nearly optimal.

The bound becomes easier to satisfy as the gap between the extreme and
next eigenvalue (top or bottom spectral gap) grows.

Large gap Small gap



Conclusion

I Principal component analysis illuminates structure of network games.

I New network statistics matter: In strategic substitutes problems,
focus on node statistics which reflect approximate local bipartitions.

I Extensions:
I Nonsymmetric G (use singular value decomposition).
I More general functional forms: e.g., small budget analysis.
I More general externalities.
I Incomplete information about b.
I Monetary incentives.
I . . .
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Proof idea

recall Wi (ai , a−i ; bi ) = ai ·
[
bi + β ∑

j

gijaj

]
− 1

2
a2
i

New basis:
(I − βg )a = b iff︸︷︷︸

z=UT z

(I − βΛ)a = b

a` =
1

1− βλ`︸ ︷︷ ︸
amplification

b`

Objective: In equilibrium, W =
aTa =︸︷︷︸

orth. trans.

aTa =︸︷︷︸
new basis

∑`
1

(1−βλ`)2 b
2
`

Constraint: ‖b− b̂‖2
2 = ‖b− b̂‖2

2 ≤ C
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Generalizations and extensions

I We studied a game with strategic complements + positive
externalities; strategic substitutes + negative externalities.

I In paper: a framework flexible enough to handle any combination:
e.g., a public goods game with strategic substitutes and positive
externalities; also nest beauty contest games, etc. Principal
component approach is portable.

I Providing incentives with money:
I population version of model. If you want to effect a small change, you

have to pay a small number of people a small amount of money each
(since they are marginal);

I paper on tax/subsidy interventions (Galeotti, Golub, Goyal, Talamàs,
and Tamuz 19)

I Incomplete information: control ∆b without knowing b̂.
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Monetary incentives: isomorphic to main model!

I Reinterpret a node as a population with (cost) types distributed on
[0, 1]. Each (infinitesimal) individual takes action 0 or 1.

I Random matching: agent in group i meets group j with probability
gij , and meets an agent uniformly at random in that group.

I Payoff of action 0 is 0.
I Payoff of action 1 is βqj (τj ) + bi − τi , where τj is the type of the

agent i meets, and j is her group.

I Key observation: in equilibrium, exists a cutoff ai for each population
s.t. take action 1 iff τi ≤ ai .

I Equilibrium cutoff profile a∗ satisfies [I − βg ] a∗ = b.

I Expected payoff to group i is

Ui (a
∗,b) =

∫ a∗i

0

(
β ∑

j

gija
∗
j + bi − τi

)
dτi =

∫ a∗i

0
(a∗i − τi ) dτi =

1

2
a∗2i .
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I Payoff of action 1 is βqj (τj ) + bi − τi , where τj is the type of the

agent i meets, and j is her group.

I Key observation: in equilibrium, exists a cutoff ai for each population
s.t. take action 1 iff τi ≤ ai .

I Equilibrium cutoff profile a∗ satisfies [I − βg ] a∗ = b.

I Expected payoff to group i is

Ui (a
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I Payoff of action 1 is βqj (τj ) + bi − τi , where τj is the type of the

agent i meets, and j is her group.

I Intervention: offer cost type τi either a subsidy to play 1 (if he
playing 0) or vice versa.

I Key observation: Cost is quadratic in the size of the intervention:
i.e., what mass of types have incentives changed.
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