Targeting interventions in networks

Andrea Galeotti (LBS), Benjamin Golub (Harvard) and Sanjeev Goyal (Cambridge)

2019

Question

Simultaneous move, *n* agents. Agent *i* chooses investment a_i to maximize

$$W_i(a_i, \boldsymbol{a}_{-i}; b_i) = a_i \cdot R(b_i, \boldsymbol{a}_{-i}) - rac{1}{2}a_i^2$$

where

Question

Simultaneous move, *n* agents. Agent *i* chooses investment a_i to maximize

$$W_i(a_i, \boldsymbol{a}_{-i}; b_i) = a_i \cdot R(b_i, \boldsymbol{a}_{-i}) - rac{1}{2}a_i^2$$

where

Agents choose how much to invest. Incentives to invest, and payoffs, depend both on own parameter (e.g., productivity) and neighbors' behavior \Rightarrow strategic interactions.

Question

Simultaneous move, *n* agents. Agent *i* chooses investment a_i to maximize

$$W_i(a_i, \boldsymbol{a}_{-i}; b_i) = a_i \cdot R(b_i, \boldsymbol{a}_{-i}) - rac{1}{2}a_i^2$$

where

Agents choose how much to invest. Incentives to invest, and payoffs, depend both on own parameter (e.g., productivity) and neighbors' behavior \Rightarrow strategic interactions.

Targeted interventions modify, at a cost, incentives of some. *Goal:* max. (e.g.) **utilitarian welfare**. *Question:* Whom to target and in what proportions?

Contribution

A. Study optimal targeting under strategic complements or substitutes, positive or negative externalities, various objective functions.

Dependence on (i) *network structure*, on (ii) *nature of strategic interaction*, (iii) *intervention size*, etc.

Contribution

A. Study optimal targeting under strategic complements or substitutes, positive or negative externalities, various objective functions.

Dependence on (i) *network structure*, on (ii) *nature of strategic interaction*, (iii) *intervention size*, etc.

B. Look at game *in a different basis*, where strategic amplification has a simple structure: "principal component approach."

Contribution

A. Study optimal targeting under strategic complements or substitutes, positive or negative externalities, various objective functions.

Dependence on (i) *network structure*, on (ii) *nature of strategic interaction*, (iii) *intervention size*, etc.

- B. Look at game *in a different basis*, where strategic amplification has a simple structure: "principal component approach."
- C. Optimal targeting can be expressed simply in this new basis: interventions with highest leverage in a given setting are proportional to certain **principal components** of the matrix of interaction.

Targeting problem

$$\begin{split} W_i(a_i, \mathbf{a}_{-i}; b_i) &= a_i \cdot \left[b_i + \beta \sum_j g_{ij} a_j \right] - \frac{1}{2} a_i^2 \\ \text{maximize} \qquad \sum_i W_i(\mathbf{a}^*; \mathbf{b}) \text{ s.t. } \mathbf{a}^* \text{ being a Nash equilibrium,} \\ \mathbf{b} &= \hat{\mathbf{b}} + \Delta \mathbf{b} \end{split}$$

choose $\Delta \boldsymbol{b}$ to maximize

and
$$K(\Delta \boldsymbol{b}) \leq C$$
,

Targeting problem

$$W_i(a_i, \mathbf{a}_{-i}; b_i) = a_i \cdot \left[b_i + \beta \sum_j g_{ij} a_j \right] - \frac{1}{2} a_i^2$$

choose $\Delta \mathbf{b}$ to maximize $\sum_i W_i(\mathbf{a}^*; \mathbf{b})$ s.t. \mathbf{a}^* being a Nash equilibrium,
 $\mathbf{b} = \hat{\mathbf{b}} + \Delta \mathbf{b}$
and $K(\Delta \mathbf{b}) \leq C$,

where $K(\Delta \boldsymbol{b}) = \|\Delta \boldsymbol{b}\|^2$

Targeting problem

$$W_i(a_i, \boldsymbol{a}_{-i}; b_i) = a_i \cdot \left[b_i + \beta \sum_j g_{ij} a_j \right] - \frac{1}{2} a_i^2$$

choose $\Delta \boldsymbol{b}$ to maximize

$$\sum_{i} W_{i}(\boldsymbol{a}^{*}; \boldsymbol{b}) \text{ s.t. } \boldsymbol{a}^{*} \text{ being a Nash equilibrium,}$$
$$\boldsymbol{b} = \hat{\boldsymbol{b}} + \Delta \boldsymbol{b}$$
$$\mathcal{K}(\Delta \boldsymbol{b}) \leq C,$$

where $K(\Delta \boldsymbol{b}) = \|\Delta \boldsymbol{b}\|^2$

Assumption of unique equilibrium: $r(\beta g) < 1$. Assumption on g: symmetric and nonnegative

and

(simplifies exposition a lot, but not essential).

U (orthonormal) eigenvectors or principal components.

U (orthonormal) eigenvectors or principal components.

Targeting theorem for large budgets

If C is large enough and ...

1. $\ldots \beta > 0$, then $(\Delta \boldsymbol{b})^* \approx c \boldsymbol{u}^1$.

If the budget is large and there are **strategic complements**, then target in proportion to the first eigenvector.

Targeting theorem for large budgets

If C is large enough and ...

1. ... $\beta > 0$, then $(\Delta \boldsymbol{b})^* \approx c \boldsymbol{u}^1$.

If the budget is large and there are **strategic complements**, then target in proportion to the first eigenvector.

2. ... $\beta < 0$, then $(\Delta \boldsymbol{b})^* \approx c \boldsymbol{u}^n$.

If the budget is large and there are **strategic substitutes**, target according to the last eigenvector.

positive change (Δb_i)
 negative change (Δb_i)

Size of circle: magnitude

of chanae

Recall: with strategic...

complements: target in proportion to u^1 (*fact*: u_i^1 = eigenvector centrality); interventions focus on most **global** network response.

substitutes: divide communities, opposite treatment of neighbors; interventions focus on most local network structure.

Recall: with strategic...

complements: target in proportion to u^1 (*fact*: u_i^1 = eigenvector centrality); interventions focus on most **global** network response.

substitutes: divide communities, opposite treatment of neighbors; interventions focus on most local network structure.

Literature

Social spillovers in important behaviors/outcomes: identification and evidence:

 Bramoullé, Djebbari, and Fortin (09); Calvò-Armengol, Patacchini, and Zenou (09); Bhuller, Dahl, Løken, Mogstad (18).

Network games:

 Ballester, Calvò-Armengol, and Zenou (06); Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv (10); Bramoullé, Kranton, and d'Amours (14); Bimpikis, Ehsani, and İlkılıç (forthcoming)

Interventions and targeting in networks:

 Kempe, Kleinberg, and Tardos (03); Borgatti (06); Valente (12); Bloch (15); Belhaj and Deroian (17); Demange (17); Fainmesser and Galeotti (17)

When budget is not large, optimal intervention has a positive projection onto all principal components, not just the extremes.

- When budget is not large, optimal intervention has a positive projection onto all principal components, not just the extremes.
- But order of principal components still characterizes the planner's (endogenous) emphasis on various components:

- When budget is not large, optimal intervention has a positive projection onto all principal components, not just the extremes.
- But order of principal components still characterizes the planner's (endogenous) emphasis on various components:
 - Components with high eigenvalues are more important in problems with strategic complements.

- When budget is not large, optimal intervention has a positive projection onto all principal components, not just the extremes.
- But order of principal components still characterizes the planner's (endogenous) emphasis on various components:
 - Components with high eigenvalues are more important in problems with strategic complements.
 - Components with low eigenvalues are more important in problems with strategic substitutes.

Cosine Similarity

Definition:

- ► Cosine similarity of vectors $z, y \neq 0$ is $\rho(z, y) = \frac{z \cdot y}{\|z\| \|y\|}$.
- Cosine of the angle between the two vectors in the plane that y and z define.

Cosine Similarity

Definition:

- ► Cosine similarity of vectors $z, y \neq 0$ is $\rho(z, y) = \frac{z \cdot y}{\|z\| \|y\|}$.
- Cosine of the angle between the two vectors in the plane that y and z define.
- ▶ When $\rho(z, y) = 1$, vector z is a positive scaling of y. When $\rho(z, y) = 0$, vectors z and y are orthogonal.

Cosine Similarity

Definition:

- ► Cosine similarity of vectors $z, y \neq 0$ is $\rho(z, y) = \frac{z \cdot y}{\|z\| \|y\|}$.
- Cosine of the angle between the two vectors in the plane that y and z define.
- ▶ When $\rho(z, y) = 1$, vector z is a positive scaling of y. When $\rho(z, y) = 0$, vectors z and y are orthogonal.

Theorem 1: Characterization of Optimal Interventions

At the optimal intervention, the similarity between $(\Delta \boldsymbol{b})^*$ and principal component $\boldsymbol{u}^{\ell}(\boldsymbol{g})$ satisfies the following proportionality:

$$\rho((\Delta \boldsymbol{b})^*, \boldsymbol{u}^{\ell}) \propto \rho(\hat{\boldsymbol{b}}, \boldsymbol{u}^{\ell}) \cdot \boldsymbol{r}_{\ell}$$
(1)

where r_{ℓ} depends only on $\beta \lambda_{\ell}$ and the magnitude of the intervention (through shadow cost of the budget constraint).

Monotonicity

Theorem 1: Characterization of Optimal Interventions

At the optimal intervention, the similarity between y^* and principal component $u^{\ell}(g)$ satisfies the following proportionality:

$$\rho((\Delta \boldsymbol{b})^*, \boldsymbol{u}^{\ell}) \propto \rho(\hat{\boldsymbol{b}}, \boldsymbol{u}^{\ell}) \cdot \boldsymbol{r}_{\ell}$$
(2)

where r_{ℓ} depends only on $\beta \lambda_{\ell}$ and the shadow cost of the budget constraint (through shadow cost of the budget constraint).

Monotonicity

Theorem 1: Characterization of Optimal Interventions

At the optimal intervention, the similarity between \pmb{y}^* and principal component $\pmb{u}^\ell(\pmb{g})$ satisfies the following proportionality:

$$\rho((\Delta \boldsymbol{b})^*, \boldsymbol{u}^{\ell}) \propto \rho(\hat{\boldsymbol{b}}, \boldsymbol{u}^{\ell}) \cdot \boldsymbol{r}_{\ell}$$
(2)

where r_{ℓ} depends only on $\beta \lambda_{\ell}$ and the shadow cost of the budget constraint (through shadow cost of the budget constraint).

Corollary 1: Monotonicity. At the optimal intervention

- 1. If the game exhibits strategic complements the optimal intervention focuses more on the "higher" principal components, $r_1 > r_2 > \cdots > r_n > 0$
- If the game exhibits strategic substitutes the optimal intervention focuses more on the "lower" principal components, 0 < r₁ < r₂ < ··· < r_n

 $\ell = 1$

 $\ell = 2$

Small budget. At the optimal intervention

$$\lim_{C \to 0} \frac{r_{\ell}}{r_{\ell'}} = \frac{\alpha_{\ell}}{\alpha_{\ell'}} \qquad \text{where } \alpha_{\ell} = (1 - \beta \lambda_{\ell})^{-2}$$

Small budget. At the optimal intervention

$$\lim_{C \to 0} \frac{r_{\ell}}{r_{\ell'}} = \frac{\alpha_{\ell}}{\alpha_{\ell'}} \qquad \text{where } \alpha_{\ell} = (1 - \beta \lambda_{\ell})^{-2}$$

Large budget. (Strategic complements) If $\frac{c}{\|\hat{\pmb{b}}\|^2} > \text{Bound}(\epsilon)$, then:

1. optimal intervention is (nearly) simple: cosine similarity to \boldsymbol{u}^1 is nearly 1 (at least $\sqrt{1-\epsilon}$).

Small budget. At the optimal intervention

$$\lim_{C \to 0} \frac{r_{\ell}}{r_{\ell'}} = \frac{\alpha_{\ell}}{\alpha_{\ell'}} \qquad \text{where } \alpha_{\ell} = (1 - \beta \lambda_{\ell})^{-2}$$

Large budget. (Strategic complements) If $\frac{c}{\|\hat{\pmb{b}}\|^2} > \text{Bound}(\epsilon)$, then:

- 1. optimal intervention is (nearly) simple: cosine similarity to \boldsymbol{u}^1 is nearly 1 (at least $\sqrt{1-\epsilon}$).
- 2. simple intervention is nearly optimal.

Small budget. At the optimal intervention

$$\lim_{C \to 0} \frac{r_{\ell}}{r_{\ell'}} = \frac{\alpha_{\ell}}{\alpha_{\ell'}} \qquad \text{where } \alpha_{\ell} = (1 - \beta \lambda_{\ell})^{-2}$$

Large budget. (Strategic complements) If $\frac{c}{\|\hat{\pmb{b}}\|^2} > \text{Bound}(\epsilon)$, then:

- 1. optimal intervention is (nearly) simple: cosine similarity to u^1 is nearly 1 (at least $\sqrt{1-\epsilon}$).
- 2. simple intervention is nearly optimal.

The bound becomes easier to satisfy as the gap between the extreme and next eigenvalue (top or bottom spectral gap) grows.

Large and small spectral gap (top)

Large budget. (*Strategic complements*) If $\frac{C}{\|\hat{\boldsymbol{b}}\|^2} > [bound]$, then:

- 1. optimal intervention is (nearly) simple;
- 2. simple intervention is nearly optimal.

The bound becomes easier to satisfy as the gap between the extreme and next eigenvalue (top or bottom spectral gap) grows.

Conclusion

Principal component analysis illuminates structure of network games.

Conclusion

- Principal component analysis illuminates structure of network games.
- New network statistics matter: In strategic substitutes problems, focus on node statistics which reflect approximate local bipartitions.

Conclusion

- Principal component analysis illuminates structure of network games.
- New network statistics matter: In strategic substitutes problems, focus on node statistics which reflect approximate local bipartitions.

Extensions:

- ▶ Nonsymmetric *G* (use singular value decomposition).
- More general functional forms: e.g., small budget analysis.
- More general externalities.
- Incomplete information about b.
- Monetary incentives.
- •

Proof idea

recall
$$W_i(a_i, \boldsymbol{a}_{-i}; b_i) = a_i \cdot \left[b_i + \beta \sum_j g_{ij} a_j \right] - \frac{1}{2} a_i^2$$

New basis:

$$(\boldsymbol{I} - \beta \boldsymbol{g}) \boldsymbol{a} = \boldsymbol{b} \underbrace{\inf}_{\boldsymbol{z} = \boldsymbol{U}^{T} \boldsymbol{z}} (\boldsymbol{I} - \beta \boldsymbol{\Lambda}) \boldsymbol{a} = \boldsymbol{b}$$

Proof idea

recall
$$W_i(a_i, \boldsymbol{a}_{-i}; b_i) = a_i \cdot \left[b_i + \beta \sum_j g_{ij} a_j \right] - \frac{1}{2} a_i^2$$

New basis:

$$(\boldsymbol{I} - \beta \boldsymbol{g}) \boldsymbol{a} = \boldsymbol{b} \underbrace{\inf}_{\boldsymbol{z} = \boldsymbol{U}^{T} \boldsymbol{z}} (\boldsymbol{I} - \beta \boldsymbol{\Lambda}) \boldsymbol{a} = \boldsymbol{b}$$

Proof idea

recall
$$W_i(a_i, \boldsymbol{a}_{-i}; b_i) = a_i \cdot \left[b_i + \beta \sum_j g_{ij} a_j \right] - \frac{1}{2} a_i^2$$

New basis:

$$(I - \beta g)a = b \quad \inf_{\underline{z} = U^{T}z} (I - \beta \Lambda)\underline{a} = \underline{b}$$

 $\underline{a}_{\ell} = \underbrace{1}_{1 - \beta \lambda_{\ell}} \underline{b}_{\ell}$
amplification
Objective: In equilibrium, $W = a^{T}a = \sum_{new basis} \sum_{\ell} \underbrace{1}_{(1 - \beta \lambda_{\ell})^{2}} \underline{b}_{\ell}^{2}$
Constraint: $\|b - \hat{b}\|_{2}^{2} = \|\underline{b} - \underline{\hat{b}}\|_{2}^{2} \leq C$

Small budget. At the optimal intervention

$$\lim_{C \to 0} \frac{r_{\ell}}{r_{\ell'}} = \frac{\alpha_{\ell}}{\alpha_{\ell'}} \qquad \text{where } \alpha_{\ell} = (1 - \beta \lambda_{\ell})^{-2}$$

Small budget. At the optimal intervention

$$\lim_{C \to 0} \frac{r_{\ell}}{r_{\ell'}} = \frac{\alpha_{\ell}}{\alpha_{\ell'}} \qquad \text{where } \alpha_{\ell} = (1 - \beta \lambda_{\ell})^{-2}$$

Large budget. (Strategic complements) If $\frac{c}{\|\hat{\pmb{b}}\|^2} > \text{Bound}(\epsilon)$, then:

1. optimal intervention is (nearly) simple: cosine similarity to \boldsymbol{u}^1 is nearly 1 (at least $\sqrt{1-\epsilon}$).

Small budget. At the optimal intervention

$$\lim_{C \to 0} \frac{r_{\ell}}{r_{\ell'}} = \frac{\alpha_{\ell}}{\alpha_{\ell'}} \qquad \text{where } \alpha_{\ell} = (1 - \beta \lambda_{\ell})^{-2}$$

Large budget. (Strategic complements) If $\frac{c}{\|\hat{\pmb{b}}\|^2} > \text{Bound}(\epsilon)$, then:

- 1. optimal intervention is (nearly) simple: cosine similarity to \boldsymbol{u}^1 is nearly 1 (at least $\sqrt{1-\epsilon}$).
- 2. simple intervention is nearly optimal.

Small budget. At the optimal intervention

$$\lim_{C \to 0} \frac{r_{\ell}}{r_{\ell'}} = \frac{\alpha_{\ell}}{\alpha_{\ell'}} \qquad \text{where } \alpha_{\ell} = (1 - \beta \lambda_{\ell})^{-2}$$

Large budget. (Strategic complements) If $\frac{c}{\|\hat{\pmb{b}}\|^2} > \text{Bound}(\epsilon)$, then:

- 1. optimal intervention is (nearly) simple: cosine similarity to \boldsymbol{u}^1 is nearly 1 (at least $\sqrt{1-\epsilon}$).
- 2. simple intervention is nearly optimal.

bound
$$= \frac{2}{\epsilon} \left(\frac{\alpha_2}{\alpha_1 - \alpha_2} \right)^2$$
 where $\alpha_\ell = (1 - \beta \lambda_\ell)^{-2}$

Large and small spectral gap

1. Strategic complements. If $\frac{c}{\|\hat{\boldsymbol{b}}\|^2} > \frac{2}{\epsilon} \left(\frac{\alpha_2}{\alpha_1 - \alpha_2}\right)^2$ then $\rho(\boldsymbol{y}^*, \boldsymbol{u}^1) > \sqrt{1 - \epsilon}$; optimal intervention is simple.

Large and small spectral gap

1. Strategic complements. If $\frac{C}{\|\hat{\boldsymbol{b}}\|^2} > \frac{2}{\epsilon} \left(\frac{\alpha_2}{\alpha_1 - \alpha_2}\right)^2$ then $\rho(\boldsymbol{y}^*, \boldsymbol{u}^1) > \sqrt{1 - \epsilon}$; optimal intervention is simple.

Generalizations and extensions

- ► We studied a game with strategic complements + positive externalities; strategic substitutes + negative externalities.
- In paper: a framework flexible enough to handle any combination: e.g., a public goods game with strategic substitutes and positive externalities; also nest beauty contest games, etc. Principal component approach is portable.

Generalizations and extensions

- ► We studied a game with strategic complements + positive externalities; strategic substitutes + negative externalities.
- In paper: a framework flexible enough to handle any combination: e.g., a public goods game with strategic substitutes and positive externalities; also nest beauty contest games, etc. Principal component approach is portable.
- Providing incentives with money:
 - population version of model. If you want to effect a small change, you have to pay a small number of people a small amount of money each (since they are marginal);
 - paper on tax/subsidy interventions (Galeotti, Golub, Goyal, Talamàs, and Tamuz 19)

Generalizations and extensions

- ► We studied a game with strategic complements + positive externalities; strategic substitutes + negative externalities.
- In paper: a framework flexible enough to handle any combination: e.g., a public goods game with strategic substitutes and positive externalities; also nest beauty contest games, etc. Principal component approach is portable.
- Providing incentives with money:
 - population version of model. If you want to effect a small change, you have to pay a small number of people a small amount of money each (since they are marginal);
 - paper on tax/subsidy interventions (Galeotti, Golub, Goyal, Talamàs, and Tamuz 19)
- Incomplete information: control $\Delta \boldsymbol{b}$ without knowing $\hat{\boldsymbol{b}}$.

Reinterpret a node as a *population* with (cost) types distributed on [0, 1]. Each (infinitesimal) individual takes action 0 or 1.

- Reinterpret a node as a *population* with (cost) types distributed on [0, 1]. Each (infinitesimal) individual takes action 0 or 1.
- Random matching: agent in group *i* meets group *j* with probability g_{ij}, and meets an agent uniformly at random in that group.

- Reinterpret a node as a *population* with (cost) types distributed on [0, 1]. Each (infinitesimal) individual takes action 0 or 1.
- Random matching: agent in group *i* meets group *j* with probability g_{ij}, and meets an agent uniformly at random in that group.
 - Payoff of action 0 is 0.
 - Payoff of action 1 is βq_j(τ_j) + b_i − τ_i, where τ_j is the type of the agent *i* meets, and *j* is her group.

- Reinterpret a node as a *population* with (cost) types distributed on [0, 1]. Each (infinitesimal) individual takes action 0 or 1.
- Random matching: agent in group *i* meets group *j* with probability g_{ij}, and meets an agent uniformly at random in that group.
 - Payoff of action 0 is 0.
 - Payoff of action 1 is βq_j(τ_j) + b_i τ_i, where τ_j is the type of the agent *i* meets, and *j* is her group.

Key observation: in equilibrium, exists a cutoff a_i for each population s.t. take action 1 iff τ_i ≤ a_i.

- Reinterpret a node as a *population* with (cost) types distributed on [0, 1]. Each (infinitesimal) individual takes action 0 or 1.
- Random matching: agent in group *i* meets group *j* with probability g_{ij}, and meets an agent uniformly at random in that group.
 - Payoff of action 0 is 0.
 - Payoff of action 1 is βq_j(τ_j) + b_i τ_i, where τ_j is the type of the agent *i* meets, and *j* is her group.
- Key observation: in equilibrium, exists a cutoff a_i for each population s.t. take action 1 iff τ_i ≤ a_i.
- Equilibrium cutoff profile \mathbf{a}^* satisfies $[\mathbf{I} \beta \mathbf{g}] \mathbf{a}^* = \mathbf{b}$.

- Reinterpret a node as a *population* with (cost) types distributed on [0, 1]. Each (infinitesimal) individual takes action 0 or 1.
- Random matching: agent in group *i* meets group *j* with probability g_{ij}, and meets an agent uniformly at random in that group.
 - Payoff of action 0 is 0.
 - Payoff of action 1 is βq_j(τ_j) + b_i τ_i, where τ_j is the type of the agent *i* meets, and *j* is her group.
- Key observation: in equilibrium, exists a cutoff a_i for each population s.t. take action 1 iff τ_i ≤ a_i.
- Equilibrium cutoff profile \mathbf{a}^* satisfies $[\mathbf{I} \beta \mathbf{g}] \mathbf{a}^* = \mathbf{b}$.
- Expected payoff to group i is

$$U_i(a^*, b) = \int_0^{a_i^*} \left(\beta \sum_j g_{ij} a_j^* + b_i - \tau_i\right) d\tau_i = \int_0^{a_i^*} (a_i^* - \tau_i) d\tau_i = \frac{1}{2} a_i^{*2}.$$

- Reinterpret a node as a *population* with (cost) types distributed on [0, 1]. Each (infinitesimal) individual takes action 0 or 1.
- ▶ Random matching: agent in group *i* meets group *j* with probability *g_{ij}*, and meets an agent uniformly at random in that group.
 - Payoff of action 0 is 0.
 - Payoff of action 1 is βq_j(τ_j) + b_i τ_i, where τ_j is the type of the agent *i* meets, and *j* is her group.

- Reinterpret a node as a *population* with (cost) types distributed on [0, 1]. Each (infinitesimal) individual takes action 0 or 1.
- ▶ Random matching: agent in group *i* meets group *j* with probability *g_{ij}*, and meets an agent uniformly at random in that group.
 - Payoff of action 0 is 0.
 - Payoff of action 1 is βq_j(τ_j) + b_i − τ_i, where τ_j is the type of the agent *i* meets, and *j* is her group.
- Intervention: offer cost type τ_i either a subsidy to play 1 (if he playing 0) or vice versa.

- Reinterpret a node as a *population* with (cost) types distributed on [0, 1]. Each (infinitesimal) individual takes action 0 or 1.
- ▶ Random matching: agent in group *i* meets group *j* with probability *g_{ij}*, and meets an agent uniformly at random in that group.
 - Payoff of action 0 is 0.
 - Payoff of action 1 is βq_j(τ_j) + b_i τ_i, where τ_j is the type of the agent *i* meets, and *j* is her group.
- Intervention: offer cost type τ_i either a subsidy to play 1 (if he playing 0) or vice versa.
- Key observation: Cost is quadratic in the size of the intervention: i.e., what mass of types have incentives changed.