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Square matrices often appear in formal models
of social and economic behavior, especially mod-
els involving networks. Such models are used to
study subjects ranging from opinion dynamics to
pollution-mitigation negotiations to the regulation of
large marketplace platforms such as Amazon. Typi-
cally, the square matrices that arise represent a suit-
able notion of nodes’ “marginal influence” on one
another. Spectral theory offers powerful tools for
studying such matrices, and so underlies many key
insights about these models. The Perron–Frobenius
Theorem on nonnegative eigenvectors has played
an especially prominent role in network applica-
tions. This essay uses these unifying mathematical
threads to offer an accessible tour of several impor-
tant ideas in social science, assuming minimal non-
mathematical background knowledge. Though the
tour is necessarily brief, references cited throughout
supply more context.

Central Notions
We start with a few standard definitions from the
theory of nonnegative matrices that will play a recur-
ring role. The applications that follow will provide
motivation and intuition.

We will associate an n-by-n matrix M with a
weighted digraph on the nodes [n] = {1, 2, . . . , n},
whose edges are all ordered pairs (i, j) with Mij > 0.
The matrix is called irreducible if this digraph is
strongly connected.

The spectral radius of a matrix M , denoted by ρ(M),
is defined to be the maximum modulus of its eigen-
values.

Theorem (Perron–Frobenius). Let n ≥ 2, and let M
be an n× n nonnegative, irreducible matrix. Then:

1. M has a positive real eigenvalue λ equal to its
spectral radius ρ(M).

2. There are uniquely determined vectors c, r ∈
Rn
>0 such that c⊤M = λ c⊤ and Mr = λ r.
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3. Any nonnegative left (resp., right) eigenvector
of M with any positive eigenvalue is a scalar
multiple of c⊤ (resp. r).

In network theory, the entries of c⊤ are called
agents’ (left-hand) eigenvector centralities in the M di-
graph. The system of equations

λci =
∑
j

cjMji for each i, (1)

defining the eigenvector c⊤ says that node i’s central-
ity is a weighted sum of others’ centralities, with cj
contributing in proportion to the weight of the link
from j to i in the digraph.

Well before the models of behavior we are about to
discuss were proposed, sociologists were interested
in centralities ci satisfying eq. (1) as a standalone
measure of the importance, connectedness, or sta-
tus of nodes in a network. The idea that “the cool
kids are the ones who receive respect from the cool
kids” is made plausible for many of us by memo-
ries of high school, and the centrality equation cap-
tures this fixed-point property in a linear form. Note
that nothing anchors eigenvector centralities to any
external source of node values; eq. (1) contains no
constant terms. It might therefore seem possible to
consistently assign centralities to satisfy the equa-
tion in many different ways. Remarkably, however,
the Perron–Frobenius Theorem guarantees that rela-
tive eigenvector centralities are uniquely determined
within a strongly connected component. We now
turn to some implications of this fundamental result.

Social Influence
An adage that rings true to me is, “You are the aver-
age of the five people you spend the most time with.”
A simple yet surprisingly illuminating model of so-
cial learning—named for the statistician Morris De-
Groot [DeG74]—takes this idea seriously.

Consider a set of n ≥ 2 agents (the word we
will use for people, though they could also be, say,
robots), each with an evolving opinion of some quan-
tity of interest. The opinion of agent i is an ele-
ment xi ∈ V , where V is a convex subset of a finite-
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dimensional vector space equipped with an inner
product. To take some examples, we can think of the
opinion xi as a number describing how good Taylor
Swift’s music is on a scale of 0 to 100; a probability
distribution over some set Ω describing beliefs about
the future of climate change (where Ω describes vari-
ous dimensions of the observable world); or a vector
representation of how agent i pronounces a partic-
ular word, defined via an embedding from modern
machine learning models. In the DeGroot model, in
each period, agents update their opinions by taking
weighted averages of opinions from the previous pe-
riod, possibly including their own. The vector1 of
opinions at time t, denoted by x(t) ∈ V n, evolves
according to:

x(t+ 1) = Mx(t) for t = 0, 1, 2, . . .

The data of this process are the n-by-n row-stochastic
matrix M and the vector of initial opinions x(0), with
Mij ≥ 0 representing the weight agent i places on
agent j’s most recent opinion. One interpretation is
that Mij > 0 only if i has access to j’s opinion (e.g.,
because i knows j personally or follows j on social
media), and the magnitude of Mij reflects how much
i is influenced by j. We will typically dispense with
the generality of an arbitrary V and focus on the case
V = R from now on.

The dynamics of the process are very simple:
x(t) = M tx(0). Can agents in this model disagree
forever? Under some natural conditions, the answer
is no. The conditions concern the digraph associated
to M . Recall that this digraph is called aperiodic if the
greatest common divisor of the lengths of all its di-
rected cycles is 1. Let ∆n denote the set of probability
distributions on [n], viewed as row vectors.

Fact 1. If the digraph of M is strongly connected and
aperiodic, opinions converge to a consensus, mean-
ing that limt→∞ x(t) = a1 for some a ∈ V , where
1 is the vector of ones. In this case, the consensus
opinion a is determined by the unique left eigenvec-
tor c⊤ ∈ ∆n of M corresponding to the eigenvalue
1:

a = c⊤x(0).

The existence and uniqueness of the eigenvector c
follow from the Perron–Frobenius theorem.2

Our characterization of consensus follows from
the fact, familiar from the Markov chain perspective,
that limt→∞ M t = 1c⊤—see [Mey00, Ch. 8] for an
excellent treatment. Indeed, c⊤ is simply the station-
ary distribution of the Markov chain associated with

1Vectors are column vectors by default.
2Since the strictly positive vector 1 is a right eigenvector of M

with eigenvalue 1, the theorem gives that 1 is a largest eigenvalue
of M and comes with a left eigenvector c⊤.

M . It is a fun exercise to establish that x(t) converges
to some a ∈ V by working directly with the DeGroot
process x(t) = M tx(0), without appealing to any
Markov chain results.3 The idea is that as long as dis-
agreement remains in a strongly connected network,
some agents must moderate their opinions in some
bounded number of steps. This gives an alternative
proof of the existence of limt→∞ M t.

Coming back to the substance of the model, the
entries of c can be interpreted as measures of agents’
social influence, with ci representing the weight of
agent i’s initial opinion in the long-run consensus. So
while the local updating dynamics prescribe that an
agent’s opinion is the average of the “five” opinions
in its neighborhood, the process ultimately leads a
strongly connected network to share a consensus
opinion that blends all initial opinions—with partic-
ular weights.

The weights satisfy eq. (1). In the DeGroot model,
it is natural that the influences are eigenvector cen-
tralities: influence comes from being listened to, and
is increasing in the listeners’ influences. However,
one need not have many connections to be highly
central: some weight Mij from high-centrality nodes
is enough. Note also that just as agents’ opinions in
the DeGroot model are the averages of recent neigh-
borhood opinions by assumption, agents’ influences
end up having a related property: an agent is influ-
ential when that agent has influential in-neighbors.

The behavior of these centralities in large graphs
is interesting both mathematically and in applica-
tions. [GJ10] considered a sequence (M(n))∞n=1 of ir-
reducible stochastic matrices, with the matrix M(n)
having dimensions n-by-n, as a model of a large so-
ciety. They asked whether the associated eigenvector
centralities ci(n) uniformly converge to 0. In this case
(M(n))∞n=1 is called wise, motivated by the following
story. Imagine the initial opinions xi(0) in network
n are drawn independently from distributions on V
with finite, positive variances and a common expec-
tation µ. If the consensus a(n) converges in probabil-
ity to µ, large communities enjoy the so-called wis-
dom of crowds: no individual’s noisy opinion can
obstruct convergence to the truth µ. A weak law of
large numbers implies that this happens if and only
if (M(n))∞n=1 is wise as we have defined it.

We can identify a simple obstruction to wisdom.
A sequence (P (n))∞n=1 of nonempty subsets of nodes
is prominent if, for each n, there is a t so that∑

i∈P (n)(M(n)t)ij ≥ ϵ for all j /∈ P (n), where ϵ > 0

is fixed across n. Intuitively, such a sequence is one
3Nevertheless, the argument is likely to need the following

elementary number-theoretic: A is primitive (meaning that there
is some such that At has no entries equal to zero) if and only if its
associated digraph is strongly connected and aperiodic.
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that collectively has significant influence on all other
agents after some number of updating rounds.

Proposition 1. The sequence (M(n))∞n=1 is wise if
and only if there is no prominent sequence where
|P (n)| is uniformly bounded.

Because of the quantification over t in the defini-
tion of prominence, the result is interesting mainly
for quickly ruling out wisdom. [GJ10] give some
interpretable sufficient conditions for wisdom, but
sharp and interpretable conditions are not known.

Natural generalizations of the DeGroot dynamic
open up connections to topics of current interest in
mathematics and open questions about opinion dy-
namics. [CCL24] study a class of nonlinear opera-
tors T : Rn → Rn generalizing the linear action of
Markov matrix M in the DeGroot model. They call
an operator robust if it is entrywise monotone and
satisfies T (x + γ1) = T (x) + γT (1) for every con-
stant γ ∈ R. A very nice convergence theory exists
for such operators in general spaces, and is surveyed
in [CCL24, LN12]. A natural question generalizing
the study of the wisdom of crowds is how much T∞

can depend on any small set of entries. For example,
suppose we take an undirected Erdos-Renyi graph
on [n] with some edge probability p(n) ≫ log(n) as
a model of a connected social network. Fix sym-
metric functions τd for every possible degree d in
the network, and for each agent i of degree di, let
Ti(x) = τ((xj)j∈N(i)) where (xj)j∈N(i) are the opin-
ions in the set N(i) of i’s neighbors. If τ is chosen so
that T is robust in the sense above and has uniformly
bounded derivatives, it seems natural to conjecture
that an analogue of wisdom should hold. The intu-
itive reason is symmetry: agents’ roles are exchange-
able, and there seems to be nothing favoring the
emergence of globally prominent roles by accident.
[CCL24] make remarkable progress toward this con-
jecture under technical assumptions on the second-
largest eigenvalue of a matrix reflecting the social
network. However, under important models of so-
cial networks—sparse Erdos–Renyi models, stochas-
tic block models, models with agents arranged on a
lattice—these technical assumptions would not hold.
Better understanding how generalizations of central-
ity statistics behave in large networks is a wide open
and exciting problem.

A Richer Centrality
Eigenvector centralities were defined based on the
network alone, with no other determinants of sta-
tus or prestige. But sometimes such determinants
are present. Incorporating them leads to a notion of
centrality that extends the eigenvector equation by

2

32

(a)

9.4

1311

(b)

9.6

12.811

(c)

Figure 1: Nodes sized proportional to (a) degree
centrality; (b) Bonacich centrality with z = 1 and
δ = 1/3; (c) eigenvector centrality, which we see is
similar since δM has spectral radius not far from 1.

adding an exogenous term. Specifically, given a pos-
itive decay parameter δ < 1/ρ(M) and a vector z ∈ Rn

the vector of (δ, z)–Katz–Bonacich centralities k is de-
fined [Jac08] to satisfy

k⊤ = δk⊤M + z⊤. (2)

We will see some economic applications that give
foundations to this equation, but on its own terms,
one can think of high school students having exter-
nal sources of status (such as mathematical ability)
and one’s social status coming from a (linear) com-
bination of this external level and the status derived
from one’s in-connections.

The fact that ρ(δM) < 1 allows us to use the Neu-
mann series expansion k⊤ = z⊤

∑∞
t=0 δ

tM t, which
shows that i’s Katz–Bonacich centrality is a sum
of the weights of incoming walks (entries of (M

)
ij)

weighted by zj (where those walks end). In par-
ticular, it is uniquely defined. Moreover, as δρ(M)
approaches 1 from below—the boundary at which
the Neumann series diverges—the suitably rescaled
Katz–Bonacich centrality (1−δ)k(δ) converges4 to an
eigenvector centrality c of M . This (along with some

4Proving this is a good exercise. A quick guide: reduce to
the case where ρ(M) = 1 and z⊤ ∈ ∆n, and then conjugate the
system by a thoughtfully chosen diagonal matrix to further reduce
to the case where M is row-stochastic. Study the system k̃(δ)⊤ =

δk̃(δ)⊤M + (1 − δ)z⊤, noting that k̃(δ) = (1 − δ)k(δ). Use that
k̃(δ) ∈ ∆n to show convergence to a limit, and then think about
what that limit could be.
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reflection) makes it clear that the eigenvector central-
ity of a node is proportional to the weight of incom-
ing walks of very long lengths, and that z matters
only when δ is not too large. Katz–Bonacich central-
ity will be involved in many of the remaining social-
science applications that we will encounter.

Games on Networks
The first of these applications is a class of game-
theoretic models where agents’ payoffs depend on
their own actions and those of their neighbors in a
network, developed by [BCZ06].

Consider a set of n agents (these are often also
called players in game theory), each choosing an ac-
tion xi ≥ 0, which can be thought of as a level of in-
vestment—say, research effort in a joint project. The
payoff to agent i is given by:

ui(x1, . . . , xn) = −1

2
γix

2
i +

βi +
∑
j ̸=i

gijxj

xi. (3)

The first term represents the convex cost of effort,
and the parameter γi > 0 gives the rate at which
these costs scale in effort. The other terms represent
benefits: βi > 0 is an agent-specific standalone pro-
ductivity parameter, and gij is the contribution of j’s
effort to i’s marginal benefit of effort.

We now recall an important notion that will serve
as our prediction of behavior when strategic agents
play this game:

Definition 1. A (pure strategy) Nash equilibrium of
this game is a nonnegative vector x∗ ∈ Rn such that
for each agent i,

x∗
i ∈ argmax

xi≥0
ui(xi, x

∗
−i),

where x∗
−i denotes the actions of all agents other than

i.

The idea behind Nash equilibrium is that each
agent is choosing an action (called a best response)
that maximizes its own payoff, holding other agents’
actions fixed. It is an important notion of stability in
strategic interactions.

Notice that agent i’s best-responses do not change
if we divide the utility function ui by the constant γi,
so let us do this and define bi = βi/γi and mij =
gij/γi. With that transformation, the Nash equilib-
rium takes a simple form.

Fact 2. If ρ(M) < 1, then there exists a unique Nash
equilibrium given by:

x∗ = (I −M)−1b. (4)

Proof. Each xi maximizes i’s payoff ui, taking x−i as
given. Letting Bi(x) the unique best-response action
of agent i, we can take the derivative of ui in xi to
calculate

B(x) = b+Mx. (5)

Since ρ(M) < 1, the matrix I − M is invertible and
the claimed solution follows.

The result connects the equilibrium of the game to
the network structure through the matrix (I −M)−1.
Indeed, the equilibrium action of each player is its
(1, b)–Katz–Bonacich centrality in the network M⊤.

The condition ρ(M) < 1 has a natural interpreta-
tion. It ensures that the strategic influences of agents
on one another, captured by gij , do not overpower
increasing costs of individual effort, captured by γi.
(If they did, actions might be inclined to explode.)

In fact, this idea can be made more precise. Rather
than looking for an equilibrium, we can model a pro-
cess of agents strategically adjusting their behavior
in response to each other. Doing this in our current
context offers a baby example of the theory of learn-
ing (to play equilibria) in games. Suppose agents start
with arbitrary actions x(0) ∈ Rn and then, in each
period t = 1, 2, . . ., best-respond to previous period
actions. Then from eq. (5) we have the dynamic

x(t+ 1) = b+Mx(t).

If ρ(M) < 1, which we will assume unless oth-
erwise indicated, then iterating this dynamic yields
a sequence converging to the equilibrium we have
solved for with a fixed-point calculation, which be-
comes clearer when we write that equilibrium using
its Neumann series expression x∗ = (I − M)−1b =∑∞

t=0 M
tb. The series represents the cumulative ef-

fect of strategic interactions rippling through the net-
work. Each term Mkb captures the t-th order effects:
how the action of agent i depends on the exoge-
nous productivity parameters of neighbors at dis-
tance t. These indirect effects play out as agents best-
respond.

If we introduce an extra parameter δ and let M =
δA for some fixed matrix A, then the equilibrium ac-
tion of each player becomes its (δ, b)–Katz–Bonacich
centrality in the network A⊤. As the strength of
strategic effects, parameterized by δ, grows, longer
walks matter in determining equilibrium actions. If
these strategic effects become too strong, so that
ρ(M) > 1, then no finite solution exists because the
(positive) feedback effects discussed in the previous
paragraph blow up.

The connection between Nash equilibria and net-
work centrality measures makes the game-theoretic
manifestation of network analysis very clear. An
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agent’s equilibrium action is determined not just by
its immediate connections but by its position in the
broader network of strategic effects.

We can also describe another important aspect of
our game via a different application of Bonacich cen-
trality. Define the total equilibrium effort by X∗ =∑n

i=1 x
∗
i . It is immediate to compute that X∗ =

1⊤(I − M)−1b. We can define the keyness of i to
be slope of the linear functional X∗ in bi. This is
the amount by which an exogenous change in a
node’s own attribute bi affects the aggregate activity
of agents. We immediately observe:

Fact 3. Agent i’s keyness κi is i’s (1,1)–Katz-
Bonacich centrality in the network M .

Despite its simplicity, this model, along with its
close relatives, has been a useful lens for examin-
ing some important practical problems. The model
sheds light on peer effects in education, examining
how a student’s effort level depends on the struc-
ture of social interactions in the classroom [CAPZ09].
In the study of criminal networks, where there is
considerable evidence of social influence, high key-
ness identifies criminals whose presence drives an
outsize amount of crime [HJJK22]. And in models
of industrial R&D investment, it provides guidance
on targeting public expenditures to leverage indirect
spillover effects through the network of firm collab-
oration [KLZ19].

The Welfare Theory of Network Games A core
insight of game theory is that outcomes arrived at
when agents optimize individually and noncoopera-
tively need not be optimal in any collective sense; the
prisoners’ dilemma is the standard example. This
raises the question of just how much value is lost
because actions are chosen to achieve agents’ imper-
fectly aligned individual goals rather than being en-
gineered by some kind of central authority (e.g., a
manager or government) to achieve a collective goal,
which might be something like the common good.

We now analyze the efficiency of the Nash equi-
librium relative to the socially optimal outcome in
our quadratic network game. Spectral methods first
developed by [BKO15] turn out to be important for
gaining leverage on this question. The total welfare in
the game is defined as the sum

V (x) =

n∑
i=1

ui(x) (6)

of utilities across all agents. The socially optimal out-
come, denoted xeff , is the action vector that maxi-
mizes this sum.

To quantify the inefficiency of the Nash equilib-
rium, we examine the price of anarchy (PoA), which
measures the worst-case ratio of total welfare at the
social optimum to the total welfare at the (unique)
Nash equilibrium, with the network fixed and the
parameter b ranging over the positive orthant, Rn

++.

Definition 2. The price of anarchy is defined as PoA =

supb∈Rn
++

V (xeff )
V (x∗) .

We will work in the model exposited above. For
this analysis we make two strong assumptions—
discussed below—namely that the cost coefficients
γi are all equal and the induced spillover matrix
M is symmetric. These assumptions are far from
innocuous—a point we will return to—but they do
help with an illuminating characterization. We will
compare the total welfare at the Nash equilibrium x∗

and at the socially optimal action vector xeff . Our
main result characterizes the PoA in terms of the
spectral radius of M .

Proposition 2. Assume 2ρ(M) < 1, where ρ(M)
denotes the spectral radius of M . Then, PoA =(

1−ρ(M)
1−2ρ(M)

)2

.

Sketch. Diagonalize M as M = WΛW⊤, where
Λ = diag(λ1, . . . , λn) and W is an orthogonal matrix
whose columns are eigenvectors of M . Let x̃ = W⊤x

and b̃ = W⊤b. The Nash equilibrium and socially ef-
ficient actions can be written as x̃∗

i = b̃i
1−λi

, x̃eff
i =

b̃i
1−2λi

. The first follows from rewriting Fact 2 in the
diagonal basis, and the second follows by solving a
very similar system of equations corresponding to
the first-order conditions for maximizing V (x).

The total welfare at the Nash equilibrium is

V (x∗) =
1

2

n∑
i=1

b̃2i
(1− λi)2

. (7)

This is obtained by plugging in the condition that all
agents are best-responding x∗ = Mx∗+b, which hold
at equilibrium, into agents’ utility functions from
eq. (3), noting that in the present case β = b. This
shows that ui = 1

2 (x
∗
i )

2, so that utilitarian welfare
is 1

2 (x
∗)⊤x∗. We then plug in the above characteriza-

tion x̃∗
i = b̃i

1−λi
in the diagonalized basis. By a similar

calculation,

V (xeff) =
1

2

n∑
i=1

b̃2i
(1− 2λi)2

. (8)

The PoA is maximized when all weight is placed
on the eigenvector corresponding to λmax = ρ(A),
yielding the result.
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This result reveals that the inefficiency of the
Nash equilibrium increases with the network’s spec-
tral radius ρ(M), a measure of strategic interaction
strength. As this number approaches the maximum
value where the social optimum is well-defined, the
PoA grows unbounded. Moreover, the instances
achieving worst-case efficiency loss are those where
basic incentives are proportional to the first eigen-
vector of the interaction network.

The PoA in network games illuminates the impact
of network structure on the efficiency of decentral-
ized outcomes. In networks with large spectral radii,
individual actions have amplified effects on others,
leading to greater divergence between individual in-
centives and social welfare.

Toward Open Questions The most obvious open
question is what can be said about the price anar-
chy when we dispense with the strong assumptions
that γi is constant across i and M is symmetric. Both
impose symmetries that are neither innocuous nor
likely to hold in most applications. Regarding the
symmetry of M , it is easy to think of cases where i’s
effort makes a big difference to j’s incentives but this
is not so when their roles are reversed. The assump-
tion that γi = 1 seems even more troubling; while it
can be achieved by multiplying ui by a scalar, this
rescaling necessarily changes how the welfare of i
enters the social welfare function. The techniques
used above do not allow us to vary γi flexibly while
still characterizing properties of a fixed social welfare
function.

Since the price of anarchy is continuous in nice
perturbations of the agents’ utility functions, there
is some sense in which the result of Proposition 2 de-
grades gracefully as we depart from this special case.
Even the straightforward version of this has not, to
my knowledge, been spelled out. More ambitiously,
thinking about generalizations of such games where
preferences are not quadratic, it is natural to ask: can
we generalize the insight that the gap between equi-
librium and optimal outcomes can be bounded in
terms of the strength of strategic effects?

Incomplete information opens up another set of
questions to explore. We have assumed that all
the parameters of agents’ utility functions—γi, bi,
gij—are known exactly by the agents. This is un-
realistic. There are standard Bayesian models of
agents reasoning correctly about each other’s param-
eters, each other’s uncertainty about those parame-
ters, etc. The linear structure of our basic environ-
ment works nicely with incomplete information, and
permits tractable characterizations. However, the
study of welfare, price of anarchy, etc., is completely

open.
A final direction in which there are several ac-

tive research programs but also many opportuni-
ties is the study of network interventions. The
inefficiency of equilibria raises the obvious ques-
tion of what to do about it. Several recent pa-
pers look at interventions in network games and dy-
namic processes (akin to our best-response dynamic)
[GKT20, GGG20, JS24]. Many of these papers work
with a similar level of tractability as the one we
have been analyzing, but different applications or
interpretations—e.g., ones representing coordination
on common opinions or values rather than collabora-
tive effort.

Public Goods
The results just presented rely on global assump-
tions imposing specific, global functional forms on
the utility functions ui. These assumptions are useful
for illustrating certain phenomena sharply, but they
are very unrealistic.

It turns out centrality theory has fundamental
manifestations in other economic models. We start
with an example of this in a different domain, which
also allows us to introduce some new economic
ideas, building on our analysis of welfare and effi-
ciency above.

Consider a set of n agents, each choosing an ac-
tion xi ≥ 0. The utility of agent i is given by
a strictly concave5 and continuously differentiable
function ui(x1, . . . , xn). We make the following as-
sumptions:

1. Costly actions: Each agent finds it costly to in-
crease its action, holding others’ actions fixed:
∂ui

∂xi
< 0 for all i.

2. External benefits: Utilities are nondecreasing in
any other player’s action: ∂ui

∂xj
≥ 0 for all i ̸= j.

The first assumption means that, holding others’ ac-
tions fixed, agents would strictly prefer to reduce
their own actions.6 The second means that each
agent’s action is at worst neutral for others. If xi

represents something like mitigating environmen-
tal harms or investing in technologies that produce
clean energy, a Nash equilibrium outcome can be a
tragedy: actions that are unilaterally best responses
yield outcomes worse than some other available out-
comes. Our main question of this section is: if agents

5For all x, x′ and all α ∈ (0, 1), we have ui(αx+ (1−α)x) >
αui(x) + (1− α)ui(x

′).
6We can instantiate this with polynomials similar to those

studied above, with a cost term of the form −γi(xi + ci)
2, mak-

ing the costs of action large enough at 0. This means that the only
Nash equilibrium is x = 0.
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want to improve on the non-cooperative status quo
of 0—e.g., by negotiating a like-for-like agreement in
which they commit to all provide more effort—when
is this possible?

To discuss improvements to the x = 0 status quo,
we introduce some welfare theory that goes beyond
the simple utilitarian notion we studied via V (x)
above.

Definition 3. An action vector x ∈ Rn is Pareto effi-
cient if there is no y ∈ Rn such that ui(y) ≥ ui(x) for
all i and uj(y) > uj(x) for some j.

Pareto inefficient outcomes are ones such that
some agents can be made strictly better off with-
out making anyone worse off. Pareto efficiency of
x means that there is someone who can object to
the shift to any y on the grounds that it makes that
agent worse off (though y may be, in some reason-
able sense, an improvement). It is a fact—worth con-
vincing oneself of—that under our assumption that
each ui is strictly concave, all Pareto efficient out-
comes can be obtained as maximizers of

∑
i θiui(x),

where θi are some nonnegative numbers. As the vec-
tor θ ranges over the interior of the simplex ∆n, we
trace out a manifold of codimension 1 in Rn consist-
ing of values of x solving this optimization problem.

The main point of this section is that this manifold
has an interesting description in spectral terms, first
suggested by [GM08] and developed by [EG19]. De-
fine the benefits matrix B(x) as

bij(x) =
∂ui/∂xj

−∂ui/∂xi
for i ̸= j, bii(x) = 0.

Each entry bij(x) represents the rate at which agent
i is willing to substitute a decrease in its own action
for an increase in agent j’s action: i.e., the number
of units of own action that agent i would be just in-
different to giving in order to obtain one unit of j’s
effort. We will assume that B(x) is irreducible for ev-
ery x, which means that it is impossible to partition
the agents into two sets, one of which does not care
about the other’s contributions.

We now have the following result.

Proposition 3. An entrywise positive vector x is
Pareto efficient if and only if the spectral radius of
B(x) is equal to 1. Moreover, under the normaliza-
tion ∂ui

∂xi
= −1, the left-hand eigenvector centralities

of B(x) correspond to the Pareto weights θi such that
x maximizes

∑
i θiui(x).

Proof sketch. If the spectral radius is greater than 1,
a Pareto improvement can be constructed in which
one agent increases its action, generating benefits for

others; then others “pass forward” some of the ben-
efits they receive by increasing their own actions.

Fix any x ∈ Rn
++ (which we will often suppress

as an argument) and let ρ denote the spectral radius
of B(x). Then by the Perron–Frobenius theorem and
the maintained assumptions, there is a c ∈ Rn

++ such
that Bc = ρc. Let D be the Jacobian of u in x evalu-
ated at the outcome of interest, with entries dij . Mul-
tiplying each row of this system by −dii,∑

j ̸=i

∂ui

∂xj
cj + ρ∂ui

∂xi
ci = 0 ∀i.

If ρ > 1, then using the assumption∂ui

∂xi
< 0 we de-

duce ∑
j ̸=i

∂ui

∂xj
cj +

∂ui

∂xi
ci > 0 ∀i, (9)

showing that a slight change where each i increases
its action by the amount ci yields a Pareto improve-
ment. The vector c describes the relative magni-
tudes of contributions to make the passing forward
of benefits work out to achieve a Pareto improve-
ment. Note that it is key to the argument that c is pos-
itive. The conditions of the Perron–Frobenius theo-
rem guarantee the positivity of c. If ρ < 1, we reason
similarly to conclude the inequality (9) when we set
c to be minus the Perron vector of B—i.e., when each
i slightly decreases its action by the amount |ci|. Thus
Pareto efficiency implies ρ(B(x)) = 1.

Conversely, we now show that if ρ(B(x)) = 1
then x is Pareto efficient. By Perron–Frobenius, if
ρ(B(x)) = 1 there is a left-hand eigenvector θ of B(x),
with all positive entries, satisfying θB(x) = θ. Un-
der the dii = −1 normalization, this is equivalent to
θD(x) = 0, the first-order conditions for x to maxi-
mize

∑
i θiui(x). Since these conditions hold and the

maximization problem is concave, it follows that x is
Pareto efficient.

The above argument also shows that whenever x
is Pareto-efficient, the vector θ of left-hand eigen-
vector centralities of B(x) is such that x maxi-
mizes

∑
i θiui(x). Intuitively, θi =

∑
j θjbji says i’s

weight (proportional to the planner’s disutility of
that agent’s costs) equals the total benefits it can con-
fer on others, weighted by their θj ; if this were not
so, the planner would want to change xi.

Essential agents Are there any agents that are es-
sential to negotiations in our setting and, if so, how
can we identify them? Suppose for a moment that a
given agent may be exogenously unable to take any
action other than xi = 0. How much does such an ex-
clusion hurt the prospects for voluntary cooperation
by the other agents?

7
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Figure 2: A benefits matrix B(0) and its graphical
depiction, in which player #4 is essential despite pro-
viding smaller benefits than the others.

Without agent i, the benefits matrix at the sta-
tus quo of 0 is equal to the original B(0), but both
row and column i are zeroed out. Call that ma-
trix B[−i](0). Its spectral radius is no greater than
that of B(0). In terms of consequences for efficiency,
the most dramatic case is one in which the spectral
radius of B(0) exceeds 1 but the spectral radius of
B[−i](0) is less than 1. Then by Proposition 3(ii), a
Pareto improvement on 0 exists when i is present but
not when i is absent. To illustrate, consider the ex-
ample in Figure 2. Agent 4, even though it confers
the smallest marginal benefits, is the only essential
agent. Without this agent, there are no cycles at all,
so ρ(B[−4](0)) = 0. On the other hand, when 4 is
present but any one other agent (i ̸= 4) is absent,
then there is a cycle whose edges multiply to more
than 1, and the spectral radius of B[−i](0) exceeds 1.
Thus, the participation of a seemingly “small” agent
in negotiations can make an essential difference to
the ability to improve on the status quo when that
agent completes cycles in the benefits network.

Spectral Radius in Terms of Cycles Gelfand’s for-
mula for the spectral radius helps us articulate the
role cycles play in Pareto improvements.

Fact 4. For any nonnegative matrix M , its spectral
radius ρ(M) is equal to lim supt→∞ trace (M t)

1/t
.

For a directed, unweighted graph with adjacency
matrix M , the quantity trace (M t) measures the
strength of all closed walks of length t by taking the
product of the edge weights for each such walk, and
then summing these values over all such walks.

The essential agents discussed in the last section
will be those that are present in sufficiently many of
the high value cycles in the network. Relatedly, a sin-
gle weak link in a cycle will dramatically reduce the
value of that cycle. Thus networks with an imbal-
anced structure, in which it is rare for those agents
who could confer large marginal benefits on others
to be the beneficiaries of others’ efforts, will have a

lower spectral radius and there will be less scope for
cooperation.

Markets and Imperfect Measurement
Practically-minded readers may have a nagging
worry. Imagine one of the models we have presented
actually describes an economic situation. How can
an analyst use these models without direct access to
the data we have taken as given (e.g., the matrices M
or B)? In practice, such objects are, at best, observed
imperfectly.

This section exposits an approach to this in the
context of a network game from the theory of firm
behavior from [GGG+24], which also illustrates how
network game theory can be applied to situations
with traditional economic ingredients, such as prices
and quantities. The agents in this model are n firms
(businesses), selling distinct goods (e.g., computers,
VR headsets, math textbooks, etc.). Each chooses an
action xi, which is the price of its good. Quantities
sold as a function of prices are q(x) = q0 + Mx,
where q0 ∈ Rn and M is an n-by-n matrix satisfy-
ing the normalization Mii = −1 for all i. A firm
pays a cost ci per unit sold, and firm i’s profits are
ui(x) = qi(x)(pi − ci). Solving for the Nash equilib-
rium of the game yields the following analogue of
eq. (4): when costs are perturbed by ċ, equilibrium
prices are perturbed by

ẋ = (I −M)−1ċ.

An economically important feature of this model is
that market outcomes are Pareto inefficient: markets in
this model can have their outcomes improved, from
a social perspective, by thoughtful interventions.7

We thus introduce an authority that can influence the
game by choosing an intervention, a vector σ ∈ Rn

which perturbs firms’ costs, ċ = −σ. The effect of the
intervention on economic surplus (a measure of wel-
fare inclusive of effects on firms, consumers, and the
authority’s expenditure) turns out to be

V (σ) = (q0)⊤(I −M)−1Mσ, (10)

where q0 ∈ Rn is a given vector of pre-intervention
quantities. This follows by some standard calcula-
tions spelled out in [GGG+24], and we will take this
more elaborate version of eq. (6) for granted.

We now formulate the authority’s problem, which,
in essence, is to improve economic surplus with high

7The basic idea is that when firms set prices, they do not have
an incentive to focus on economic surplus that is not part of their
profit. As a result, they can set “socially inefficient” prices, typi-
cally higher than a welfare-minded planner would. Interventions
by authorities such as platform operators (e.g., Amazon) or gov-
ernment agencies can remedy this, at least partially.
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confidence despite very noisy information. We posit
that the authority observes noisy estimates of M and
q0, denoted by

M̂ = M + E and q̂0 = q0 + z,

where E and z are a random matrix and a ran-
dom vector modeling estimation error. Practically,
econometricians (economic statisticians) have devel-
oped tools to estimate market quantities q0 and ef-
fects of each firm’s pricing on other firms’ demands
(M ). We will assume that E is symmetric, and its
upper-triangular entries are independent and identi-
cally distributed with a variance uniformly bounded
in n; we will assume the same of the entries of z.
The challenge for the authority is that any interven-
tion causes ripple effects through strategic behavior,
captured by the matrix (I −M)−1 in eq. (10). Read-
ers familiar with numerical analysis will recognize
that (I−M)−1 can be extremely sensitive to mismea-
surement. In other words, an authority that does not
know these ripple effects exactly might worry about
doing harm with an intervention. To formalize this,
we will consider a planner who knows that (M, q0)
lies in some known set of possibilities P and seeks a
robust intervention rule:

Problem 1. An ϵ-robust intervention rule for P is a
function σ(M̂) so that, for all (M, q0) ∈ P we have
V (σ(M̂)) ≥ 1 with probability at least 1− ϵ.

Note the randomness is only in the draw of E.
We will give conditions under which robust inter-

ventions exist. Define the subspace L(M,µ) ⊆ Rn

as the span of eigenvectors of M corresponding to
eigenvalues λ with |λ| ≥ µ.

Definition 4. The pair (M, q0) has (µ, δ)-recoverable
structure if the projection of q0 onto L(M,µ) has
norm at least δ.

Note this condition requires that M has some
eigenvalues larger than µ, and that q0 projects non-
vanishingly onto those eigenspaces. Then we have:

Proposition 4. Fix δ > 0 and a sequence µ(n) ∈
ω(

√
n). If all pairs in P have (µ(n), δ)-recoverable

structure, then ϵ-robust intervention rules exist for
some ϵ > 0 and all large enough n.

The significance of the condition µ(n)/
√
n → ∞ is

that the Frobenius norm of E is O(
√
n) by the the-

ory of Wigner matrices. In this sense, the condition
says that all possible markets in P have recoverable
structure “larger” than the norm of the noise. We
now sketch how this is used to intervene robustly.

Let’s diagonalize the matrix M :

M = WΛW⊤,

where W is orthogonal with columns uℓ and Λ is di-
agonal with entries λℓ. We can write the effect on
welfare of an intervention as

V (σ) =

n∑
ℓ=1

αℓβℓ
λℓ

1− λℓ
, (11)

where σ =
∑n

ℓ=1 αℓw
ℓ and q0 =

∑n
ℓ=1 βℓw

ℓ, where
wℓ are the columns of W .

The challenge in making this quantity positive
with an intervention is that the authority does not
know the true M or its eigenvectors U ; it only has
access to the noisy proxy M̂ .

Nevertheless, the spectral rewriting of the welfare
function is useful, because it allows us to use the
Davis–Kahan theorem, which can guarantee precise
recovery of some of the spectral summands. Let Û
be the matrix of eigenvectors that diagonalizes M̂ .
Let us first impose the additional technical condi-
tion that the largest eigenvalue λ1 is separated from
the second-largest by a sufficiently large gap—much
larger than

√
n. In that case, the Davis–Kahan theo-

rem guarantees that the eigenvector û1 is very close
to u1. This opens the door for the authority to ef-
fectively control the first summand of eq. (11), while
keeping all the other summands nearly zero. That is
the essence of the “robust intervention” strategy.

Intuitively, the noise in M̂ means that many spe-
cific spillovers cannot be known precisely. But the
identification of some large-eigenvalue eigenspaces
permits the detection and estimation of latent pat-
terns in the interactions that have a strong impact on
demand responses q(x) = q0+Mx. This turns out to
be enough for designing good interventions.

For the strategy we have sketched to work in gen-
eral, several important details have to be dealt with.
First, the “gap” condition separating the largest
eigenvalue from the rest might not hold. In this case,
the authority may be forced to approximate a space
L(M,µ) of dimension exceeding 1, which makes the
tailoring of eq. (11) to be positive more delicate. Sec-
ond, some assumptions are needed to make sure that
βℓ are not all too small; if they are, then statistical
noise can make the tailoring impossible. The as-
sumption on q0 in the definition of recoverable struc-
ture is related to this issue.

Illustration To illustrate our approach, consider a
matrix M = Mblock for n = 300 where Mblock = C ⊗
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Jn/3, where

C =

 −1 0.15 0.7
0.15 −1 0.6
0.7 0.6 −1


and J is the matrix of ones. The top eigenvalue of
M is about 200, while if E has standard normal en-
tries, its largest eigenvalue is about 30. This allows
the top eigenvector u1 of M to be recovered from M̂ ,
as illustrated in Figure 3.

Closing Reflections
The previous section illustrates a large practical pay-
off of reformulating economic problems in spectral
terms: we can use statistical results on the recov-
ery of eigenvalues and eigenvectors through noisy
observation and sampling. Such recovery strategies
constitute a rich and active area of research. Connec-
tions to economics promise new applications as well
as new mathematical questions [CCF+21].

We have focused on the setting of market games to
illustrate this interplay simply because that is where
the existing research on the topic is. But exploiting
the synergy between “spectral microeconomics” and
statistics offers exciting avenues in all the applica-
tions we have mentioned. One that I would like to
emphasize is the public goods model. It is, in my
view, urgent to improve mechanisms for providing
public goods in areas ranging from climate change
to the management of new artificial intelligence tech-
nologies. Economic mechanisms that deal not only
with incentive issues but also with the statistical un-
certainties inherent in measuring spillovers are ur-
gently needed. The ideas we have presented may be
useful tools for building such mechanisms.
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D_true

(a) True matrix M

Rank-1 approximation of D_true

(b) True first spectral summand: w1(w1)T

D_observed

(c) Noisy observation M̂

Rank-1 approximation of D_observed

(d) Estimated first spectral summand: ŵ1(ŵ1)T

Figure 3: Illustration of true vs. estimated parameters in the example. Blue pixels correspond to negative
matrix entries, while the red regions to positive ones. The spectral summand refers to the first term in the
spectral decomposition M =

∑n
ℓ=1 λℓw

ℓ(wℓ)T.
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