
Econ 1033 Problem set 1

Prof. Ben Golub Due: Wed., Sep 16, 2020 11:50pm

This problem set is worth 100 points. You should attempt problems totaling at least 100 points, and
submit solutions to all parts of those problems.

1. (20 points) Consider an “infection” process that evolves according to a more general rule:
Start with a single infected individual in wave 0. In every wave, each infected individual produces a
random number of children (nodes directly infected by it) in the next wave, independently of other
individuals. The distribution of number of children, P , is a probability mass function with finite mean
(a.k.a. expectation) denoted by R0, and P is the same across individuals. Denote by Xn the number
of infected individuals at wave n.

a. (5 points) Describe the relationship between Xn+1 and Xn by expressing Xn+1 as a sum of
Xn-many random variables. Your description can be in words as long as it is clear and correct.

b. (5 points) Given Xn, compute the conditional expectation E[Xn+1 | Xn].

c. (5 points) Explain why the ratio E[Xn+1]/E[Xn] is a deterministic constant, and say what this
ratio is. Write E[Xn] in a simple way using this insight.

d. (5 points) What is Cn, the cumulative number of infections up to and including wave n? What
is the expectation of this random variable? Write your answer as simply as possible, and justify
it.

3. (20 points) This exercise is about thinking through how the basic (k, p) branching process model
applies to reality.

a. (10 points) Describe three ways in which the model is not a realistic description of the transmis-
sion of disease on a social network. Think about both the process and the underlying network.

b. (10 points) Imagine again that the (k, p) model is valid, with one tweak: because the individuals
involved are reacting to the epidemic in real time, p actually depends on the cumulative number
of cases to date. Recalling the notation of Problem 2(d), assume that the probability that
individuals in wave n+ 1 get infected, pn+1, is equal to P(Cn), where P is a decreasing function
of its argument. You can think of this as a simple or “reduced-form” way of capturing rational
agents’ response to the epidemic: they protect themselves from exposure to infection when the
infection is more widespread. Give reasonable conditions on P ensuring that the epidemic is
eventually stopped.

4. (30 points) Recall the function

f(x) = 1− (1− px)k, x ∈ [0, 1]

from Lecture 1.1 If you need to make (reasonable) assumptions to establish the statements below,
make the assumptions clear.

1It also appears in Easley and Kleinberg 21.8.A. toward the end of the section.
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a. (5 points) Show that f(0) = 0 and f(1) < 1, and compute f ′(0) in terms of k and p.

b. (5 points) Show that f is increasing.

c. (5 points) Show that f is strictly concave.

d. (5 points) When is there is a positive q∗ such that q∗ = f(q∗)? Explain your answer. Again,
the condition you give will involve k and p.

e. (5 points) What happens to q∗ if you hold p fixed and increase k to some other k′? Justify
your answer. Also give a clear intuitive explanation of why this happens.

f. (5 points) What happens to q∗ if you hold k fixed and increase p to some other p′? Justify
your answer. Also give a clear intuitive explanation of why this happens.
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5. (30 points) In this problem we will study a generalization of the branching process.2 The
random variable Xn will denote the number of (new) infected individuals in wave n. Initialize X0 = 1,
which means there is one “patient zero” in wave 0. Now, for any n ≥ 1, if we are given Xn−1, the
number of infected individuals in wave n − 1, here is how we generate Xn, the number of infected
individuals in wave n. For each i = 1, 2, . . . , Xn−1 (i.e, for each infected individual in wave n−1) draw
a random variable Zn−1,i which is the number of “children” that i has. These Zn−1,i are independent
and identically distributed with probability mass function P .3 Let Xn be the sum of the random
variables Zn−1,i as i ranges from 1 to Xn−1, i.e.

Xn = Zn−1,1 + Zn−1,2 + · · ·+ Zn−1,Xn−1 .

Now define the function f by

f(x) = 1−
∞∑
k=0

(1− x)k P (k).

Let qn be the probability that Xn ≥ 1.4 Assume that 0 < P (0) < 1 and 0 < P (1) < 1 to eliminate
the trivial cases.

a. (5 points) What is q0 as a number? Now express q1 in terms of P (0), P (1), P (2), etc.

b. (5 points) Is qn increasing in n, decreasing in n, or neither? Argue from the definition of Xn

and the basic properties of the process, without doing any calculations.

c. (5 points) Give the sign of the first-order derivative and the sign of the second-order derivative
of f . (Here P is arbitrary, subject to the assumptions given in the statement.) Justify your
claims.

d. (7 points) Show that for each n > 0, qn = f(qn−1) (Hint: use the same idea as in the lecture.
Hint: first imagine that you knew the root has k children. How can you use this information
even though you don’t know k?)

e. (8 points) Suppose that P is the Binomial distribution with k draws and probability of success
p on each draw. Is that special case equivalent to the case studied in Easley and Kleinberg 21.2
and 21.8.A? Explain why or why not.

2This problem and the next are good if you have a bit of background in probability, rigorous statistics, stochastic
processes, or something similar; if the notation and language seem a bit alien, consider one of the other problems.

3This means that P(Zn−1,i = k) = P (k).
4This probability is evaluated from the perspective of an observer who knows only that X0 = 1.
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6. (30 points) Maintain the assumptions and notations in Problem 5.

a. (5 points) Let P (0) = 1/6, P (1) = 1/3, and P (2) = 1/2, with P (`) = 0 for ` > 2. Plot
f . Illustrate using a “staircase plot” the values of qn for n = 0, 1, 2, 3 and compute them for
n = 4, 5, 6, 7 as well (no need to plot the latter).

b. (5 points) Now let P (0) = 1/2, P (1) = 1/3, and P (2) = 1/6, with P (`) = 0 for ` > 2. Plot
f . Illustrate using a “staircase plot” the values of qn for n = 0, 1, 2, 3, and compute them for
n = 4, 5, 6, 7 as well.

c. (10 points) Define q∞ = limn→∞ qn when this limit exists. Describe how you can find q∞ by
looking at a plot such as the ones you made in parts (a) and (b). Give a verbal statement of the
meaning of q∞ (this is required to get full points on this part).

d. (10 points) Give a necessary and sufficient condition for q∞ > 0. (Your condition will, of
course, be in terms of something about the distribution P .) Justify your answer clearly.

7. (30 points) This exercise is for those who know some basic programming (in Python, MAT-
LAB, or any other reasonable tool for quantitative simulation) and enjoy understanding things via
simulations. Attach your code to your solution. Consider the branching process studied in Easley and
Kleinberg 21.2/21.8.A. Recall that Xn is the number of newly infected individuals at wave n.

a. (5 points) The analysis from Lecture 1 tells us that E[Xn] = (R0)
n. This gives us a prediction

of the mean number of infected, but nothing about its variability. Choose five combinations
(k, p) with kp = 1.5 and compute X20. Do at least 10,000 simulations for each combination and
report the empirical standard deviation of X20 in your simulations.

b. (5 points) Imagine that you see one realization of a branching process, and observe that in this
realization X20 = 30, 000. Discuss how you could use your work in (a) to statistically test (and
possibly reject) the null hypothesis that k = 3 and p = 0.5.

c. (5 points) Do the simulations of (a) again but keep only the simulations where X10 ≥ 30. For
those simulations, what is the fraction of cases in which X20 ≥ 3000? How does this compare
to the unconditional frequency of the same event (i.e. the frequency of X20 ≥ 3000 without
throwing away any simulations)?

d. (5 points) Explain what is going on in (c).

e. (10 points) Do one other simulation that teaches you something interesting about the behavior
of the model. Describe your question, the simulation you ran, and how the simulation sheds
light on your question.
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