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Abstract. A principal uses bonuses conditioned on stochastic outcomes of a team

project to elicit costly private efforts from the team members. We characterize

the optimal allocation of incentive pay across agents and outcomes under arbi-

trary smooth team production functions. It is optimal to make the strength of an

agent’s incentives proportional both to marginal productivity and to a measure of

organizational centrality that reflects the strength of complementarities with pro-

ductive colleagues. Insights from the theory of network games play a crucial role

in analyzing how incentives given to one agent spill over to others and shape the

optimal contract. The results generalize Holmstrom’s characterization of optimal

single-agent contracts under uncertainty to the multi-agent case.
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Extended abstract

A popular method of motivating the members of a team to work toward a common

goal is giving them performance incentives that depend on jointly achieved outcomes.

Compensation instruments of this form commonly used in practice include options

on the firm’s stock, bonuses for achieving sales targets, and profit-sharing. How

should such incentive schemes be designed, and how should they take into account

the structure of production on the team?

Model. We examine these questions in a model of a team working on a joint project.

Each worker chooses a level of effort at an increasing marginal cost. These efforts

contribute to a real-valued team output, such as the quality of a product. That output,

in turn, determines the distribution of an outcome that can take a finite number of

possible values. The principal can design a contract contingent on realized outcomes

to maximize profit.

We now formalize this setup. There are n agents, N = {1, 2, . . . , n}, and one

principal. The agents take real-valued actions ai ≥ 0, which can be interpreted as

effort levels. These jointly determine a team output, given by a function Y : Rn
≥0 →

R≥0 which we assume is twice differentiable and strictly increasing in each of its

arguments. The team output determines the project outcome, an element of the

finite set S. The probability of outcome s is Ps(Y ), where for any s ∈ S, the function
Ps(·) is strictly positive and twice differentiable. The principal receives revenue vs

from the outcome s.1

The principal observes the project outcome but does not observe agents’ actions or

the output Y . (When we use pronouns, we use “she” for the principal and “he” for

an agent.) To maximize revenue by incentivizing agents’ actions, the principal makes

a non-negative payment contingent on the outcome. Upon realization of outcome s,

agent i receives payment τi(s). The payments are denoted by τ : S → Rn
≥0; such a

function is called a contract.

1This should be interpreted as the principal’s valuation of that state realizing, gross of any payments
she will make to the agents.
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We consider risk-averse agents and a risk-neutral principal.2 The utility to agent i

from a monetary transfer is given by the function Ui : R≥0 → R≥0, which is strictly

increasing, concave and differentiable. Each agent also has a private cost function

Ci : R≥0 → R≥0, which is strictly increasing, strictly convex and twice differentiable

in that agent’s action. The marginal cost at zero action is zero, that is, C ′
i(0) = 0.

Agent i maximizes the expected payoff from payments minus the private cost of the

action ai,

Ui =
∑
s∈S

Ps (Y )Ui (τi(s))− Ci(ai).

The payoff for the principal given a contract τ and team output Y is the expected

payoff of the outcome minus transfers to agents:∑
s∈S

(
vs −

∑
i

τi(s)

)
Ps(Y ).

The timing is as follows: The principal commits to a contract τ , following which

agents’ simultaneously choose actions. Our solution concept for the game among the

agents is pure strategy Nash equilibrium, which we refer to as the equilibrium for the

remainder of the paper.

There may be multiple equilibria under some contracts. Given a contract τ , we

assume that agents play an equilibrium a∗(τ ) maximizing the principal’s expected

payoff. Under this selection, a principal’s payoff under a contract is well-defined if

at least one equilibrium exists. Among such contracts, a contract τ is optimal if no

other contract τ̃ gives the principal a higher payoff. Implicit in this definition is the

assumption that contracts without equilibria can never be optimal.

Example. An example inspired by the literature on network games will be useful to

keep in mind.

There is a symmetric matrix G, representing an undirected network; so Gij ≥ 0

is the weight of the link from agent i to j, and Gii = 0 for each i. The output

is the sum of a term that is linear in actions—corresponding to agents’ standalone

2The modelling assumption that a principal is risk-neutral is not crucial to the results. The charac-
terization of an optimal contract and its consequences holds for a risk-averse principal as well.



INCENTIVE DESIGN WITH SPILLOVERS 3

contributions—and a quadratic complementarity term:

Y (a) =
∑
i∈N

kiai +
β

2

∑
i,j∈N

Gijaiaj.

Here ki > 0 are arbitrary constants reflecting agents’ standalone productivities.

There are two possible outcomes s ∈ {0, 1}. The revenues from these outcomes are

normalized so that v1 = 1 and v0 = 0. These can be interpreted as success or failure

of the project. The probability of success is P (Y ), where the function P (·) is strictly
increasing, concave, and twice differentiable.

Agents have arbitrary, strictly concave, and identical utility functions for money.

Main results. A principal designing a contract in this environment should take into

account the team’s production function. To illustrate why, imagine that the principal

changes the payments promised to a particular agent in a way that motivates this

agent to put in more effort. In team production, changing one team member’s effort

level typically affects some other players’ productivities—i.e., the marginal effect of

their effort on team output. That, in turn, changes the incentives that these other

agents face, even though the payments promised to them in various outcomes did not

change. Thus, payments to one agent can motivate or deter effort by others, and this

makes the design of all the different agents’ contracts interconnected.

We do not have a good understanding of how the principal should account for the

structure the team’s production function in this design problem. Several recent works

have studied special cases of this problem—e.g. Shi (2022), Dasaratha et al. (2023),

and Mayol (2023). These studies have been conducted assuming specific, parametric

production functions featuring complementarities, often inspired by the literature on

network games. At a conceptual level, these contributions have shown that contract

design in this setting is related to optimally controlling (certain aspects of) spillovers

in a network game. But little is known about the general incentive design problem.

Our contribution in this paper is a characterization, without parametric assump-

tions, of optimal incentives in the environment we have described. In brief, the

results state that optimal contracts must allocate steeper incentives to agents who

have higher productivity and those who are organizationally central, in the sense that
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they have high direct and indirect complementarities with productive agents. We now

formalize this statement.

In order to do this, we define two key concepts that play a central role in our main

result: an agent’s productivity and centrality. An agent i’s productivity measures

how much an incremental increase in i’s effort would increase the team’s output,

holding all other agents’ actions fixed. Formally, fixing an action profile a, agent i’s

productivity is:

κi(a) =
∂Y

∂ai
(a).

Note that an agent’s marginal productivity can depend on others’ effort levels through

the team production function Y (·).
To understand an agent’s centrality, imagine starting at an equilibrium action pro-

file a and then slightly perturbing i’s incentives, as follows:

Ui(ai; τi) =
∑
s∈S

Ps(Y )Ui(τi(s))− Ci(ai) + δiai.

Here δi > 0 represents a small increase in agent i’s marginal returns to effort. In the

perturbed game, agents play a nearby equilibrium ã(δi). We define agent i’s centrality

as the rate at which the team’s output increases due to this perturbation:

ci(a) =
d

dδi
Y (ã(δi)),

where the derivative is evaluated at 0. Though the connection to a network notion is

not obvious at this stage, an agent’s centrality captures not only his direct effect on

output by increasing his own effort, but also his indirect effects by motivating changes

in others’ effort levels—ripple effects through a network of strategic interactions.

To state the main result, we need one more notion—a measure of an agent’s re-

sponsiveness to monetary compensation. Define an agent’s compensation index as

βi(τi) = 1/U ′
i(τi).

Notice that if the agent is paid τi, then in order to increase Ui by ϵ, the agent

must be given a transfer of ϵβi(τi) (for small enough ϵ). We term this quantity the

compensation index, since it measures how much extra money the agent must be give
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to compensate him for a one-unit increase in the cost of effort C(ai). Note that if

Ui is strictly concave, then the compensation index in a given state s is increasing in

τi(s): i.e., better-compensated agents have a higher compensation index.

Our main result states that the following holds as long as the equilibrium at an

optimal contract is differentiable in the incentive payments.3

at any optimal contract τ with equilibrium action profile a∗, at every outcome where

any agent i receives a positive payment τi(s) > 0, it holds that

(1) βi(τi(s)) = λsκi(a
∗)ci(a

∗),

where λs is an outcome-specific constant.

Thus, the first-order conditions require paying agents by setting their compensation

indices to be equal to “productivity times centrality.” In particular, if all agents

have the same utility function for money, agents with a higher value of the product

κi(a
∗)ci(a

∗) (which does not depend on the outcome) should be paid more in at

all outcomes where any agent receives incentive pay. Our result also implies simple

“hill-climbing” algorithms for improving suboptimal incentive pay by reallocating

incentives across individuals.

Each of the factors on the right-hand side of (1) has an interesting reason behind

it. Recall the example with a quadratic Y ,

(2) Y (a) =
∑
i∈N

kiai +
β

2

∑
i,j∈N

Gijaiaj.

First, take the case where G is the zero matrix. In that case, (1) says that agents’

compensation indices should be proportional to their individual productivities ki.

More productive agents should be paid more because the outcome is highly responsive

to their effort, so incentive pay that is based on the outcome is highly motivating for

them, making them responsive recipients of incentive pay. This force is interesting in

3A technical contribution of our work is formulating conditions to ensure that this differentiability
condition holds generically, in a suitable sense, over primitives of our problem, so that no assumptions
on endogenous objects need to be made. That is, we give conditions ensuring that the “first-order
approach” may be used to study the response of equilibrium play to the contract. This involves
some subtleties that do not arise in the single-agent version.
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itself. The centrality effect—the ci factor in the formula—then accounts for the fact

that motivating central agents more results in a higher team output due to strategic

ripple effects emanating from that agent. The centrality statistics we use are closely

related to those arising in the theory of network games—in particular, Bonacich

centrality and a “Leontief”-type matrix accounting for indirect propagation plays an

important role in our techniques.

Related to this point, at a technical level, we analyze the optimality of contracts by

locally approximating a general smooth Y with a quadratic polynomial. This turns

out to give an approximation that is correct for computing derivatives of the princi-

pal’s payoff in perturbations of a given contract, around an arbitrary equilibrium—

even accounting for all strategic spillovers of agents’ efforts on others’ incentives and

actions. That, in turn, allows us to leverage insights from the network games liter-

ature for analyzing these spillovers. In effect, we show that we can analyze spillover

effects in a general environment using formulas based on a game arising from the very

simple production function (2), which affords a great deal of tractability.

Applications and implications. Building on our main result, we explore several

implications and extensions.

First, we apply the main characterization (1) in some specific environments to ob-

tain quite explicit descriptions of optimal compensation. For example, when all stan-

dalone productivities are equal in the simple parametric setting of (2), our analysis

prescribes that equity should be allocated so that each agent who puts forth positive

effort has an equal value of
∑

j Gijτj(1). That is, bonuses allocated to the collabo-

rators of working agents are equalized in this weighted sense, implying a remarkably

“balanced” distribution of incentive pay throughout the organization.

We also study the model with agents who are nearly risk-neutral,4 and show that

in this case, at an optimal contract, more productive agents must necessarily be

less organizationally central. In effect, in the risk-neutral case, agents either have

high marginal products of their own effort or induce large ripple effects when they

contribute, but not both. These consequences show that our main result has strong

4Note that under that assumption, compensation indices cannot vary much by definition.
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substantive implications once the model is applied to settings with some additional

structure.

We also characterize how bonuses should be allocated across different outcomes,

showing that under concave utility, agents should be paid more in less likely and

more sensitive to changes in output. This shows that our characterization generalizes

the famous Holmström (1979) result on optimally targeting performance pay across

outcomes and collapses to it in the case of one agent. In the case of many agents,

Holmstrom’s result characterizes how to allocate pay across outcomes, and ours says

how to allocate it across agents.

We also study settings where contracts are constrained to take specific forms, such

as equity pay—a contract linear in the principal’s revenue. Even in this more restric-

tive contracting environment, our results imply that a compensation index computed

at an agent’s optimal equity share is proportional to the product of his productiv-

ity and centrality. This finding shows our insights are applicable in realistic settings

where contracts cannot be perfectly tailored to states (for example because states are

difficult to individuate and condition on in an enforceable way). Despite this, firms

should allocate equity not just based on an agent’s direct contribution to firm value,

but also based on their role in shaping the productivity of their colleagues, and our

formula characterizes how this should work.

Finally, we investigate how changes in the production technology affect the princi-

pal and the agents under optimal contracts. Interestingly, we find that increasing the

complementarity between two agents’ efforts can sometimes make one of them worse

off by reducing their bonus and expected utility. This somewhat counterintuitive re-

sult arises because the strengthening of a complementarity can lead to a redistribution

of incentives towards the more central agent involved, leaving the other agent with

lower-powered incentives. This finding highlights a potential misalignment of inter-

ests between the principal and the agents when the production technology changes,

and suggests that agents may sometimes resist seemingly beneficial changes to the

team’s structure.
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Related literature. Broadly, we contribute to the literature on incentive design

when production features spillovers across agents. This is related to the literature

on moral hazard in teams, going back to the classic work of Holmström (1982). We

adapt that model in a way that accommodates a flexible form of uncertainty in

what the principal observes about the team’s output, generalizing the “imperfect

observability” modeling of Holmström (1979) to the multi-agent case. This modeling

approach allows us to obtain much richer and more specific predictions about how a

principal allocates pay among members of a team.5

The general topic of optimally setting incentives in the presence of spillovers has

recently attracted interest in the literature on networks. This includes, in addition to

the work cited above, papers such as Bloch (2016); Galeotti et al. (2020) and Belhaj

and Deröıan (2018). Our main contribution to that literature is a study of a natural

and non-parametric formulation, both in terms of the production function and the

form of incentives. We show that network game techniques permit some general

characterizations of optimal outcomes without the strong parametric assumptions

common in the network games literature.

The problem of designing multi-agent contracts has also recently attracted atten-

tion in the algorithmic game theory community. Dütting et al. (2023) consider the

problem of efficiently computing an optimal linear contract in the multi-agent set-

ting for a specific class of output functions. Importantly, the class of output functions

they consider restricts the structure of complementarities; in contrast, allowing for

essentially arbitrary complement and substitute relationships among agents is a key

feature of our results. However, in other respects the focus of this literature overlaps

with ours; in particular, we also study the class of equity contracts (restricting pay

to be a constant share of principal revenue). The other main contrast between our

work and this literature is that the computational literature has focused more on the

extensive margin question of which agents should be included in a team—i.e., given

any incentive to work (Ezra et al., 2023, 2024). This literature shows this problem

5We are also related to papers in this literature on partnerships, such as Legros and Matsushima
(1991) and Levin and Tadelis (2005) which analyze optimal sharing of project returns to provide
incentives, but which ask questions different from ours.
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is computationally hard in general but admits acceptable approximations in some

cases. We address the important complementary question of optimizing on the in-

tensive margin of exactly how much incentive pay to give agents, with or without

linearity restrictions on the contract. Our intensive-margin optimization can be car-

ried out adaptively via “hill climbing,” without full information on the production

function. Thus, we see our approach as offering a new set of questions and techniques

to this emerging literature.

Finally, there is a considerable amount of recent pure and applied theoretical work

in economics under the general umbrella of contract design for teams. We give just

a few examples: Rayo (2007) consider a relational contract setting where soft infor-

mation about agents’ effort levels is observable and used in relational enforcement.

Dai and Toikka (2022) study robust multi-agent contracts and give foundations for

a principal’s use of linear contracts such as equity. Starmans (2022) is motivated

by questions related to ours, examining how moral hazard affects the type of team

a principal prefers; the modeling approach there is different, with particular addi-

tive specifications of effort, in contrast to the flexible technologies we study. Sugaya

and Wolitzky (2023) focus on issues of dynamic enforcement in team projects. Our

main contribution is a simple static model of optimal allocation of incentives across

agents, with obvious potential to interact with the many questions—especially dy-

namic ones—that are of interest in this literature.
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